
www.COOGL.org

pronounced see-oogl as in:

“see ogly eyed bird ogling at you”

Concurrent
Object Oriented

Generic Language
Copyright 2004–2018, Ramón G. Pantin

1.3.079-lo-6.0.6.2

COOGL

This book is dedicated to my mother, Adina de Pantin (R.I.P.), who
persevered through life with the single minded purpose to raise her
children and aim their lives in the right direction; and to

Professor “Killer” Francisco Hernández (R.I.P.), for showing me the
beauty of Mathematics during my five years of high school at Cole-
gio Don Bosco (Caracas, Venezuela).

Ramón G. Pantin

1 Introduction 13
 1.1 Rationale for COOGL 13
 1.2 Object oriented terminology 15
 1.3 Member function invocation syntax 17
 1.4 Hello world and type safe input and output 19
 1.5 Compilation model 21
 1.6 C versions and COOGL ancestry 22
 1.7 C language schism: concurrency and undefined behavior 23
 1.8 COOGL syntax and language design philosophy 29
 1.9 Programming language complexity 30
 1.10 Book Organization 34

2 COOGL's C subset: CLEAN 38
 2.1 Tokens and identifiers 38
 2.2 Comments 38
 2.3 Source code after comment removal 41
 2.4 Functions and the return statement 41
 2.5 Built-in types 42
 2.6 Integer, floating, character, and string literals 44
 2.7 Declarations and declaration contexts 45
 2.8 Declaration kinds 46
 2.9 Order of declarations 49
 2.10 Statements within functions and classes 49
 2.11 Introduction to operators and expressions 50
 2.12 Compound statement 50
 2.13 assert() function and ... statement 51
 2.14 if and if else selection statements 51
 2.15 while and for iteration statements 51
 2.16 Operators and expressions 52
 2.17 Controlling expressions, relational operators, and truth values 54
 2.18 Logical operators 54
 2.19 Assignment and assignment-op operators 55
 2.20 Increment and decrement operators 55
 2.21 Ternary selection ?: operator and the comma operator 56
 2.22 C array types, operators and expressions 56
 2.23 Pointers: types, operators, and expressions 58
 2.24 Aggregate types and their operators 64
 2.25 Expressions 65
 2.26 Expression statements 65
 2.27 Default value returned by main() 66
 2.28 if and if else selection statements and indentation errors 66
 2.29 goto statement 68

 2.30 switch statement 69
 2.31 do while iteration statement 71
 2.32 break and continue statements 71

3 Array descriptors, tuples, and literals 73
 3.1 Array descriptors 73
 3.2 Multi dimensional array descriptors 75
 3.3 Array descriptor access restrictions 76
 3.4 Restricted array descriptors 77
 3.5 Restricted array descriptor accesses are atomic 77
 3.6 Array and array descriptor indexing is checked 78
 3.7 Arrays of arrays vs multidimensional arrays 78
 3.8 Array descriptor use in expressions 79
 3.9 Pointer arithmetic and array descriptors 79
 3.10 Use of pointers based on array descriptors is always safe 80
 3.11 Functions that return array descriptors 81
 3.12 Implicit array descriptor for string literals 81
 3.13 Tuples 81
 3.14 Literals 83

4 Classes and inheritance 85
 4.1 Contract specification: vital, require(), and promise() 85
 4.2 Class declarations are function declarations 86
 4.3 Accessibility modifiers and member declarations 86
 4.4 Object declarations and decl 88
 4.5 Member functions 88
 4.6 Introduction to inheritance and member function redefinition 89
 4.7 Access to redefined member functions 90
 4.8 Contract specifications and member function redefinitions 90
 4.9 Restrictions on constructor calls to non-static member functions 91
 4.10 Constructor organization 91
 4.11 Complicated constructor and the ini() programming idiom 92
 4.12 Member declarations and initialization are unified 92
 4.13 Object pointer: this 93
 4.14 A stack iterator and the use of this in the class constructor 94
 4.15 Functions as degenerate types and nested member functions 96
 4.16 Functions with default argument expressions 97
 4.17 Stringify operator # 98

5 Construction, assignment, and destruction 99
 5.1 Value like objects 99
 5.2 Abstract classes, interfaces and deferred member functions 101
 5.3 Destructor, the deinit() member function 101
 5.4 Destructor can not call non-static member functions 102

 5.5 Brief introduction to namespaces 102
 5.6 Default construction, init_default() static member function 102
 5.7 Value classes, init() and reinit() and member functions 103
 5.8 Optimization with init_deinit() and reinit_deinit() 103
 5.9 The lang.value interface 104
 5.10 Member functions specified by lang.value 104
 5.11 A string class example 105
 5.12 Object deinitialization: deinit() 105
 5.14 Some string operations 106
 5.15 Initialization constructor: init() 107
 5.16 Brief preview of strings of generic value types 108
 5.17 Object slicing along incorrect type boundaries is not allowed 109
 5.18 Pseudo constructors 109
 5.19 Default construction 110
 5.20 Object reinitialization: reinit() 110
 5.21 Optimizing assignment of returned values: reinit_deinit() 111
 5.22 Optimizing initialization from returned values: init_deinit() 111
 5.23 Regular function's deinit() and retval 112
 5.24 Object arguments and return values 113
 5.25 Literal members 113

6 Abstract classes, interfaces, and inheritance 115
 6.1 Abstract classes and concrete classes 115
 6.2 Interfaces 116
 6.3 Single inheritance and multiple interfaces 116
 6.4 The defer and redef function modifiers 117
 6.5 Single inheritance and multiple interfaces example 118
 6.6 Redefining static member functions 120
 6.7 Accessibility modifiers 120
 6.8 Accessibility modifiers versus inherit and is declarations 121
 6.9 Member access aliases 122
 6.10 Qualified accessibility modifier 125
 6.11 Single inheritance example 126
 6.12 Pointers and inheritance 131
 6.13 Duplicate member names 131
 6.14 Constructor and destructor restrictions and contracts 132

7 Extension, continuation, and other class topics 135
 7.1 Class extension: extend class 135
 7.2 Class declaration continuation: continue class 136
 7.3 Class of pointers and array descriptors implicit declaration location 136
 7.4 Pointer arithmetic 137
 7.5 sizeof and sizeofex operators 137

 7.6 Layout control of class objects: class struct 137
 7.7 Only global declarations can be hidden 138
 7.8 Name lookup relative to the scope of a function 138
 7.9 Structure and array initializers 139
 7.10 Delegate functions: deleg 140
 7.11 Other aspects of delegate function pointers 142

8 Name spaces, modules, and initialization order 143
 8.1 Modules and name spaces in C 143
 8.2 Global declarations in C 145
 8.3 Modules and accessibility modifiers 146
 8.4 Publicized and published declarations 146
 8.5 Module specification 147
 8.6 Controlling access to class as type vs as constructor 148
 8.7 Name spaces 149
 8.8 Modules and namespaces are independent concepts 151
 8.9 Class initialization 151
 8.10 Global construction order 152

9 More about control flow and input output 153
 9.1 Replacement of goto out idiom with deinit() 153
 9.2 on statement 154
 9.3 on expression 156
 9.4 Arguments to on statement member function and str strings 161
 9.5 Byte count vs operation count on value convention 162
 9.6 Compile time and run time enabled traces with on 162
 9.7 Optional argument expression evaluation 163
 9.8 Goto target restrictions 164
 9.9 Use of return expression; in void functions 165
 9.10 Function values that are vital 165
 9.11 Classes whose objects are vital 166
 9.12 Jump statements cause object destruction 166
 9.13 Loop-member functions and the loop statement 167
 9.14 No structured exception handling 169

10 Operators, expressions, keywords, and behavior 171
 10.1 Parenthesis requirement in certain error prone expressions 171
 10.2 Member lookup operator ^ 173
 10.3 Fine grained function inline control 174
 10.4 Checked arithmetic operators 174
 10.5 Keywords 175
 10.6 Removed keywords 178
 10.7 Undefined behavior and implementation dependent behavior 179
 10.8 Implementation-defined behavior and unspecified behavior 183

 10.9 Loop optimization concern 185

11 Generic programming and object allocation 187
 11.1 Type dot expression 187
 11.2 Constructor invocation syntax with built-in types 188
 11.3 Type arguments, type variables, and type values 188
 11.4 Restrictions on type arguments 190
 11.5 Type argument omission and deduction 191
 11.6 Specialization of generic classes and functions 192
 11.7 Type variables must be initialized, never assigned 193
 11.8 Function names vs class names 193
 11.9 The argsof tuple type member 194
 11.10 The lib.creatable interface 194
 11.11 Public static member functions that can't be inherited 196
 11.12 Literal arguments to generic classes 196
 11.13 Field name argument declarations with fieldof 196
 11.14 Generic intrusive lists 197
 11.15 Generic doubly linked list: list 198
 11.16 Use of list 199

12 More about types and smart pointers 201
 12.1 Integer types 201
 12.2 Indexing types 202
 12.3 Floating point, complex, and imaginary types 203
 12.4 Enums 203
 12.5 Bit fields 205
 12.6 Unicode characters 206
 12.7 Unicode 16 bit characters 207
 12.8 Character and string literal 207
 12.9 Incompatible and global types 207
 12.10 Types and literal dimensions 208
 12.11 class void 209
 12.12 User defined classes descend from lang.classes 209
 12.13 Base class of all arrays: lang.array 210
 12.14 Base class of all compile time sized arrays: lang.carray 210
 12.15 Base class of all dynamically sized arrays: lang.dynarray 210
 12.16 Construction and destruction of lang.carray and lang.dynarray 211
 12.17 lang.arraydesc and lang.vecdesc array descriptors 211
 12.18 Number type interface hierarchy: lang.number 212
 12.19 Pointers descend from class void * 214
 12.20 Smart pointers and their priv member: ptr 214
 12.21 Control during pointer dereference XXX 217
 12.22 Explicitly declared classes and smart pointer restrictions 217

13 Variable length and dynamically allocated arrays 219
 13.1 Variable length arrays 219
 13.2 v[] declaration syntax in C 220
 13.3 type v[][] declarations are always invalid in C 220
 13.4 Variable length arrays in COOGL 221
 13.5 Idiomatic error setting by constructor and arrays of objects 223
 13.6 Restrictions on array descriptors and variable length arrays 224
 13.7 Array memory reinterpretation 224
 13.8 Dynamic creation and destruction of arrays 225
 13.9 Array descriptors and polymorphism 227

14 Safe programming 229
 14.1 Safe programming 229
 14.2 Modern computer system hardware 230
 14.3 Safe programming approach 231
 14.4 Bad memory accesses in C 233
 14.5 Plain and non-plain data and types 234
 14.6 Insight for safe, C style, memory manipulation in COOGL 236
 14.7 Unions can't contain indexes, pointers, or array descriptors 237
 14.8 Global memory can't refer to memory on the run-time stack 238
 14.9 Returning addresses of run-time stack allocated memory 240
 14.10 Run-time stack allocated memory and execution contexts 242
 14.11 Run-time stack growth is checked 242
 14.12 Casts and safety: cast() and try_cast() 242
 14.13 Restrictions on class members whose type is a plain data type 246
 14.14 Implicit pointer conversions without casts 246
 14.15 Pointer to base cast to pointer to derived: is_cast() 247
 14.16 Trapping addresses, NIL, NULL, and uptr_cast() 247
 14.17 Trapping pointer value interface and implementation 250
 14.18 Use of NULL and zero as pointers is deprecated 251
 14.19 Addresses of members based on NULL or trapping addresses 252
 14.20 Use of NULL with objects of a class type is invalid 252
 14.21 The unsafe_cast() operator and disabling unsafe features 253
 14.22 Deconstructed values and uninitialized variables 253
 14.23 The uninit() member function 254
 14.24 Permanent association of heap virtual addresses and types 255
 14.25 Array walking through pointer ranges is always valid 256
 14.26 Invalid pointer value computation 257
 14.27 Use of objects at start-1 and at end 257
 14.28 Out of bounds indexing causes an exception 260
 14.29 Invalid memory access definition 260
 14.30 Prefix classes: preclass 261

 14.31 Extending the language safety model 261
 14.32 Dynamically unloaded modules and safety 261
 14.33 Hardware and software exceptions and exception handlers 262

15 Concurrent programming 263
 15.1 Concurrent programming 263
 15.2 Language design considerations 265
 15.3 Allowing concurrency support through libraries 267
 15.4 Concurrency support in libraries is optional 269
 15.5 Weakly ordered concurrent memory accesses 270
 15.6 Concurrency support in C 271
 15.7 Language design dilemma 272
 15.8 Concurrent programming building blocks 273
 15.9 Execution contexts 274
 15.10 Threads, mutexes and condition variables 274
 15.11 Weaknesses and complexity in C11 <threads.h> 275
 15.12 Concurrency support in COOGL lib.concur 275
 15.13 Multi-threaded Sieve of Eratosthenes and thread safe queue 278
 15.14 Memory model and concurrency 280
 15.15 C11 and C++11 memory model 282
 15.16 COOGL memory model 282
 15.17 Atomic memory operations 283
 15.18 Exception handlers 283

Appendix 1L – Libraries lang, lib, and libc 285
 L.1 Generic function lang.on_array() 285
 L.2 Obtaining the object that contains a field field_to_obj() 286
 L.3 Atomic array descriptor fetching and copying 286
 L.4 Weakly ordered memory control 289
 L.5 Standard input output 289
 L.6 String literals and the str string type 290

Appendix 2S – Identifier mapping and calling convention 291
 S.1 Introduction to the calling convention 291
 S.2 Hidden arguments: this and on 292
 S.3 Tuple arguments and return value 292
 S.4 Arguments that are a value object 293
 S.5 Return values that are a value object 294
 S.6 Unidimensional array descriptor arguments 295
 S.7 Array descriptor return value 295
 S.8 Multidimensional array descriptor arguments 296
 S.9 Internal and external identifiers 296
 S.10 Identifier mapping from COOGL to C 297
 S.11 Identifier mapping: global declarations outside of lexical scope 298

 S.12 Identifier mapping: global declarations inside a lexical scope 298
 S.13 Exceeding the external identifier length limit 299
 S.14 Identifier mapping for a class and its members 300
 S.15 Identifier mapping of array descriptor declarations 302
 S.16 Identifier mapping and generic code 302
 S.17 Functions with default argument expressions 305
 S.18 Identifier mapping of functions risky to caller 305

Appendix 3D – Differences between C and CLEAN 307
 D.1 Summary of differences between CLEAN and C 307
 D.2 Comments 312
 D.3 No C preprocessor 313
 D.4 No K&R C function declarations 317
 D.5 Variable argument functions are not allowed 317
 D.6 Forward struct and union declarations are invalid 318
 D.7 Variable declarations in type declarations are invalid 319
 D.8 Semicolon after closing curly brace in struct and union 320
 D.9 Every declaration is local to its scope 320
 D.10 Invalid nested typeless struct and union declarations 321
 D.11 Non global names cannot be hidden 322
 D.12 Struct and union For C interoperability 322
 D.13 Function invocation from C Code 323
 D.14 Global declarations are by default prot 323
 D.15 Interfacing with other languages 323
 D.16 Mandatory parenthesis in a few troublesome cases 324
 D.17 Errors with signed and unsigned: < <= >= > 324
 D.18 Hardware dependent types and bool 325
 D.19 Type specifiers in enum 326
 D.20 lit modifier introduces a compile time constant 326
 D.21 Declarations must have an explicit type 326
 D.22 Variable length arrays 327
 D.23 NULL pointer 327
 D.24 Name mapping, double underscore, and underscore retrictions 327
 D.25 Deceiving indentation causes compilation errors 328

Appendix 4C – Sharing Code and Using C Code 330
 C.1 genassym lesson 330

Appendix 5R – Language and Compiler Manual 332
 R.1 Introduction to the COOGL Compiler 332
 R.2 Compiler Options 332
 R.3 Compiler Option Specification 332
 R.4 Enabling ... Statement 333
 R.5 Enabling NULL Support 333

 R.6 Compilation of Concurrent Code 333
 R.7 Add --clean to gcc 333
 R.8 Compiler Specification Files 333

[This page left blank to work around issue in LibreOffice that is causing an empty
blank page to be created in the next chapter in between its pages]

1 - Introduction

“For infrastructure work, C will be hard to displace.”

-- Dennis M. Ritchie

COOGL is based on a subset of the C language, enhanced with
safe, concurrent, object oriented, and generic programming support.

This book does not require that the reader be familiar with the C
programming language, the complete COOGL language is described.
Nonetheless, familiarity with C is expected from most users of
COOGL, the book is organized to satisfy both audiences. The few
differences between COOGL and C are explained in Appendix §3D
(page 307), which C programmers will want to refer to. Programmers
that are not familiar with C might also want to read The C Program-
ming Language by Kernighan and Ritchie.

1.1 Rationale for COOGL

The large majority of the world's system software infrastructure is written in C or in
C++. Software at risk from the unsafe nature of C and C++ includes: operating sys-
tems, virtual machine hypervisors, database servers, transaction monitors, application
servers, web servers, file servers, backup systems, compilers, run-time systems, in-
dustrial control systems, web browsers, networking infrastructure, security, authenti-
cation, encryption, and a large number of applications built on top of these technolo-
gies, even if those applications are written in safe languages.

A few safe, or safer, programming languages, such as C#, Java, Eiffel, and Go, are
used at the higher levels of application programming, but the core infrastructure con-
tinues to be written primarily in C or C++. The gap between C and C++ and these
other languages is large, causing large bodies of system software to continue to be
maintained and enhanced in C and C++ instead of being rewritten in safe languages.
The fundamental problem with those safe languages is that their memory manage-
ment approach, through mandatory garbage collection, and their memory safety ap-
proach, through an extremely tight type system, makes their use inappropriate as an
evolutionary path for existing C and C++ code.

As the world's dependence on information systems continues to grow, it is impor-
tant that an evolutionary path exist for these systems to be reengineered, incremen-
tally, into systems that are safer through the use of a safe programming language for

14 Introduction Chapter 1

system software, COOGL is that language.

The problems caused by the unsafe nature of C and C++ are at least an order of
magnitude more complex when shared memory multi-processing is involved through
multi-threaded programming as a means to take advantage of the additional perfor-
mance provided by modern multi-core systems. The safe aspect of COOGL's mem-
ory management support is specially well suited for shared memory multi-processing
systems. COOGL's memory management is based on a stable type memory model
and its type safe approach results in a safe programming language suited as an evolu-
tionary path for C code bases. Safety in COOGL is provided while preserving C's
rich memory manipulation support where it is most useful, which is when manipulat-
ing data with externally imposed representations. For example in the implementation
of protocols, storage systems, and other information processing where detailed mem-
ory layout control is fundamental.

COOGL's enhancements: concurrent, object oriented, and generic programming
support, are all optional, they are used only when the programmer requires them,
they don't impose any overheads if they are not used. Of COOGL's enhancements,
only safe programming is used by default, most system software can be written com-
pletely as safe software, unsafe operations have to be requested through the
unsafe_cast() operator, unsafe facilities are provided to allow low level system
software to be written, for example a memory allocator for objects of any type. The
rationale for including unsafe support as part of COOGL is to ensure that system
software, at any level, can be written completely in COOGL, possibly with a small
amount of assembly language for the lowest level of systems programming such as
the lowest levels of interrupt and exception handling, context saving and restoring,
etc. Because safety is such an important aspect of COOGL, this book doesn't make
use of unsafe code other than in the examples used to describe the unsafe_cast()
operator itself.

COOGL doesn’t mandate, or even encourage, that garbage collection be the dy-
namic memory management technique that must be used by programs written in
COOGL. Some programs will not use garbage collection at all. Other programs
might use some amount of garbage collection, for example type based garbage col-
lection that only garbage collects objects of a few specific types. Some other pro-
grams might use garbage collection for all dynamically allocated memory. Garbage
collection for all memory, or a few specific types, can be fully implemented in the
language, most implementations of garbage collection require writing unsafe code.

A particularly troublesome area with C and C++ is that some compilers take many
liberties under the guise of optimization and the excuse of undefined behavior to
make code that the programmer wrote disappear into thin air, in a way these compil-
ers are introducing security holes and data integrity risks into existing code. Code
that might have worked for years might suddenly stop working because it was com-

1.1 Rationale for COOGL 15

piled with a newer compiler that optimizes undefined behavior, when it sees it, to
delete the programmer's code and make the program go wrong faster. This is intolera-
ble and has no end in sight in C or C++. COOGL addresses all of these issues in a
way that those kinds of problems don't exist for code written in COOGL.

C++ is a mind-numbingly and absurdly complex language, its complexity continues
to grow without restraint. C++ causes system infrastructure written in it to be at fur-
ther risk because of the complexity that the language itself engenders. COOGL pro-
vides an avenue to reengineer C++ systems away from that run-away complexity
train. It seems that the people evolving the C++ language and its compilers have au-
tomated themselves into their jobs through a never ending stream of proposals and
language changes. These experts in the intricacies of C++ will write examples into
their books that they themselves can't tell are broken, they then encourage that style
of programming, then some tool finds that the code is not expected to work, none of
the experts could tell that the code was not supposed to work, because it relied on un-
specified behavior, and that if it worked it was by luck during compilation, and then
they go change the language to make the example code and all its derivatives that
propagated into actual programs work. The worst aspect of C++ is that no single line
of code can ever be examined with certainty of what it does, first a myriad lines of
header files and templates in them have to be investigated to ensure that nothing in
them causes the line to do something unexpected, between the C preprocessor, opera-
tor overloading, function name overloading, templates, and thrown exceptions, the
reader of the code can not be certain of anything. Unless the programmer is inti-
mately aware of every aspect of the code in the header files the programmer can't tell
what might be happening because of the level of obfuscation that C++ allows and en-
courages.

1.2 Object oriented terminology

A few terms used in object oriented programming are used in this book. Brief defi-
nitions of these terms follow, subsequent paragraphs expand on these concepts:

 Class – a programmer or language defined type and the operations on objects
of that type.

 Object – an instance of a specific type or class, for example a variable or a
dynamically allocated entity of that type.

 Pointer – data that can contain the address of other data, pointers are objects.

 Constructor – a procedure that initializes raw memory into the initial state of
an object.

 Destructor – a procedure that deinitializes an object and turns it back into
raw memory.

16 Introduction Chapter 1

 Member – an entity, for example a variable, declared within a class declara-
tion. Other kinds of members are: functions, constants, enumerations, and
types. The term member applies to all of them, when referring to a specific
kind of member, terms such as: member variable, member function, or
member type are used.

 Static member – is a per class member, not a per object member. A static
member can be accessed independent of any object, an object doesn't have to
be provided to access a static member. A static member is nothing more than
a global entity specific to a class.

 Non-static member – a per object member, not a per class member. Each ob-
ject has its own instance of the member. An object must be specified to ac-
cess a non-static member.

 Member function – a member function is a function declared as a member of
the class.

 Static member function – is a member function that does not require an ob-
ject of the class to be provided, it doesn't operate on a specific object.

 Non-static member function – is a member function that requires an object of
the class to be provided for it to operate on.

 Inheritance – a mechanism that allows an existing class to be used in the
specification of the interface or the implementation of another class, usually
in a way that allows objects of the new class type to be used as if they were
objects of another class type, even though their implementation details might
be different. When inheritance is used it is said that the new class inherits
from the other class.

 Derived class – a class that inherits from another class can be described as
being derived from it.

 Base class – a class that a derived class inherits from can be described as be-
ing the base class of the derived class.

 Ancestor class – a class that is either a base class of another class, or that is
an ancestor class of one of its base classes.

 Descendant class – a class that has another class as an ancestor class, is a de-
scendant class of the other class.

 Related classes – a set of classes is said to be related to each other if they
have a common ancestor, or if one of them is an ancestor of all the others.

 Polymorphism – the ability of related classes to have different implementa-
tions of the same member functions. Polymorphism occurs when there is a
descendant relationship between two classes and the descendant class rede-

1.2 Object oriented terminology 17

fines a member function defined by the ancestor class. Polymorphism causes
the member function that is invoked to be determined by the actual type of
the object, irrespective of the type of the pointer that is used to refer to the
object, frequently a pointer to an ancestor class.

 Created – when an object is allocated dynamically from a run time memory
heap, and constructed, it is said to be created. Usually through a static mem-
ber function, create().

 Destroyed – when a created object is destructed and its memory released to
the run time memory heap it is said to be destroyed, usually through a non-
static member function, destroy().

Some object oriented literature refers to regular variables, integer variables for ex-
ample, as objects. In COOGL an integer variable is indeed an object of the int class
type. This book refers to them simply as variables, unless some object oriented as-
pect of them is being emphasized.

Most well designed software has functions to initialize data structures, and deini-
tialize them when they are no longer needed. In object oriented languages it is not the
duty of the programmer to invoke these functions, the compiler produces code to
cause their invocations without the possibility of the programmer forgetting to do so.
The constructor is invoked whenever memory is designated to be used as an object of
a given class. For example, a local variable declaration causes the compiler to pro-
duce code that invokes the constructor. Similarly, dynamically allocated memory of a
given type, allocated from a memory allocator, causes its constructor to be invoked.
In non object oriented languages, such as C or Pascal, the programmer must always
explicitly invoke the initialization and deinitialization functions.

Because the compiler generates calls to the constructor and destructor functions,
they must be known to the compiler. In some languages the code for the constructor
and destructor might need to be generated by the compiler, if they are not provided
by the programmer, it is generated to ensure that the construction and destruction of
the non-static data members of the class occurs. The constructor function in COOGL
is not optional and is never generated by the compiler, simply because the class dec-
laration is also the class constructor. The destructor is optional and is generated by
the compiler when it is not provided.

1.3 Member function invocation syntax

Consider the following stack class, int is a built in integer type. Unless you are
familiar with other programming languages, you night not understand the code the
code yet. For now just read it, the only important aspects to focus on is that the class
defines various members, some are data members, e.g. entries and sp, MAXENT is a
compile time literal constant, and some member functions: empty, full, push, pop,

18 Introduction Chapter 1

and top.

class stack promise(empty()) {
 pub lit int MAXENT = 100; // literal constant not variable
 priv int entries[MAXENT]; // array of MAXENT ints
 priv int *sp = &entries[0]; // int pointer, set to point ...
 return; // ... to address of entries[0]
 pub bool empty() { return sp == entries; }
 pub bool full() { return sp == entries + MAXENT; }
 pub void push(int v) require(!full()) { *sp++ = v; }
 pub int pop() require(!empty())
 promise(!full()) { return *--sp; }
 pub int top() require(!empty()) { return sp[-1]; }
}

Preconditions and postconditions, promise() and require(), of the class and
some of its member functions are also specified. A stack object promises to be
empty() immediately after being constructed, to push() an element onto the stack it
is required that the stack not be full(), furthermore, after pushing an element onto
the stack it promises that the stack() is not empty(), and finally prior to examining
the top() element of the stack or using pop() to remove the top element from the
stack it is required that the stack not be empty().

The following code makes use of s, a stack object, and p a pointer to an object of
stack type, initialized to point to s, its address, i.e. &s, is assigned to p:

void use_stack() {
 stack s;
 stack *p = &s;
 s.push(7);
 int seven = p->pop();
 int max = s.MAXENT;
 max = p->MAXENT;
 max = stack.MAXENT;
}

The expressions s.push(7) and p->pop() are member function invocations. The
dot operator: . is used with an object, for example s, to refer to a member, for exam-
ple s.push(). The arrow operator: -> is used with a pointer to an object, for exam-
ple p, to refer to a member, for example p->pop(). The references to the MAXENT
literal: s.MAXENT, p->MAXENT and stack.MAXENT are all valid. The later one uses
the class name, stack, instead of an object or a pointer to an object, to refer to MAX-
ENT. Use of the class name to refer to MAXENT is valid because MAXENT is a lit dec-
laration, literal values are compile time constants, their values are not different across
objects of the class, thus they are accessible as if they were static declarations,
they declare per class literal values, not per object literal values.

When a non-static member function is invoked, the object on which the member

1.3 Member function invocation syntax 19

function is invoked is passed implicitly as a hidden first argument to the member
function. When a static member function is invoked, an implicit object is not passed
as an argument, because the static member function does not operate on an object.

The s.push(7) and p->pop() invocation forms refer to member function names
within the scope of the names of the class type of s, i.e. stack, and of the underly-
ing class type that the declaration of p states that it points to, i.e. stack. When refer-
ring to an object through a pointer the actual member function implementation that is
invoked might vary according to the underlying type of the object in question, i.e.
when there is polymorphism, which is not the case in this example.

1.4 Hello world and type safe input and output

The traditional hello world program in COOGL is:

int main() {
 libc.puts("hello, world");
}

COOGL does not support functions with variable number of arguments such as
printf(), they are a wart from C’s ancestral BCPL origins, the on statement is how
type safe input output is implemented without input output being built into the lan-
guage. A different version of hello world is:

int main() {
 "hello, world\n".print();
}

The type of the "hello, world\n" string in COOGL is strlit(class const
char) a native generic type, short in this case for string literal of const char, not
const char[] which is its type in C. COOGL allows types, including native types,
to have member functions added to them, thus the int and strlit(class const
char) types can be extended, to add print() member functions to them. The
COOGL library adds print() and various other member functions to these and
other types.

The source code for a COOGL program is stored in a file with a .cog extension.
An example compilation and invocation on UNIX:

$ COOGL hello.cog
$./a.out
Hello, World.
$

Formatted output uses the on statement:

20 Introduction Chapter 1

int main() {
 float f = 78;
 float c = (f - 32) * 5 / 9;
 on ("temperature in Caracas: ";
 f; "(f) "; c.fmt(4,2); "(c)\n") print();
}

The program above is a type safe version of this C program:

#include <stdio.h>
int main() {
 float f = 78;
 float c = (f - 32) * 5 / 9;
 printf("temperature in Caracas: %f(f) %4.2f(c)\n", f, c);
}

The output of both of these programs is:

temperature in Caracas: 78(f) 25.56(c)

The c.fmt(4,2) expression implies that the built in float type, the type of c,
must have been extended with a member function fmt(), which returns the value of
c formatted as a string according to the printf() like specified precision.

The on statement causes the invocation of a member function on a list of expres-
sions. Its syntax is:

on (semicolon_separated_expression_list) function_invocation_expression

A list of one or more expressions separated by semicolons must be specified within
the parenthesis after the on keyword. For example:

on (expression1; expression2) function(a, b, c);

can be thought of as a short hand for:

((expression1).function(a, b, c),
 (expression2).function(a, b, c));

but when function() returns a value, there is more to it, see §9.2 and §9.3.

The types of the arguments in the argument lists of all of the member functions
must be compatible with the specified arguments. There is no difference between the
on statement and the expression statement that it stands for. The expressions used in
the argument list are evaluated on each member function invocation.

The above program with the on syntactic sugar removed, is harder to read:

1.4 Hello world and type safe input and output 21

int main() {
 float f = 78;
 float c = ((f - 32) * 5) / 9;
 ("temperature in Caracas: ".print(),
 f.print(),
 "(f) ".print(),
 c.fmt(4, 2).print(),
 "(c)\n".print());
}

The on statement can also produce a numeric value which can be used as the
means through which end of file or errors can be reported, or to return the number of
bytes written, as in printf(), or the number of items scanned, as in scanf(), see
§9.2.

1.5 Compilation model

Programming language definitions usually don't describe their compilation models,
though some programming languages do, for example Java not only specifies the
compilation model but also the target instruction set, i.e. the Java Virtual Machine,
and various other facilities such as class loading and verification.

The COOGL language definition includes the specification that COOGL is com-
piled into C11 code. The COOGL facility that supports interfacing with C code de-
pends on this specification. The C code that results from the translation from
COOGL, is automatically compiled by the C compiler into instructions for the under-
lying computer system. The compilation model for COOGL is global, the user speci-
fies a set of source files and libraries, the COOGL library is included by default, but
it can be excluded. The user perception of the compilation is that all files are com-
piled together, whether all the files are actually compiled each time the compiler is
invoked or only compiled when needed is not specified by the language, the current
compiler only compiles a file if it is required to do so, caching transparently the re-
sults of prior compilations. It is expected that all compilers will do this.

Function and type declarations are extracted from the source files where they are
declared and used to ensure that function invocations and type uses are correct. The
C notion of header files does not exist in COOGL, the user does not have to maintain
function prototypes and external variable declarations in header files.

Compilation into C allows the native system compilers to be used for code genera-
tion, it also facilitates operating system kernel development in COOGL because spe-
cific compilation options required for kernel mode development are supported by the
underlying C compiler. Options to the C compiler are passed through by the COOGL
compiler.

The C code that the COOGL compiler produces is formatted and indented in such a

22 Introduction Chapter 1

way so as to keep it as close as possible to the original C code. The intent is not to
use the generated C code as a portable machine language. Instead, by maximizing
generated code readability, the engineering and verification of the compiler was a
simpler effort. Before the first COOGL compiler existed, it had to be written in some
language other than COOGL. It was written as the expected output of itself, in C, it
was then hand translated to COOGL, and compiled with itself, with its output com-
pared with the original compiler written in C to ensure that they were the same.

The compiler distribution includes the compiler source code in COOGL, together
with its output in C11, a thorough set of test cases for regression testing, and build
scripts. Part of the compiler installation verification includes ensuring that the output
that it produces is identical to the C version of the compiler distributed with it.

1.6 C versions and COOGL ancestry

The C language has had various minor variations, usually compiler or operating
system vendor specific. It has had four standard versions:

 The language described in the first edition of The C Programming Language
by Kernighan and Ritchie, also known as K&R C. Its first edition was the
authoritative language definition, it was the de-facto C standard. The first
generation of widely available C compilers were based on the UNIX Porta-
ble C Compiler (PCC), which reinforced this de-facto standard.

 C89, the first official C language standard (ANSI C89 and ISO C90, infor-
mally C89). Its most notable addition was the adoption of C++ syntax for
function declarations and prototypes.

 C99, the second official C language standard. Includes a slew of additions to
attempt to allow numerical code to be written in C and be competitive with
FORTRAN code: complex numbers, type generic math (i.e. <tgmath.h> li-
brary functions), variable length arrays, and the restrict qualifier. Miscel-
laneous but convenient changes include intermingling of declarations and
statements and BCPL comments, both of which were in wide use in existing
compilers. Among all the additions, variable length arrays introduced the
most complexity.

 C11, the third official C language standard. Its most important enhancement
is multi-threading support and a memory model mostly relevant to concur-
rency. Atomic data types. The _Generic keyword that allows type generic
macros to choose between different functions based on the type of an argu-
ment, this allows FORTRAN like libraries to be written by programmers in-
stead of only by the compiler vendor (as in <tgmath.h> in C99). Minor en-
hancements include Unicode characters and string literals. Optional support
for newer floating point and complex number standards. Anonymous struc-

1.6 C versions and COOGL ancestry 23

tures and unions, and alignment specification. Additionally the ability for
compilers to indicate that they do not support some C99 features (complex
numbers and variable length arrays are optional). Most new features in C11
are optional.

COOGL descends primarily from C89 and Simula67. A few enhancements from
C99 and C11 were incorporated into COOGL. Some ideas were borrowed from Eif-
fel. Other COOGL ancestors from its C family lineage are: K&R C, ALGOL68, B,
PL/1, BCPL and CPL. Common ancestors of C and Simula67 are: ALGOL60 and
FORTRAN.

Both B and K&R C have elements of PL/1. B's extrn, auto, semicolon termi-
nated statements and /* comment */ came from PL/1. C got from PL/1 these as-
pects: NULL, static, the -> operator, and the rule that local variables without ex-
tern or static are auto by default. COOGL does not descend from C++. If any-
thing, COOGL learned from C++ what not to do, instead of what to do. Though it
could be perceived that the keywords this, priv, and prot come from C++, in re-
ality they come from the Simula73: this, hidden, and protected. The use of
priv instead of hidden, and the pub keyword are a nod, but also a cleaning up and
simplification, of the C++ terminology used in its label-like syntax, which uses:
public: and private: respectively to dictate the accessibility of subsequent decla-
rations.

1.7 C language schism: concurrency and undefined behavior

There has been a growing schism between C compiler writers and C language
users. People involved in the development of compilers, and others involved in the
specification of programming language standards for C and C++, specifically some
of those involved in efforts to specify a memory model for concurrency (starting with
efforts in the C++ standardization community that lead to the memory model present
in both C11 and C++11) have come to claim that traditional C could have never been
used to write concurrent programs because concurrency had not been specified in the
C language standard, thus it was not possible to have been able to reliably write con-
current programs in C.

These people forget that well before there was the first standard for C, C89, the lan-
guage existed and large reliable concurrent programs were written with it, e.g. the
UNIX kernel, relational database systems, etc. It is absurd to say that something is
impossible while typing those statements most likely on computer systems where the
operating system kernel for those systems was most likely written in C, (e.g. MacOS,
Windows, Linux, or UNIX), which have long supported hardware concurrency, then
they post their words in web servers most likely written in C, also running on SMP
systems.

24 Introduction Chapter 1

What the compiler writers actually mean is that now that the language has been
specified, poorly, say as it was done in C89, and that it doesn’t specify concurrency,
they don’t know when to stop with their unwieldy optimizations for the sake of get-
ting tiny performance improvements in the compilation of sequential benchmarks.
Thus compilers have become so aggressive in their optimizations that operating sys-
tem kernels and other concurrent programs have to be compiled with a series of com-
piler options to ensure that the compiler doesn’t perform optimizations that are use-
less to the point that they only work on sequential programs, or code generation
strategies that are confused, and could make concurrent programs misbehave.

Even with the schism, C programmers know that the C compiler can not assume
anything about code that the C compiler is not allowed to see. Thus a function call to
a function, that is not expanded inline and that is not subject to global compilation or
link time optimization, is the last resort for programmers and the perfect boundary for
preventing the compiler from performing optimizations across function calls to them.
At those function call boundaries it can be assumed that data that must by then be in
their corresponding memory must be stored there by the code generated by the com-
piler prior to the function call, or the sequential programming model would be bro-
ken. Furthermore, because pretty much any memory that is global, or memory on the
run-time stack whose address has been taken and passed to functions or stored glob-
ally, could have been modified by the function whose code is unknown to the com-
piler, the calling function is not allowed to cache those values, for example in regis-
ters, and must refetch those values from their proper locations after the unknown
function returns. Thus the function call boundary when calling functions whose code
is unknown to the compiler, global optimizer, and link time optimizer, is the correct
place to implement synchronizers. For example, the acquisition and release operation
in a mutual exclusion lock together with any memory barriers that might be required
by the hardware on weakly ordered memory systems. Thus all has remained well in
the implementation of concurrent programs in C. Some kernels that are heavily opti-
mized might desire to have low level assembly functions that manipulate hardware or
implement synchronizers expanded inline into their invocation locations, and that re-
quires a more careful dance with the compiler to ensure that it doesn’t perform opti-
mizations that cause the code to be incorrect, for example by moving code around it,
or caching values in registers, etc. In practice calling functions directly is heavily op-
timized by modern computer systems, and if a compiler provides a pragma that indi-
cates which registers are affected by a function, then implementing synchronizers as
assembly functions, instead of as inline assembly, is usually just as fast as inlining
them, the minuscule overhead saved by avoiding a function call is counterbalanced
by the reduced code footprint and its impact on the instruction cache.

Another form of the schism, and in some ways even more dangerous, is the unde-
fined behavior disease which means that anything that is written in the C language
standard and labeled as undefined behavior is an opportunity for optimization by the

1.7 C language schism: concurrency and undefined behavior 25

compiler. The compiler writers, in their search for optimization in the wrong places,
identify undefined behavior, and instead of causing a compilation error, use that
knowledge to perform optimizations that makes the execution of the program go
faster, or misbehave in possibly subtle ways, or crash horrendously, instead of simply
allowing what the underlying hardware in the computer system would do under those
circumstances. Notions such as wobbly data values and other silliness are invented to
justify the compiler’s behavior. The compiler writers, instead of producing compilers
that are more useful to programmers by producing compilation errors when presented
with code that would lead to undefined behavior, instead turn working programs that
worked with earlier compilers into programs that no longer work.

For example, what could have been a machine dependent operation that might be
different between different underlying hardware, for example a shift by 32 bits of a
quantity in a data type that is 32 bits wide, a no-operation on x86 but a proper 32 bit
shift on POWER, becomes an optimization opportunity for the compiler, which in-
stead of producing a compile time error, causes every value that depends on the result
of that computation to be undefined and to delete as much code as possible based on
that, silently. What is at the hardware level machine dependent, and well specified,
gets turned into an irrational optimization opportunity.

C is the low level language of choice for programming the lowest levels of operat-
ing systems on real hardware, real hardware does not have wobbly data, nor does it
have shift instructions that cause a bunch of dependent operations to be skipped, or
that turn one memory load into two memory loads, etc. If real hardware had such be-
havior it would be labeled as errata, i.e. a hardware bug.

COOGL does not have any undefined behavior, the C11 code it generates does not
have undefined behavior either. Any construct that would lead COOGL source code
to be compiled into C11 code with undefined behavior causes a compilation error, for
example constructs that would be unsafe. Every memory access performed by a
COOGL program, that doesn’t use the unsafe_cast() and doesn’t use NULL, is a
valid memory access, accessing the NIL pointer or the set of trapping addresses de-
fined by the language are also valid memory accesses, it is valid to access them they
reliably cause an exception they are not undefined behavior, COOGL knows about
this, the underlying C11 compiler doesn’t know about this, and it can not do anything
about it other than to perform the memory access that the programmer programmed.
The NULL pointer (or the value 0 when used as a pointer) are deprecated and should
not be used by safe programs, they remain in the language as a bridge for interoper -
ability with C code.

COOGL is a firewall between the needs of the programmers and the degeneration
that is occurring to the C language, which is moving farther and farther away from
the real world of concrete hardware, and into a world of a needlessly complicated
language specifications mostly to satisfy the needs of compiler writers at the cost of

26 Introduction Chapter 1

programmers and risking the stability of existing code bases. Evolving the C lan-
guage from the standards community perspective seems to have become a full time
job for a large number of people and there doesn’t seem to be much restraint in those
efforts, features are being invented irrespective of them having ever been imple-
mented in practice and most without the benefit of even an experimental implementa-
tion.

The needs of existing C programs and C programmers are not always addressed by
the C standard writers, though the C compiler writers continue to make accommoda-
tions to ensure that existing C code doesn’t stop working, mostly through compiler
options that disable some of the most misguided optimizations. For example the
Linux kernel doesn’t work with these compilers that use the notion that signed arith-
metic overflow is undefined behavior and perform irrational optimizations based on
that assumption. For the Linux kernel to work and many other large code bases they
need to be with options which turn off quite a few optimizations predicated on unde-
fined behavior. A problem with the C standard is its definition of volatile which it
has been known to have been incorrect for almost two decades and even with an error
report that could have been included in C17, it wasn’t, the compiler writers in this
case knew what to do and they implemented the behavior desired by the program-
mers and ignored what was described by the language. The compilers are right in this
case, the standard is wrong, hopefully the compiler writers won’t forget this and go
break some more code in the future because they chose not to update the standard to
reflect the intended language design and actual standard practice.

Some of the most absurd undefined behavior over optimizations cause, what used
to be trivial in C, to become obfuscated to prevent the compiler from doing stupid
things. For example, in an operating system that wanted to initialize some low mem-
ory to some specific contents, for example moving exception handler code there, say
at physical address 0, prior to turning on the MMU and enabling interrupts, to have to
confront the compiler that sees a pointer with value 0 and decides that any memory
references based on that pointer are undefined behavior and the compiler can do
whatever it pleases it, not to produce an error, but crazy things, for example not to
generate any other code for the function it is compiling, not even a return instruction,
of course without a warning, simply because the standard says it is undefined behav-
ior. So the C programmer has to write an assembly function that returns a pointer
with value 0 and call that so that the compiler stops doing absurd things with its code,
remember, in C, the programmers were supposed to know what they were doing, the
compiler was supposed to just do it. The new generation of C compiler writers and C
standard writers do not seem to have learned that. To any complaint from a C pro-
grammer with their compiler’s behavior they mutter: “Its UB, I could corrupt the
contents of your files if I wanted to, the standard says I can do whatever I want, go
away.” They say these things so often that UB, undefined behavior, is part of their
everyday lingo.

1.7 C language schism: concurrency and undefined behavior 27

This is what the original developer of the LLVM project and, at the time, a member
of the Clang compiler development team at Apple had to say about the subject, un-
derlined highlights are by the author of this book:

“There is No Reliable Way to Determine if a Large Codebase Contains Un-
defined Behavior”

“Making the landmine a much much worse place to be is the fact that there
is no good way to determine whether a large scale application is free of un-
defined behavior, and thus not susceptible to breaking in the future . There
are many useful tools that can help find some of the bugs, but nothing that
gives full confidence that your code won't break in the future.”

“The end result of this is that we have lots of tools in the toolbox to find
some bugs, but no good way to prove that an application is free of unde-
fined behavior. Given that there are lots of bugs in real world applications
and that C is used for a broad range of critical applications, this is pretty
scary.” – Chris Lattner (What Every C Programmer Should Know About
Undefined Behavior)

Views typical of compiler writers who have hijacked the meaning of C, and only
seem to care about performance, resulting in an unsafer language, mostly because the
compiler teams where originally tied to the CPU design teams and achieving the
highest SPEC performance numbers was the only thing that mattered, while not
breaking too much working code. They are all busy rummaging through the stan-
dards to see how else they can make things go faster based on undefined behavior:

“Using a Safer Dialect of C ...”

“A final option you have if you don't care about "ultimate performance", is
to use various compiler flags to enable dialects of C that eliminate these
undefined behaviors. For example, using the -fwrapv flag eliminates unde-
fined behavior that results from signed integer overflow (however, note that
it does not eliminate possible integer overflow security vulnerabilities). The
-fno-strict-aliasing flag disables Type Based Alias Analysis, so you are free
to ignore these type rules. If there was demand, we could add a flag to
Clang that implicitly zeros all local variables, one that inserts an "and" op-
eration before each shift with a variable shift count, etc. Unfortunately,
there is no tractable way to completely eliminate undefined behavior from
C without breaking the ABI and completely destroying its performance. The
other problem with this is that you're not writing C anymore, you're writing
a similar, but non-portable dialect of C.” – Chris Lattner

So pretty much every operating system kernel, written in C, is from this compiler
writer's perspective not written in C but in a dialect of C, thus the schism between the
C compiler writers and the users of the compilers grows. Somehow they can not read

28 Introduction Chapter 1

that undefined behavior in the standard allows also for “program execution in a doc-
umented manner characteristic of the environment,” because they prefer to do what-
ever they want instead of what the programmers want. So when they support, be-
grudgingly, the behavior expected by the programmers they then state that they are
writing code in a language that is not C, but a dialect of C, and that the dialect is not
portable, which is hilarious because these large code bases are portable to many CPU
architectures and many different operating systems.

The historical reality is that in the rationale documents for both C89 and C99 this is
the rationale for undefined behavior:

“Undefined behavior gives the implementor license not to catch certain pro-
gram errors that are difficult to diagnose. It also identifies areas of possible
conforming language extension: the implementor may augment the lan-
guage by providing a definition of the officially undefined behavior.”
C99RationaleV5.10.pdf:11

C designed by Dennis Ritchie and implemented originally by Ritchie, and reimple-
mented into the PCC (Portable C Compiler) by a small team at Bell Labs is being at-
tributed, incorrectly, this sentiment by Lattner: “Undefined behavior exists in C-
based languages because the designers of C wanted it to be an extremely efficient
low-level programming language.” Lattner’s loop optimization concern, expressed in
his article, is addressed in §10.9.

Historical reality is that Ritchie and Ken Thompson wanted a language into which
UNIX could be rewritten from PDP-11 assembly language, they just needed it to be
reasonably efficient. Ritchie, Johnson, Lesk, and Kernighan wrote: “The language is
sufficiently expressive and efficient to have completely displaced assembly language
programming on UNIX” when describing C (in his article “The C Programming
Language” article received for publication on December 5th, 1977 in the Bell System
Technical Journal issue July/August 1978 vol 57, no. 6, part 2). Ritchie continues “C
was originally written for the PDP-11 under UNIX, but the language is not tied to
any particular hardware or operating system. C compilers run on a wide variety of
machines, including the Honeywell 6000, the IBM System/370, and the Interdata
8/32.”

Ritchie closed his paper “The Development of the C Programming Language,” a
historical account presented in the ACM SIGPLAN History of Programming Lan-
guages Conference (HOPL-II) which took place April 20-23 1993 “it evidently satis-
fied a need for a system implementation language efficient enough to displace assem-
bly.” The goal was not for C to be “extremely efficient” as Lattner incorrectly claims.

The spirit of C, its original spirit, lives on in a family of C compiler’s written by
Ken Thompson for Plan 9, the grandfather of C, the creator of UNIX and its C’s di-
rect ancestor B. Thompson’s report about his then new C compilers: “produce

1.7 C language schism: concurrency and undefined behavior 29

medium quality object code.” It also lives in the Go programming language, the spiri-
tual descendant of C, that Thompson and his Bell Labs compatriots, from UNIX and
Plan 9 fame, created at Google, a language whose definition doesn’t have undefined
behavior either.

COOGL is a language for the real world, for the needs of C programmers, it is writ-
ten and supported by C and COOGL programmers that find it useful, and it doesn’t
turn your COOGL programs into a morass of undefined behavior compiler optimiza-
tion opportunities for your code to disappear, it doesn’t get in the way of what you
do.Defined behavior and implementation dependent behavior

COOGL program constructs translate into code that has either defined behavior, i.e.
behavior that can be derived from the source code and is specified by the language,
i.e. behavior that doesn’t vary across compilers and computer systems. Otherwise the
construct has implementation dependent behavior which is as close as possible to
what the underlying computer system does, it is also what you would expect on that
computer system for the construct to do. See §10.7 and §14.

1.8 COOGL syntax and language design philosophy

COOGL is a language designed to be learned and used. Reducing complexity was
one of the most important guiding objectives in its design. The language should be
easy to learn, simple, with no surprises and no intricate cleverness that requires deep
language lawyering over the intricate delicate description of the language in a lan-
guage standard, as C++ does. The meaning of every language construct should be
trivial to understand. The fewer the language constructs the better. Many language
constructs were considered for the language, and rejected, because of the complexity
that they would introduce was not worth their value.

Language design questions were always answered with keep it as close as possible
to C. In contrast, other languages such as Objective C and C++ have freely imported
syntactical constructs from other languages without much consideration of C's syn-
tax. For example, when choosing between the pub or public keyword names, pub
was chosen, because C uses abbreviated names, such as int, float, and char (in-
stead of integer, floating, and character). A modifier syntax was chosen for
pub, like C got static from PL/1, instead of C++'s label like public: syntax. The
expression of inheritance through the inherit keyword in COOGL instead of what
C++ choose from Simula67, i.e. the colon (i.e. :) character in a specialized context
to mean inheritance. Other examples include the use of defer to indicate the de-
ferred declaration of a member function instead of the specialized use of =0 used by
C++ for a similar purpose.

The intent is to have no surprises, anything in the code that looks like C behaves
exactly as it does in C. For example in C#:

30 Introduction Chapter 1

int* p, n;

surprisingly, to a C programmer, declares both p and n as pointers to int, whereas
in C it declares p as a pointer to int, and n as an int. Thus in C and COOGL the
use of whitespace should always be:

int *p, i;

as shown by Kernighan and Ritchie in their C book. C++ suffers from an idiomatic
misplaced space disease propagated broadly by Stroustrup’s C++ books, because the
meaning of the declaration is the same as in C, nonetheless C++ programmers tend to
use the misleading convention: int* p, n;.

COOGL includes minimal support for language features, the bulk of the functional-
ity is implemented in libraries. There is no syntactical support in the language syntax
for: input output, heap based dynamic memory management, threads, or locks. The
only syntactical support for dynamic memory allocation in C is the sizeof operator,
COOGL requires an additional construct, argsof. C included variable argument
functions to support formatted input output operations, COOGL includes the on
statement, a general purpose statement that can be used to implement type safe for-
matted input output.

COOGL is an evolution of a subset of C, it is not a superset of C. Language evolu-
tion requires change, if change is restricted to additions, i.e. if removal is not allowed,
then the resulting accumulation of features leads to needless complexity. If animal
evolution were like most programming language evolution, we would all be wonder-
ing why do we still need a monkey like tail!

1.9 Programming language complexity

Some languages are stillborn because their sheer complexity makes their implemen-
tation and adoption impossible. An example of that was Algol68, which took its spec-
ification through a complexity path that made its specification flawed and incompre-
hensible, taking until its 3rd specification iteration, Algol68c, to get to the point of
being less flawed but still required a very steep learning curve. Eventually it was im-
plemented and used, but its broad adoption never occurred.

Another language that in some way learned from Algol68's design mistakes was
Ada, a much less complex language, but quite complex for its time, it only succeeded
because of the sheer perseverance and tremendous investment behind it by the USA's
DoD (Department of Defense) with its purchasing contracts and other R&D grants,
and the myriad defense contractors, defense systems manufacturers, civilian and mili-
tary aero-space manufacturers, that took it from an almost stillborn language into the
language of choice for those systems for weapons and defense systems. In a way we
can all feel more safe from a software catastrophe caused by weapon systems or nu-
clear reactors because these systems are written in Ada instead of C (or C++). If any-

1.9 Programming language complexity 31

thing we should all be concerned about the F-35 because most of its new subsystems
are written in C++, with its legacy sub-systems, from the F-22, remaining in Ada.

Other languages achieve success because they are able to ride on the coattails of an
earlier successful language and its ecosystem, for example C++ was able to ride the
coattails of C, and evolve, initially slowly into its current high complexity condition.
C++'s current tremendous complexity can be attributed, in part, to its initial set of de-
sign choices and the complexity that they subsequently engendered. Starting with op-
erator overloading, which forces the introduction of references, and the eventual ad-
dition of exception handling, because there is no way to report an error from an over-
loaded operator. Note that operator overloading was the last feature added to Algol68.

Stroustrup choose complexity instead of simplicity for C++ at every step: choosing
to add multiple implementation inheritance, virtual base class, and all that that engen-
ders. Stroustrup's choice of a template mechanism, that from its inception should
have served the language users by specifying the requirements of the parameterized
types, which had already been done in the Clu language prior to C++'s templates. The
subsequent discovery of meta-programming with C++ templates and the complexity
that arises from that is enormous. How often does a language gets discovered inside
of another language? Lastly the technique of SFINAE (substitution failure is not an
error) in C++ templates is mind boggling, it says, generate code according to the tem-
plate, if the code does not compile, ignore it, and try another template choice.

Choosing complexity over simplicity at every step of the way, and the design by
committee that ensued during and after its initial standardization, resulted in the sin-
gle most complex language that has ever existed, and with no end in sight to its com-
plexity explosion. The language creator, Bjarne Stroustrup, stated in an interview in
April 2010, as C++0x was evolving into C++11:

“Even I can’t answer every question about C++ without reference to sup-
porting material (e.g. my own books, online documentation, or the stan-
dard). I’m sure that if I tried to keep all of that information in my head, I’d
become a worse programmer. What I do have is a far less detailed – ar-
guably higher level – model of C++ in my head.”

“What programmers should know is the basic facilities of the language, the
basic of the functioning of the main features, and how to gain more knowl-
edge as needed. In other words: People need a model of the language and
have access to information sources. I do not require people to believe in
magic. Never! There is far less “magic” in C++ than in other modern lan-
guages and I think that is part of the problem. You can look at a standard-
library algorithm or a boost library and see exactly how it is put together.
Sometimes, reading such code is an expert-level task.” – Bjarne Stroustrup

Basically C++ has become a language for two types of programmers, users of C++

32 Introduction Chapter 1

and template library writers, Stroustrup's “expert-level task” programmers. The lan-
guage complexity does leak from the expert level written code into the realm of the
regular users of C++, making their life just as thrilling when, as Stroustrup stated:

“C makes it easy to shoot yourself in the foot; C++ makes it harder, but
when you do it blows your whole leg off.”

More recently, the paper by Stroustrup “Remember the Vasa!” (March 2018) at-
tempts to sound the alarm about the work towards the ANSI C++2x standard in its
working group (WG21):

“Many/most people in WG21 are working independently towards non-
shared goals. Individually, many (most?) proposals make sense. Together
they are insanity to the point of endangering the future of C++.”

Myself, having used and tracked the evolution of C++ for more than 30 years, share
Stroustrup's concerns and the concerns of many others in the industry about what has
already happened to C++ and is bound to continue to happen to it.

The final word about complexity in C++ goes to Ken Thompson: creator of the
UNIX operating system (the direct ancestor of all modern commercial UNIX operat-
ing systems, MacOS X, iOS and GNU/Linux a clone of UNIX); the creator of the B
programming language (ancestor of B, basically C without types); the co-creator of
Belle (five times world chess computer champion and first computer chess program
awarded the rank of Master by USCF, a direct ancestor to ChipTest, a predecesor of
IBM's DeepBlue); created computer chess end-game tables for 4-6 pieces; co-creator
of the Plan 9 operating system; co-creator of UTF-8 (the encoding of choice for Uni-
code text); co-creator of the Inferno operating system; and co-creator of the Go pro-
gramming language. From the book “Coders at Work: Reflections on the Craft of
Programming,” September 2009:

Seibel: “You were at AT&T with Bjarne Stroustrup. Were you involved at in
the development of C++?”

Thompson: “I'm gonna get in trouble.”

Seibel: “That's fine.”

Thompson: “...”

Seibel: “Can you say now whether you think it's a good or bad language?”

Thompson: “It certainly has its good points. But by and large I think it’s a
bad language. It does a lot of things half well and it’s just a garbage heap
of ideas that are mutually exclusive. Everybody I know, whether it’s per-
sonal or corporate, selects a subset and these subsets are different. So it’s
not a good language to transport an algorithm—to say, “I wrote it; here,
take it.” It’s way too big, way too complex. And it’s obviously built by a
committee.”

1.9 Programming language complexity 33

“Stroustrup campaigned for years and years and years, way beyond any
sort of technical contributions he made to the language, to get it adopted
and used. And he sort of ran all the standards committees with a whip and
a chair. And he said “no” to no one. He put every feature in that language
that ever existed. It wasn’t cleanly designed—it was just the union of every-
thing that came along. And I think it suffered drastically from that.”

I shudder to think what Thompson thinks about C++ now.

Sadly, the final final word has to go to the C++ expert community: Gabriel Dos
Reis, Herb Sutter and Jonathan Caves who wrote in a proposal to change the lan-
guage definition to address bugs that have been written by C++ expert programmers
for over 30 years without knowing that they were writing those bugs into their code.
They write in “Refining Expression Evaluation Order for Idiomatic C++” a C++17
language change, underlined highlights are by the author of this book:

“2. A CORRODING PROBLEM ”

“These questions aren’t for entertainment, or job interview drills, or just for
academic interests. The order of expression evaluation, as it is currently
specified in the standard, undermines advices, popular programming id-
ioms, or the relative safety of standard library facilities. The traps aren’t
just for novices or the careless programmer. They affect all of us indiscrimi-
nately, even when we know the rules.”

“Consider the following program fragment: ”

void f() {
 std::string s = "but I have heard it works even "
 "if you don't believe in it";
 s.replace(0, 4, "").replace(s.find("even"), 4, "only")
 .replace(s.find(" don't"), 6, "");
 assert(s == "I have heard it works only "
 "if you believe in it");
 }

“The assertion is supposed to validate the programmer’s intended result. It
uses “chaining” of member function calls, a common standard practice.
This code has been reviewed by C++ experts world-wide, and published
(The C++ Programming Language, 4th edition.) Yet, its vulnerability to
unspecified order of evaluation has been discovered only recently by a tool.
... Newer library facilities such as std::future<T> are also vulnerable to
this problem, when considering chaining of the then() member function to
specify a sequence of computation. ... For example, using << as insertion
operator into a stream is now an elementary idiom. So is chaining member
function calls. The language rules should guarantee that such idioms aren’t
programming hazards. ... Without the guarantee that the obvious order of

34 Introduction Chapter 1

evaluation for function call and member selection is obeyed, these facilities
become traps, source of obscure, hard to track bugs, facile opportunities
for vulnerabilities.”

So apart from 30 or more years of possibly broken code that might not ever be mi-
grated to a C++17 compiler, with its new rules for order of expression evaluation, yet
another layer of complexity is thrown into the C++ language. Newly written code
will now start to purposely depend on these new rules for the order of evaluation of
expressions, some programmers might not understand the new rules and introduce
bugs thinking that they know what is going on with the minutiae of the order of ex-
pression evaluation.

1.10 Book Organization

Chapter §1, explains the rationale for the COOGL language. Presents object ori-
ented terminology, the member function invocation syntax, the hello world program,
the compilation model for the language, its lineage, design philosophy, and the unde-
fined behavior schism.

Chapter §2, describes CLEAN, the subset of C from which COOGL evolved, code
that needs to be used as both as C and COOGL source code is written in CLEAN.

Chapter §3, describes array descriptors, pointer arithmetic, tuples, and literals.

Chapter §4, is detailed presentation of classes and inheritance. Presents contracts,
classes as constructor functions, classes are functions and functions are also a special
kind of classes, accessibility modifiers and member declarations, object declarations,
member functions, introduction to inheritance and member function redefinition, con-
tract specifications and member function redefinitions, constructor restrictions and
organization, unification of member declarations and their initialization, nested class
declarations, this object pointer, iterators and the use of this in member functions
that are non-static classes, functions as degenerate types and nested member func-
tions, default arguments, and the stringifying operator #.

Chapter §5, presents abstract classes, interfaces, and destructors. Describes value
like objects, assignment, default constructor, initialization of an object from another
object, the lang.value interface. These topics are then presented in more detail with
the help of a string value like objects, various optimizations that minimize the cre-
ation of temporary objects. Lastly literal members are described.

Chapter §6, presents abstract classes, interfaces, and inheritance in detail. Single in-
heritance and multiple interface implementation, deferred and redefined member
functions, accessibility modifiers are revisited also their relationship to inheritance
and interface implementation, member access aliases, qualified accessibility modi-
fiers, pointers and inheritance, duplicate member names, and contracts and their rela-
tionship to redefined member functions.

1.10 Book Organization 35

Chapter §7, explains class declaration extensions, class declaration continuations,
class of pointers and class of array descriptors and their implicit declaration, pointer
arithmetic and size of objects as it relates to inheritance and polymorphism, control of
class data layout, lookup of identifiers in the context of the function being called in-
stead of the context of the calling function, delegate function pointers, and various
other aspects of classes.

Chapter §8, explains various aspects of the language that support programming in
the large: name spaces, modules, dynamic linking, global declarations, accessibility
controls for a class as a type versus the class as its constructor, class initialization,
and global construction order.

Chapter §9, presents control flow aspects of the language: replacing the goto out
idiom with a function destructor, the on statement, vital function values, jump state-
ments their restrictions and their relationship to object destruction, lack of structured
exception handling syntactical language support, and loop member functions and the
loop statement.

Chapter §10, describes operators, expressions and keywords, parenthesis require-
ments under certain circumstances to reduce programming errors, the member lookup
operator, fine grained function inline control, checked arithmetic operators, language
keywords, and C language keywords that have been removed.

Chapter §11, presents generic programming: type path expressions, type arguments,
type variables, type values, restriction on type arguments and type variables, and the
argsof tuple type compiler declared member, dynamic object allocation, literal ar-
guments to generic classes, field name arguments and fieldof, and an implementa-
tion of a generic intrusive list.

Chapter §12, explains additional aspects related to types: integer, floating, complex,
imaginary, enumerations, bit fields, unicode characters, character and string literals,
incompatible types, global types, type dimensions (as in units of measure) and literals
of specific dimensions. Additionally class hierarchies that relate to various array
types, pointers, and various number types and the number type hierarchy, in support
of both generic programming, class extensions, and smart pointers.

Chapter §13, presents variable length arrays and dynamically allocated arrays, error
reporting due to failure of an object's construction while constructing an array of ob-
jects, restrictions on array descriptors and variable length arrays, array memory rein-
terpretation, dynamic creation and destruction of arrays, and restrictions on walking
arrays with pointers when inheritance is involved.

Chapter §14, describes the approach of the language to remain as flexible in its
memory management as C is, while being a safe language, all unsafe aspects of C are
presented and the approach to safety of the language is presented.

Chapter §15, explains the language concurrent programming support, various de-

36 Introduction Chapter 1

sign considerations, hardware aspects, memory models, and examples.

Five appendixes complement the book:

Appendix 1L – Libraries lang, lib, and libc

Appendix 2S – Identifier mapping and calling convention

Appendix 3D – Differences between C and CLEAN

Appendix 4C – Sharing Code and Using C Code

Appendix 5R – Language and Compiler Manual

1.10 Book Organization 37

[This page left blank to work around issue in LibreOffice that is causing an empty
blank page to be created in the next chapter in between its pages]

2 - COOGL's C subset: CLEAN

“A designer knows he has arrived at perfection
not when there is no longer anything to add,
but when there is no longer anything to take away.”

-- Antoine de Saint-Exupéry

This chapter describes CLEAN, the subset of C implemented by
COOGL. CLEAN excludes C's: preprocessor, obsolete constructs,
and minor language quirks. Their use causes compilation errors to en-
sure the meaning of C code does not silently change when used as
COOGL code. Code written in CLEAN can be used as C or COOGL
code. CLEAN code, when used as C code, is used together with a
header file to bridge very minor syntactical differences between
CLEAN and C. A few COOGL only details are introduced in this
chapter, they are presented in bold to make them easier to find.

2.1 Tokens and identifiers

The term token is used to refer to sequences of characters considered to be a single
entity. For example, the tokens used in comments: //, /*, */, /#, and #/. The vari-
ous language keywords: enum, return, if, while, etc. Various operators: +, -, ++,
+=, =, !=, ==, <<, etc. Certain tokens are defined by the user instead of by the pro-
gramming language. There are two kinds of user defined tokens: literals and identi-
fiers. Literal tokens correspond to explicit values: numbers, characters, and strings,
for example: 1, 123, 3.1416, 'a', and "string".

Identifiers are a sequence of one or more characters, digits, and underscores. An
identifier can not start with a digit or an underscore, nor can it end with an under-
score. Identifiers can not contain two consecutive underscores. Examples of valid
identifiers: MAX, create_file, CreateFile, log2, i18n, and a. Identifiers are
case sensitive, these are three different identifiers: MAX, Max, and max. Examples of
invalid identifiers: 0zero, my-cat, my dog, _, x_, _x, and a__z.

2.2 Comments

Text prefixed by // through the end of the line is a comment, this BCPL comment
syntax was later adopted by C++ and C99. The C /* comment */ can be used to
comment out code as long as it doesn't include any other comments. Use of the /*

39 COOGL's C subset: CLEAN Chapter 2

token within a /* comment */ causes an error, instead of silently allowing code to
be turned into a comment accidentally. If allowed, the assignment to i would not oc-
cur:

void example() { /* invalid COOGL code */
 int i = 0; /* because this comment is not closed here =>
 i = 1; /* this statement would be commented out! */
}

The // comments can not include these four tokens: /*, */, /#, or #/ For exam-
ple, the following COOGL code causes a compilation error:

a = b //* divisor */ c
 + d;

in C89 and C99 that code has two different meanings, a silent change between those
two languages. Those meanings are:

a = b + d; // C99 meaning
a = b / c + d; /* C89 meaning, which has no // comments */

C programmers use pre-processor directives to prevent code from being compiled,
for example to be able to compile and test the surrounding code. The C preprocessor
is not part of COOGL. A third form of comment, not part of CLEAN, /# com-
ment #/, syntax can be used to comment out code that has /* comments */ or //
comment comments. The /# comment #/ does not nest within other /# comments
#/. There is no way to comment out code that already contains /# comments #/.

 Neither one of the comment start tokens have any significance within a string lit-
eral. Comments can not start within a string literal, for example:

void use() {
 byte *p = "this /* is not a comment */";
}

Comment examples:

/* Binary tree node. */
struct node {
 node *right; // right sub tree
 node *left; // left sub tree
};

Remember that the best comment is sometimes no comment at all, compare:

int depth(node *tree) {
 if (!tree) return 0;
 int left = depth(tree->left);
 int right = depth(tree->right);
 return (left > right ? left : right) + 1;
}

to the paper-work filling bureaucratic style sometimes confused with programming:

2.2 Comments 41

/# Please do not do this sort of stuff!!!
/*
 * Name: depth
 * Argument: tree, a pointer to a tree of nodes
 * Result: The depth of the longest branch of the tree.
 * Algorithm: Recursively compute the depth of each branch,
 * use the depth of the deepest tree branch to
 * compute the depth of the tree.
 */
int depth(node *tree) {
 /* painfully commented code that I have spared you from. */
}
#/

2.3 Source code after comment removal

Comments are processed at compilation time before any other processing is done.
Comment removal is equivalent to the replacement of the comment tokens and non-
space characters within the comment with space characters. An empty comment does
not lead to the concatenation of surrounding text, for example, this causes a compila-
tion error:

int i = 1/**/0;

After comment removal it is equivalent to:

int i = 1 0;

It is not equivalent to:

int i = 10;

After comment removal, the remaining contents of a source file are treated as a pos-
sibly empty sequence of global declarations, as explained in §2.7.

2.4 Functions and the return statement

Functions correspond to the procedures and subprograms of other programming
languages. Functions have arguments and return a value, their types are declared by
the function. Functions that don't return a value use the type void as the type of their
return value, they correspond to procedures in other languages. Arguments are passed
by value, modification of an argument does not affect the data used by the caller
when invoking the function. Functions that return a value must use the return ex-
pression; statement to compute the value returned, after the return statement is
executed the function returns to its caller.

Subsequent sections explain declarations in detail. This introduction to functions
makes use of simple declarations of variables whose type is the integer type: int.
Functions without arguments have an empty argument list, for example, the one()

42 COOGL's C subset: CLEAN Chapter 2

function below. The type of the value returned by a function precedes the function
declaration:

int one() { return 1; }

Functions with a non-empty argument list include a list of comma separated argu-
ment declarations within the parenthesis that follow the function name. The add()
function, below, returns a value of type int, its argument list declares a and b, both
of type int:

int add(int a, int b) { return a + b; }

The return statement without a value expression can be used by a void function
to cause the function to return to its caller, see also §9.9. A void function doesn't re-
quire a return statement as the last statement of its function body, if execution con-
trol reaches the end of the function, the function returns to its caller. For example:

void test_add(int a, int b) {
 int result = add(a, b);
 if (result != a + b) puts("add() is not working");
}

The first statement in test_add() declares a local variable, named result, of
type int. The value returned by the add() function is used to initialize result. Ex-
amples in this chapter use the standard C library, libc, function puts(), which
writes its string argument followed by a new line character to standard output:

int puts(char s[])

If the flow of control within a non-void function can reach the end of the function,
then the last statement of the function must be a return statement:

int invalid() { /* error: missing return statement */ }

2.5 Built-in types

The built-in types are:

 Boolean: bool.

 Character types: char, wchar_t, char16_t, char32_t, and unic.

 Signed integer types: byte, short, int, long, large, index, ptrdiff_t,
and ssize_t.

 Unsigned integer types: ubyte, ushort, uint, ulong, ularge, uindex,
and size_t.

 Floating point: float and double. Some platforms might support some of
these other types: float128, long_double, double_double.

 Complex floating point: complex_float (and its more succinct equivalent

2.5 Built-in types 43

complex) and complex_double. Complex numbers store both a real and an
imaginary component. They require twice the memory than their correspond-
ing floating point type. Some platforms might support some of these other
types: complex_float128, complex_long_double, and complex_dou-
ble_double).

 Imaginary floating point: imaginary_float (and its more succinct equiva-
lent imaginary) and imaginary_double. Complex numbers are capable of
storing both a real and an imaginary component. The imaginary numbers are
complex numbers with a real part with value 0. They only require memory
for the imaginary value. Some platforms might support some of these other
types: imaginary_float128, imaginary_long_double, and imagi-
nary_double_double)..

The types large and ularge take the place of the types introduced in C99 and re-
fined in C11: long long and unsigned long long . Together with uchar,
ushort, uint, and ulong, they are meant to remove the ad-hoc morass of AL-
GOL68 enabled syntactical combinations of unsigned, int, long, double , com-
plex, and imaginary in a variety of forms that require compiler changes for each
new ad-hoc variation. Common code shared with C can use typedef if the verbosity
of long long is desired (e.g. typedef large long_long;).

The signed integer types are represented in two's complement format, the format
that all modern computer systems use. The following restrictions apply to the sizes of
the signed integer types, and their corresponding unsigned counterparts. Their spe-
cific sizes are determined by the underlying system and its C compiler and the com-
pilation mode being used.

 byte, the smallest unit of memory that is directly addressable by the hardware,
all modern systems have 8 bit bytes.

 int, usually the natural word of the machine, but on 64 bit systems the int type
is usually 32 bits, instead of 64 bits.

 short, its memory requirements can not be larger than the memory require-
ments of the int type, its size is usually 16 bits.

 long, its memory requirements can not be smaller than the memory require-
ments of the int type, its size is usually 32 or 64 bits.

 large, its memory requirements can not be smaller than the memory require-
ments of the long type, its size is at least 64 bits.

 index, the type required to index into the largest possible array supported by the
language, including indexing into data in a memory mapped file, same size as a
pointer.

The character types:

44 COOGL's C subset: CLEAN Chapter 2

 char, the native character type of the system, its size is the same as the size of a
byte, it is either signed or unsigned, depending on the underlying computer in-
struction set, underlying C compiler, and system ABI.

 wchar_t, a legacy character type from the C language, it is usually 16 or 32
bits.

 char16_t, an unsigned character type that can represent a 16 bit Unicode char-
acter, from C11.

 char32_t, an unsigned character type that can represent a 32 bit Unicode char-
acter, from C11.

 unic, a 32 bit type used to store a Unicode character which is the same as
char32_t, it is the preferred type for Unicode characters, its name is more
mnemonic and less machine oriented.

2.6 Integer, floating, character, and string literals

Variables of bool type use one byte of memory, their possible values are true and
false. When used in an expression where integers are expected, their corresponding
values are 1 and 0.

Integer literals are written in decimal, unless they are prefixed by a base: 0, 0x, or
0b (respectively: octal, hexadecimal, and binary). The prefixes 0X and 0B can also
be used, but the lowercase prefixes are preferred.

Suffixes can be used to specify the type of integer literals: l, ll, u, ul, and ull,
respectively: long, large, uint, ulong, and ularge). Alternative forms with dif-
ferent cases and order: suffixes that use ll can not have mixed case variations, they
are either both lowercase (ll) or both uppercase (LL). The alternative forms are
shown in parenthesis: l (L), ll (LL), u (U), ul (uL, Ul, UL, lu, lU, Lu, LU), and
ull (uLL, Ull, ULL, llu, llU, LLu, LLU). The types of floating point literals is
double unless a suffix is specified, if f (or F) is specified, then the type is float.
The integer and floating point suffixes are identical to the suffixes in C.

The type of integer literals varies depending on the suffix specified, if any, the base
used to express the number, and the magnitude of the number. The type of a literal
corresponds to the smallest type, but not smaller than int, capable of representing
the numeric value of the literal but only if that type is allowed, if unsigned types are
allowed, then the signed type is always chosen first, if the value can not be repre-
sented, then the unsigned type of the same size is chosen. The following table shows
which are the types (designated with v) that are considered for the type of the literal
and in order of choice, from top to bottom, as a function of: the integer literal suffix
(if any), its base (explicit or implicit), and the literal value's ability to be represented
by the types allowed to be considered for the combination of base and suffix. Only a

2.6 Integer, floating, character, and string literals 45

single suffix that represents each class of suffixes equivalent to it is shown (e.g. ul is
shown, it stands for its 7 variations shown above):

decimal (no explicit base) explicit base: 0, 0x, or 0b

suffix none u l ul ll ull none u l ul ll ull

int v v

uint v v v

long v v v v

ulong v v v v v v

large v v v v v v

ularge v v v v v v v v v

The overall idea is that values without a suffix are of the smallest integer type that
can represent the value, but not of a type smaller than int. Decimal integer literals
that don't have a suffix are never considered unsigned integer literals. Integer literals
with an explicit base (i.e. either hexadecimal, octal, or binary) are considered to be
unsigned if required to fit a type. For example, on a system with 32 bit int and 64
bit long, the value 4294967295 (232 - 1) is of type long, but the same exact value
expressed in hexadecimal 0xFFFFFFFF (or its octal or binary equivalents) fits an
uint and its type is uint. The type is tied to the literal value only. The types of other
literals or subexpressions in an expression that uses the literal value don’t affect the
type of the literal.

2.7 Declarations and declaration contexts

Declaration forms and the various contexts in which they occur are described in this
section. The contexts in which declarations can occur are:

 member, members of a class or function, only applies to COOGL, not
CLEAN.

 global, in the outermost context, i.e. not nested within another context.

 local, local variables of a function or class.

 aggregate, declarations that are within a struct or union declaration.

Examples of declarations in these various contexts follow.

Classes are not part of CLEAN, included here for completeness:

class line { // line is declared in the global context
 pub point a; // a and b are declared in the member context
 pub point b; // of the line class, they are members of the
} // line class

Examples pertinent to C and CLEAN:

46 COOGL's C subset: CLEAN Chapter 2

int i; // i is declared in the global context
int sum(// sum is declared in the global context
 int a, // a, b, and c are declared in the
 int b, // local context of the sum function,
 int c) // they are the arguments of sum
{
 int v; // v is declared in the local context of
 // the sum function, it is a local variable
 v = a + b + c;
 return v;
}
struct point { // point is declared in the global context
 int x; // x, y, and z are declared in the
 int y; // aggregate context of the point
 int z; // structure, they are fields of point
};

The syntax of declarations is the same within all the declaration contexts, with the
exception of which declaration prefix keywords could be used with them. The decla-
ration prefix keywords are:

 accessibility modifiers, not part of CLEAN: pub, priv, or prot, used to
control the accessibility of entities declared in a class, interface, namespace,
or module, see §6.7;

 absence of an accessibility modifier within functions and classes, implies a
local declaration of an entity that is not accessible outside of them.

The rules for the use of those keywords are:

 global declarations occur in the outermost context, they may be preceded by
a pub, priv, or prot accessibility modifier in COOGL, but not in
CLEAN;

 member declarations, not part of CLEAN, occur only in the outermost
block or the argument list of classes and functions. They are preceded by:
pub, priv, or prot;

 local declarations only occur within functions and classes, or their argument
lists, they are not preceded by: pub, priv, or prot;

 declarations within an aggregate, a struct or union, can not be preceded
by any of these keywords: pub, priv, or prot.

2.8 Declaration kinds

The kinds of declarations are:

 variable;

2.8 Declaration kinds 47

 literal, not part of CLEAN;

 function;

 class, not part of CLEAN;

 type;

 enumeration;

 aggregate.

These declaration forms are briefly explained below, together with examples. The
example declarations are shown without a surrounding context, as if they were global
declarations.

Variable declaration, variables can be declared of built-in or user defined types.
Variable declarations can be accompanied by various syntactical constructs to declare
arrays, pointers, and the arbitrary compounding of them. For example:

int n; // n is a variable of type int
int a[10]; // a is an array of 10 int elements
int b[2][3]; // b is an array of 2 arrays of 3 int elements each
int *p; // p is a pointer to an int
int **q; // q is a pointer to a pointer to an int
int *t[3]; // t is an array of 3 pointers to int

Variables can be initialized at declaration time:

int n = 1; // n is a variable of type int, initialized to 1
int *p = &n; // p is a pointer to an int,
 // initialized with the address of n

Literal declarations. Not part of CLEAN. Are similar to variable declarations, but
they declare a compile time value that can not be changed, a value must be specified
at declaration time. For example:

lit int k = 1; // k is a literal of type int with value 1

Function declarations, they specify the type of the value that the function returns, if
any. For example:

int five() { return 5; } // five is a global function
void f() {} // f is a global function

Functions can also have argument declarations, for example:

int factorial(int n) { // factorial is a global function
 if (n <= 2) return n; // n is a local declaration
 return n * factorial(n - 1);
}

Class declarations. Not part of CLEAN. For an example see stack in §1.3.

Type declarations. The typedef, typenew, and typeglob (the last two are not
part of CLEAN) declarations are used to declare types based on other types. Their

48 COOGL's C subset: CLEAN Chapter 2

declaration syntax is based on the declaration syntax of variable declarations:

typedef int integer;

Declares the integer type, which is identical to the built-in int type. Variables
declared of the integer type are identical from their type perspective to variables
declared of the int type.

typedef int *intptr;

Declares the intptr type, which is identical to the compound type: pointer to int,
i.e. the type: int *. Variables declared of the intptr type are identical from their
type perspective to variables declared of the int * type.

Types introduced with typedef are synonyms for the type embodied in the type-
def declaration, for example:

integer n; // n is a variable of type int
int *p = &n; // p is a pointer to int,
 // initialized with the address of n
intptr q = &n; // q is a pointer to int, that points to n

Enumeration declaration. Provides a type for a set of literal values, for example:

enum temperature_unit { // temperature_unit is a type
 FAHRENHEIT = 0,
 CELSIUS = 1,
 KELVIN = 2
};
temperature_unit tu; // tu is a variable of that type

Aggregate type declarations. These can be struct or union declarations, e.g.:

struct person { // person is a type
 int age;
 byte name[128];
};
person p; // p is a variable of person type

A union overlays its fields such that the memory that they use is shared:

union int_bytes { // int_bytes is a type
 int i;
 byte b[4];
};
int_bytes x; // x is a variable of int_bytes type

The only kind of declarations that can occur within a struct or union is the dec-
laration of its fields, such as age and name above. Field declarations are syntactically
the same as variable declarations, though initialization of them at declaration time is
not allowed. No other form of declaration (i.e. literal, type, aggregates, enumerations,
functions, or classes) are allowed within a struct or union declaration.

2.9 Order of declarations 49

2.9 Order of declarations

In CLEAN variable, type, enum, and aggregate declarations must precede their use,
when CLEAN code is used as C code forward declarations and prototypes are placed
in a header file, see §C.1.

The order of declarations, at the global level, does not matter in COOGL , for
example, a function can reference a global variable declared after the function's dec-
laration:

int genid() { // genid is a global function
 id = id + 1; // invalid in CLEAN, valid in COOGL
 return id;
}
int id = 0; // id is a global variable

The declaration of local non-static variables must precede their use:

int random() {
 static int old = 1;// declaration must precede use in CLEAN
 int v; // v declaration must precede its
 v = (old * 168071 + 71111111) & 0x7FFFffff; // use here
 old = v;
 return v;
}

In COOGL, within a class or function, the order of entities other than non static lo-
cal variables does not matter, for example, random() would still be valid if the old
static variable declaration was moved to the end of the function.

2.10 Statements within functions and classes

The body of a function, i.e. the code that implements the function is either a possi-
bly empty sequence of code within curly braces; or a single return statement, with-
out curly braces, not part of CLEAN.

The code of a function or class body within the curly braces is a possibly empty se-
quence of constructs, which belong to one of these groups:

 Member declaration: pub, prot, or priv, not part of CLEAN.

 Local declaration.

 Compound statement.

 Expression statement.

 Selection statement: if, if else, and switch.

 Iteration statement: for, while, do while, not in CLEAN:: loop and on.

 Control flow altering statement: return, break, continue, and goto.

50 COOGL's C subset: CLEAN Chapter 2

Any statement might be preceded by one or more labels of the form label: where
label is a user defined identifier which must be unique within a function.

A brief introduction to some of the control flow statements follows, they are pre-
sented first to allow the subsequent presentation of expressions to contain more inter-
esting examples. Nonetheless, a very brief introduction to expressions follows this
section to allow the control flow statement examples to be understood.

Subsequent sections present the various types and the expressions that can operate
on objects of those types, explaining through them the various ways in which expres-
sions are formed and their meanings.

2.11 Introduction to operators and expressions

The following sections make use of some of COOGL's operators, operators are
fully covered in section §2.16 - §2.26. The operators used in the following sections
are:

 addition, subtraction, multiplication, and division: +, -, *, and /.

 assignment, equality, and inequality: =, ==, and !=.

 less than, less or equals to, greater than, and greater or equals to: < , <=, >,
and >=.

These operators function as they function in other programming languages, tra-
ditional mathematical operator precedence applies. Parenthesis, (and), can be
used when required. Example expressions follow:

void example() {
 int n;
 n = 1 + 2 * 3; // value of n is 7
 n = (1 + 2) * 3; // value of n is 9
 n = 9 - 5 - 2; // value of n is 2
 n = 9 - (5 - 2); // value of n is 6
 n = 8 / 4 / 2; // value of n is 1
 n = 8 / (4 / 2); // value of n is 4
 bool b;
 b = 4 > 1; // value of b is true
 b = 4 < 1; // value of b is false
 b = 4 == 4; // value of b is true
 b = 4 != 4; // value of b is false
}

2.12 Compound statement

A compound statement is a list of statements enclosed within curly braces:

{ possibly_empty_statement_list }

2.12 Compound statement 51

For example:

{ f = f * n; n = n - 1; }

2.13 assert() function and ... statement

The COOGL library function (a #define in C) assert(expression), does noth-
ing if expression is a non-zero value (i.e. a truth value), otherwise it causes an ex-
ception, which if not handled, causes the program to terminate with an error message
that includes the file name, line number, and the text of the argument expression. See
§4.17 for an implementation of assert(). The ... statement, only available in
COOGL is used to indicate that there is missing code, it causes an exception to be
raised if control flow reaches it, if unhandled the file and line number are reported to-
gether with a message that indicates that unimplemented code was attempted to be
executed.

2.14 if and if else selection statements

The if statement:

if (expression) statement

Controls the execution of its subordinate statement, which is only executed if the
controlling expression is true (i.e. non-zero). The if else statement:

if (expression) statement else statement2

Provides a second subordinate statement2, after the else keyword, which is exe-
cuted if the controlling expression is false (i.e. zero). For example:

void check(int n) {
 if (n == 0) { puts("n == 0"); return; }
 if (n < 0) puts("n < 0");
 else puts("n > 0");
}

2.15 while and for iteration statements

The while iteration statement provides controlled iteration of a statement:

while (expression) statement

The while statement evaluates its controlling expression, if it is false, its execution
is complete and its subordinate statement is not executed, if it is true, the subordinate
statement is executed and after its execution the control flow proceeds to the while
statement where the expression is reevaluated, the process repeating until the expres-
sion is false.

52 COOGL's C subset: CLEAN Chapter 2

The following function computes the factorial of its argument iteratively:

int factorial(int n) {
 assert(n >= 1);
 int f = 1;
 while (n >= 2) {
 f = f * n;
 n = n - 1;
 }
 return f;
}

The for statement:

for (expression1; expression2; expression3) statement

Has three optional expressions. Expression1, also known as the initialization ex-
pression, is invoked once when the for statement execution starts. Expression2, the
controlling expression, is evaluated on each iteration, if it is false, the for statement
execution is complete; if true, the subordinate statement is executed, after which ex-
pression3, the stepping expression, is executed and the process repeats itself with the
re-evaluation of expression2.

An alternative form of for statement is:

for (local_declaration_statement; expression2; expression3) statement

Where instead of expression1 a local declaration statement is used. The power()
function uses this for statement form to raise v to the nth power, i.e. to compute vn:

int power(int v, int n) {
 assert(n >= 0);
 int p = 1;
 for (int i = 1; i <= n; i = i + 1) p = p * v;
 return p;
}

2.16 Operators and expressions

The C programming language is rich in operators, COOGL has the same operators.
The basic binary arithmetic operators: addition, subtraction, multiplication, and divi-
sion, respectively: +, -, *, and /; and the unary arithmetic negation operator, -, can
be used with both integer and floating point operands. Integer division between two
integers results in an integer value, the remainder of the division is ignored. The re-
mainder operator, %, which can only be used with integer values, provides the re-
mainder of integer division.

2.16 Operators and expressions 53

Expression Result Expression Result

7 + 3
7 - 3
7 * 3

10
 4
21

7 / 3
7 % 3

 2
 1

When one or both of the operands of the division operator is a floating point value
the result is also a floating point value with a possibly non-zero fractional part, i.e.
the remainder is not dropped, it is used to produce the fractional part of the result.

Both K&R C, and C89 allowed the behavior of integer division, /, and the remain-
der operator, %, to be implementation dependent when negative numbers are in-
volved. The C99 language removed that relaxation and mandated the well defined
behavior of FORTRAN. COOGL adopts that behavior as well, this is the behavior in
all modern hardware.

C99 standard: 6th paragraph under section 6.5.5 and its 78 footnote:

"When integers are divided, the result of the / operator is the al-
gebraic quotient with any fractional part discarded.78) If the quo-
tient a/b is representable, the expression (a/b)*b + a%b shall
equal a."

"78) This is often called “truncation towards zero”."

The obsolete behavior allowed by K&R C and C89 could lead to results such as -
7/3 equal to -3 as long as -7%3 was equal to 2, even though those results are
against the mathematical expected results. The allowance for such strange behavior
was to accommodate computer systems that have long since been obsolete.

The allowed behavior of C99, FORTRAN and COOGL mandates these results:

Division Result Remainder Result

 7 / 3
-7 / 3
 7 / -3
 -7 / -3

 2
-2
-2
 2

 7 % 3
-7 % 3
 7 % -3
 -7 % -3

 1
-1
 1
-1

The logical bitwise operators: bitwise and, bitwise or, bitwise exclusive or, shift left,
and shift right operators, &, |, ^, <<, and >> respectively, together with the unary
bitwise negation operator ~ must be used with integer operands. Examples of these
operators follow, literal values preceded by 0x are in hexadecimal notation:

54 COOGL's C subset: CLEAN Chapter 2

Expression Result

6 | 3
6 & 3
6 ^ 3
6 << 1
6 >> 1

0xABCD << 8
0xABCD >> 8
~0xFFFF

~0

 7
 2
 5
12
 3

 0xABCD00
 0xAB
0xFFFF0000
0xFFFFFFFF

The last two results depend on the int type being a 32 bit type, if it had been a 64
bit type those two expressions would have been:

Expression Result

~0xFFFF
~0

0xFFFFFFFFFFFF0000
0xFFFFFFFFFFFFFFFF

2.17 Controlling expressions, relational operators, and truth values

The values of the various comparison and relational operators: ==, !=, <, <=, >,
and >= is either true or false. The tokens true and false are literals of the bool
type, when used as integer values these literals have the values 1 and 0 respectively.

The value of expressions within conditional contexts, e.g. the controlling expres-
sion of an if or a while statement, is compared with zero. A zero value means that
the expression is false, a non-zero value means that the expression is true. For exam-
ple:

int main() {
 if (-7) puts("-7 is true"); else puts("-7 is false");
 if (0) puts(" 0 is true"); else puts(" 0 is false");
 if (1) puts(" 1 is true"); else puts(" 1 is false");
}

Its output is:

-7 is true
 0 is false
 1 is true

2.18 Logical operators

There are two binary logical operators: and &&, and or ||. They evaluate their first
operand, and if it can be determined the truth value of the operator from the value of
the first expression, i.e. if the value is zero for &&, and non-zero for ||, then their
second operand is not evaluated; otherwise the second operand is evaluated and its

2.18 Logical operators 55

truth value (i.e. zero or non-zero) determines the value of the operator. The result of
these operators is 1 for truth, and 0 for false. The unary logical not operator, !, per-
forms the logical negation of its operand, i.e. if the operand is zero its result is 1, if
the operand is non-zero its result is 0.

2.19 Assignment and assignment-op operators

The assignment operator, =, and the assignment-op operators +=, -=, /=, %=, |=,
&=, ^=, <<=, and >>= combine binary operators with assignment, for example:

x is 7 in each
expression

value in x after
expression

x += 1
x -= 3
x /= 3
x %= 3
x |= 8
x <<= 2
x >>= 1

 8
 4
 2
 1
15
28
 3

they perform the operation specified by corresponding binary operator and assign the
result to the left operand.

The value of an assignment or an assignment-op operator is the value assigned to
its first operator, for example:

void example() {
 int i, j, k;
 i = j = k = 8; // i, j, and k have the value 8
 k /= j -= 4; // j is 4 (i.e. 8 - 4)
} // k is 2 (i.e. 8 / 4)

Beware of confusion between the equality comparison ==, and the assignment op-
erator =, particularly in the controlling expressions of various control statements:

bool is_one(int v) {
 if (v = 1) // wrong: assignment =, not comparison ==,
 return true; // always returns true!
 return false; // this statement is never reached
}

The incorrect is_one() function always returns true, because it assigns the value
1 to v and then tests that value to see if it is non-zero, it always is non-zero.

2.20 Increment and decrement operators

The increment and decrement, ++ and --, operators cause the value in a variable to
be incremented or decremented by one. There is a prefix and a postfix forms of these

56 COOGL's C subset: CLEAN Chapter 2

operators. There is no difference between the prefix and the postfix form in the effect
on the variable, the difference is in the value of the expression. The value of the pre-
fix operators as an expression is the value of the variable after the operation, the
value of the postfix operators is the value of the variable before the operation, e.g.:

void example() {
 int p = 1, q = 1, r = 1;
 int a = p++; // p is 2, a is 1
 int b = ++q; // q is 2, b is 2
 int c = r += 1; // r is 2, c is 2
}

The factorial() function, from §2.15, is shown below using *= and --:

int factorial(int n) {
 assert(n >= 1);
 int f = 1;
 while (n >= 2) {
 f *= n;
 --n;
 }
 return f;
}

2.21 Ternary selection ?: operator and the comma operator

The operator exp1 ? exp2 : exp3 is the ternary selection operator, it evaluates
exp1 and if its value is non-zero, then the value of the ?: expression is the exp1,
otherwise the value is exp3.

The binary comma operator exp1, exp2 evaluates exp1 fully, including its side
effects, then it evaluates exp2, the vale of the comma operator is exp2. If exp1 is
also a comma operator expression, i.e. if its form was: exp1_1, exp1_2, exp2 its
implicit parenthesis are left to right, i.e. as if it were (exp1_1, exp1_2), exp2 and
the value of the whole expression is exp2, similarly for 4 expressions separated by
commas, etc.

2.22 C array types, operators and expressions

There are two kinds of arrays in COOGL, traditional C arrays, whose dimensions
are known at declaration time, and variable length arrays, whose dimensions are de-
termined at run time, additionally there are array descriptors used to refer to arrays,
used when passing an array as an argument to a function, among other uses, see §3.
This section deals with C array types, variable length arrays are presented in chapter
§13.

The declaration syntax of arrays allows for the declaration of unidimensional ar-

2.22 C array types, operators and expressions 57

rays. The declaration of multidimensional arrays results form the declaration of ar-
rays of arrays by applying the syntax repeatedly. For example:

int table[10]; // array of 10 int
int matrix[50][80]; // array of 50 arrays of 80 int
int d3[10][20][30]; // array of 10 arrays of 20 arrays of 30 int

The [] operator is the array indexing operator. The first element in an array is at in-
dex zero, all arrays are zero based. Array access uses expressions of the form
table[i] and d3[i][j][k], the syntax d3[i,j,k] does not correspond to 3 di-
mensional array indexing, it is an invalid expression. An example of the traditional
multi-level iterative access of all the integers in the d3 array is shown below:

void initd3() {
 for (int i = 0; i < 10; ++i)
 for (int j = 0; j < 20; ++j)
 for (int k = 0; k < 30; ++k)
 d3[i][j][k] = random();
}

The order of the underlying elements of a multidimensional array are a reflection of
the declaration itself, for example:

int d[2][3]; // d is an array of 2 arrays of 3 integers
void initd() {
 int n = 0;
 for (int i = 0; i < 2; ++i)
 for (int j = 0; j < 3; ++j)
 d[i][j] = n++;
}

The integer entries within d, after the execution of initd(), have these values:

d[0][0]: 0 d[0][1]: 1 d[0][2]: 2

d[1][0]: 3 d[1][1]: 4 d[1][2]: 5

The underlying int sized words, in increasing memory address order, are:

d[0][0]: 0

d[0][1]: 1

d[0][2]: 2

d[1][0]: 3

d[1][1]: 4

d[1][2]: 5

The iterative array access in the nested for loops shown above for d and d3 are
the fastest forms of iterative array access because the memory accesses are to sequen-
tial memory addresses, which allows the hardware caches and memory subsystem to

58 COOGL's C subset: CLEAN Chapter 2

perform optimally. Of course, those considerations matter when dealing with large ar-
rays, not tiny ones like d and d3.

Most array indexing occurs in iterative loops that walk all or part of an array. The
index variable is usually declared in the first expression of a for statement, declaring
indexes with type int is correct unless the number of elements in the indexed dimen-
sion is larger than the positive value range minus one supported by int. Indexing
into memory mapped files or arrays whose dimension size is unknown at compile
time should done with variables of type index, which uses 64 bits in systems with
64 bit pointers. Indexing variables are usually just local variables held in registers,
declaring them with type index instead of int doesn’t cause any extra overhead.
The compiler will produce a compile time error if array indexing is attempted with
variables whose value range is smaller than the value range of index if the compiler
can not guarantee at compile time that its value range is large enough be used cor-
rectly as an index.

2.23 Pointers: types, operators, and expressions

The C programming language approach to memory manipulation allows direct ma-
nipulation of memory that is very close to assembler level programming, but in a
typed, structured, and portable manner.

There are various language aspects related to pointers:

 declaration of pointer variables;

 access of the entity referred by expressions of pointer type;

 expressions based on the pointer values themselves, for example through
arithmetic operations on pointers to refer to other nearby entities.

The underlying type of entity that a pointer refers to can be a built in type or a user
defined type, i.e. one defined using: struct, union, class, arrays, or pointers. Ex-
ample declarations of pointer variables:

byte *bp; // bp is a pointer to byte
byte **bpp; // bpp is a pointer to a pointer to a byte
stack *stk; // stk is a pointer to a stack
int *tab[4]; // tab is an array of 4 pointers to int
typedef int array_of_8_int[8];
array_of_8_int *tp; // tp is a pointer to an array of 8 int
//int (*tp)[8]; C ONLY: tp is a pointer to an array of 8 int

There are several operators that can be used with most kinds of pointer variables,
the exception being pointers to functions which are discussed later.

The unary * operator is the dereference operator. It is used with an expression of
pointer type, it dereferences the pointer value to refer to the object whose address is
the value of the pointer expression.

2.23 Pointers: types, operators, and expressions 59

The unary & operator is the address-of operator. It can be used on variables of any
type, it is used to obtain the address of a variable, usually to assign it to a pointer
variable, or to pass it as an argument to a function, or to use it in pointer arithmetic or
pointer comparison expressions.

void swap(int *a, int *b) {
 int t = *a;
 *a = *b;
 *b = t;
}
int p = 1, q = 2;
void example() { swap(&p, &q); }

A common use of the & and * operators is in argument passing where a value is to
be returned through the memory that the pointer argument refers to. For example the
swap() function above exchanges the values that its two arguments point to.

Pointer arithmetic operators are the binary addition and subtraction, + and -, opera-
tors and their related forms: ++, --, +=, and -=. Use of the unary negation operator,
-, is invalid with a pointer expression.

Pointer addition is between a pointer and an integer, not between two pointers. The
expression p+n, where p is a pointer value and n is a positive integer, or the equiva-
lent expression n+p, results in a pointer value that refers to the n th entity after the en-
tity that p points to. The expression p+n, where p is a pointer value and n is negative
integer, results in a pointer value that refers to the n th entity before the entity that p
points to. The expression p-n, where p is a pointer value is equivalent to p+(-n),
i.e. the addition of p and the integer -n.

Pointer arithmetic can only be performed when the programmer provides compile
time or run time proof that the arithmetic is valid and that the underlying object that
the pointer refers to is of a type that does not result in a type violation that could re-
sult in unsafe programming. The concepts of safe and unsafe programming are ex-
plained in chapter §14. One of the ways by which the programmer provides run time
proof that pointer arithmetic is valid, subject to run time checks, is by specifying the
pointer with the syntax: type name[], which indicates that name refers to an array
descriptor in a way such that the elements within the array can be accessed through
pointer arithmetic in a safe manner.

Examples of pointer arithmetic are shown in exchange() below, it exchanges the
values at p+i and p+j:

void exchange(int p[], index i, index j) {
 int t = *(p + i);
 *(p + i) = *(p + j);
 *(p + j) = t;
}

60 COOGL's C subset: CLEAN Chapter 2

If the p argument had been declared as: int *p, then the expressions p+i and p+j
would result in a compile time error. The pointer plus integer expression *(p+i) is
equivalent to the expression p[i], thus exchange() could be written as:

void exchange(int p[], index i, index j) {
 int t = p[i];
 p[i] = p[j];
 p[j] = t;
}

The exchange() function is used in the sort() function, below which does its
work by finding the smallest element and exchanging it with the first element, and
then sorting the rest of the array by the same means.

void sort(int array[], index count) {
 assert(count <= array.max[0]);
 if (count <= 1) return;
 int *rest = array;
 for (; count >= 2; ++rest, --count) {
 int min = rest[0];
 index min_index = 0;
 for (index i = 1; i < count; ++i) {
 int v = rest[i];
 if (v < min) {
 min = v;
 min_index = i;
 }
 }
 exchange(rest, 0, min_index);
 }
}

Pointer arithmetic, ++rest above, is allowed in this code, even though rest was
declared int *rest , because the value of rest was based on an array descriptor,
array[]. The array descriptor is used by the compiler to validate the pointer arith-
metic at run time, or invariants proven at compile time, as is the case in this example,
given the assert(count <= array.max[0]) and that count >= 2 inside the for.

The variable rest can be used as an array descriptor argument to exchange()
even though it is just a pointer to int, the compiler converts the value of rest and
the value of the array descriptor on which its value was based on, array[] in this
case, into an array descriptor converting rest into the exchange() argument p[].
A version of sort() that uses pointers instead of indexes:

2.23 Pointers: types, operators, and expressions 61

void sort(int array[], index count) {
 assert(count <= array.max[0]);
 if (count <= 1) return;
 int *first = array, *last = array + count - 1;
 for (; first < last; ++first) {
 int min = *first, *minptr = first;
 for (int *p = first; ++p <= last;) {
 int v = *p;
 if (v < min) {
 min = v;
 minptr = p;
 }
 }
 swap(first, minptr);
 }
}

The subtraction of two pointers, which must be of the same type, n=p2-p1 pro-
duces an integer result, n in this case, such that p1+n==p2, n is the number of times
that p1 should be incremented (if n is positive) or decremented (if n is negative) so
that it becomes equals to p2. The type of the result of pointer subtraction is
ptrdiff_t which is an implementation dependent type capable of holding the dif-
ference between two pointers, e.g. it is 64 bits when pointers are 64 bits and 32 bits
when pointers are 32 bits. Subtraction of pointers is only valid if the programmer pro-
vides compile time or run-time proof that both pointers are within the same array de-
scriptor. Safe pointer subtraction is required to ensure that the programmer does not
use pointer subtraction between a valid pointer and a NULL pointer as a means to ob-
tain a value from which the pointer integer value could be obtained. Obtaining the
value of pointers is prevented to ensure that garbage collection libraries and other
memory management schemes can be written without concerns about pointer value
changes affecting the program, for example when pointer values are used as hash val-
ues, which would no longer be valid if the object the pointer refers to was relocated.

The addition of two pointer values makes no sense, it is invalid.

Pointer arithmetic of pointers to types with sizes other than 1 byte imply hidden
scaling of the pointer values in ways that might result in multiplication and division
instructions that involve the size of the type that the pointer refers to. For example:

62 COOGL's C subset: CLEAN Chapter 2

struct name { // variables of type name use 40 bytes
 byte b[40];
};
void exchange_names(name p[], index n) {
 name t = *p;
 *p = *(p + n);
 *(p + n) = t;
}
name name_tab[100];
void example() {
 exchange_names(&name_tab[0], 30);
 name *p = &name_tab[random() % 100];
 name *q = &name_tab[random() % 100];
 size_t n = p - q;
}

The arithmetic expression p+n within exchange_names() is translated by the
compiler into these integer instructions integer_value_of_p + n * 40 , of the ap-
propriate width, e.g. 32 or 64 bit instructions. Similarly, the expression p-q is trans-
lated into (integer_value_of_p - integer_value_of_q) / 40.

Pointer arithmetic of pointers that refer to types whose sizes are a power of two
have those underlying multiplication and division operations reduced to shift opera-
tions, in which case the computational cost of the scaling of values by the size of the
underlying pointed type is negligible. All built-in types and pointer types have sizes
that are powers of two, thus pointer arithmetic of pointers that refer to those types al-
ways benefit from the use of shift instructions instead of multiplication and division
instructions. Because the compiler knows about the size of the underlying object, the
underlying multiplication and divisions are against a constant value, which many
compilers can optimize into simpler instructions, for example to multiply by 40, a
compiler might choose to translate n * 40 into:

((n << 5) + (n << 3)) // n * 32 + n * 8

Array indexing also involves scaling of indexes by the size of array elements, thus
nametab[n] involves an underlying multiplication by 40.

Walking arrays with ++ and -- operators on pointer values never involves multipli-
cation, those are translated into the addition or subtraction of the size of the type that
the pointer refers to. For example:

2.23 Pointers: types, operators, and expressions 63

lit size_t NAMELEN = 40;
struct name {
 byte b[NAMELEN];
};
lit size_t TABLEN = 100;
name name_tab[TABLEN];
// search name_tab for n, return -1 if not found
index indexof(name *n) {
 name *start = &name_tab[0];
 name *end = &name_tab[TABLEN];
 for (name *p = start; p < end; ++p)
 if (name_equals(p, n))
 return p - start;
 return -1;
}

Thus the ++p expression is translated to integer_value_of_p += 40.

As can be seen above, there is an order relationship between pointer values that fol-
lows the underlying order of memory addresses. For example when pointer p above
is used to walk the name_tab array starting with its first element, &name_tab[0], its
value will be smaller than &name_tab[TABLEN], the value of end. End does not
point to the last element of name_tab, that element is name_tab[TABLEN-1], end
points instead to the memory location immediately after that element, a memory loca-
tion that contains some other unknown information, unrelated to the elements of the
name_tab array. Both languages, C and COOGL, allow such expressions and the id-
iomatic walking of arrays shown above, both languages make the program behavior
of dereferencing the end pointer invalid, just as it would be if the
name_tab[TABLEN] invalid array entry was accessed. In C the dereferencing of end
would cause the underlying memory to be accessed, COOGL causes an exception to
be raised and the memory that end points to is not accessed.

Pointer arithmetic with the p variable is valid because the value of p is based on
the address of an element within an array, thus it is run-time safe for the pointer arith-
metic operations to be performed, the compiler knows the underlying memory of the
name_tab array and can ensure, at compile time in this case, that all the accesses are
within bounds. To be able to have a common subset between C and COOGL the abil-
ity to perform pointer arithmetic on variables declared with the type *name syntax
is required. C only allows for the declaration of pointers with the syntax type
name[] in the declaration of function arguments. Safe programming in COOGL is
presented in chapter §14, this section only touched on some of its aspects to allow
pointer arithmetic to be explained.

64 COOGL's C subset: CLEAN Chapter 2

2.24 Aggregate types and their operators

The struct and union keywords are used to declare types for an aggregation of
data declarations, for example:

struct person { // person is a type
 int age;
 byte name[128];
};

Variables of person type have two fields, age and name, they are accessed
through the dot . and arrow -> operators, depending if the expression used to refer-
ence them is of the type of the aggregate or the type is pointer to the aggregate, re -
spectively. For example:

void example() {
 person p; // p is a variable of person type
 p.age = 33;
 p.name[0] = 'A';
 p.name[1] = 'n';
 p.name[2] = 'n';
 p.name[3] = 0; // 0 terminates C strings
 p.age++; // one year older
 --p.age; // one year younger
 person *pp; // pp is a pointer to person
 pp = &p; // it now points to p
 pp->age *= 2; // double the age
 pp->name[2] = 'a'; // now the name is Ana
}

A union declaration overlays its fields so that the memory that they use is shared:

union ubytes_of_uint { // ubytes_of_uint is a type
 uint u;
 ubyte b[4];
};

A union declaration can not contain member variables that are of a class type or
that refer to other data (pointers, array descriptors, index, or uindex), see §14.7.
This is a restriction required for safe programming. The ubytes_of_uint union can
be used to implement a byte swapping function:

uint byte_swap(uint u) {
 ubytes_of_int u;
 u.i = i;
 ubyte t;
 t = u.b[0]; u.b[0] = u.b[3]; u.b[3] = t;
 t = u.b[1]; u.b[1] = u.b[2]; u.b[2] = t;
 return u.i;
}

2.24 Aggregate types and their operators 65

Use of ubytes_of_uint can be used to access the 4 bytes within an uint on a
system with 32 bit uint, for example to swap its bytes, is better done with bitwise
operators than with a union:

uint byte_swap(uint u) {
 return (u >> 24) | (u << 24) |
 ((u & 0xff00) << 8) | ((u & 0xff0000) >> 8);
}

2.25 Expressions

Expressions are used by themselves, for example an assignment or a function call,
or as parts of other statements:

 As the initial value given to a variable at declaration time.

 Declarations to specify number of elements in arrays, or bits in a bit field.

 The value returned by a function through the return statement.

 In the expression list of the on statement.

 Initialization, controlling, and iteration expressions of: if, for, loop, and
while.

 In a switch statement, described further below.

 The value of case labels, described further below.

Examples of expressions in various contexts are shown below:

index find_last(int value, int array[], index count) {
 index ix = count - 1;
 while (ix >= 0) {
 if (ix == array[ix]) return ix;
 --ix;
 }
 return -1;
}

2.26 Expression statements

An expression statement is alone by itself, it is not a part of another statement, e.g.:

void example(int a, int b) {
 int i = a + b; // expression in declaration
 while (i < 10) { // expression in conditional context
 factorial(i); // expression statement
 ++i; // expression statement
 }
}

66 COOGL's C subset: CLEAN Chapter 2

Expression statements must be function calls or assignments, including ++ and --,
they must do something with the value they produce, it can not just be ignored:

void example(int a, int b) {
 a + b; // error: invalid expression statement
 a == b; // error: invalid expression statement
 a < b || a > b; // error: invalid expression statement
 factorial(a); // expression statement, ok to ignore value
}

2.27 Default value returned by main()

In C and COOGL the signature of main can be declared in any of these ways:

int main();
int main(int argc, char *argv[]);
int main(int argc, char *argv[], char *envp);

The third forms is only valid in what the C standard defines as hosted environ-
ments, e.g. supported by an operating system. In C main() is special in that even
though main() is supposed to return a value, if execution control reaches the trailing
curly brace the compilation doesn’t cause a compilation error, instead a default zero
value is returned, which must be handled with special purpose code by the compiler
and is needlessly obscure.

Omitting the trailing return in main() only has value in reducing the number of
lines of code in small C examples, and keeping C compatible with the historical
“hello, world!” program in the K&R C book, and many programs that copied it and
exit without a trailing return 0;.

2.28 if and if else selection statements and indentation errors

The if and if else statements were presented above. The else keyword is asso-
ciated with the nearest if statement that precedes it. Incorrect indentation can vis-
ually mislead the programmer about the actual if statement that an else statement
is associated with, for example:

int worker() {
 int error;
 if (!too_many_workers())
 for (;;)
 if (error = get_and_do_work())
 return error;
 else // error: misleading indentation
 puts("too many workers");
 return 0;
}

2.28 if and if else selection statements and indentation errors 67

In worker() above, the else is associated with the if within the for statement,
instead of the first if of the function. COOGL produces a compilation error as a re-
sult of this misleading indentation. This is the only circumstance under which
COOGL pays attention to whitespace characters other than for token delineation. To
avoid having to understand how tab characters are expanded, the indentation check-
ing expects that the whitespace characters that precede the if keyword must be ex-
actly the same characters that precede the else keyword, i.e. the same sequence of
spaces and tabs. For programmers that have trouble making up their minds about the
use of tabs or spaces, or that simply hate this COOGL feature, it can be turned off,
see XXX.

Appropriate indentation removes the compilation error, which makes the logical
coding error clear:

int worker() {
 int error;
 if (!too_many_workers())
 for (;;)
 if (error = get_and_do_work())
 return error;
 else
 puts("too many workers");
 return 0;
}

Curly braces can be used to force the appropriate association:

int worker() {
 int error;
 if (!too_many_workers()) {
 for (;;)
 if (error = get_and_do_work())
 return error;
 } else
 puts("too many workers");
 return 0;
}

Better code organization makes the code clearer. The idiomatic use of an empty
block, {}, to indicate that the body of the while statement is an empty statement:

68 COOGL's C subset: CLEAN Chapter 2

int worker() {
 if (too_many_workers()) {
 puts("too many workers");
 return 0;
 }
 int error;
 while (!(error = get_and_do_work()) {}
 return error;
}

The else if indentation style shown below does not cause an error, nor does an
error occur when the if and its matching else are on the same line, as shown be-
low:

int match_work(int k, int a, int b, int c) {
 start_work(k);
 if (k == a) a_work(a);
 else if (k == b) b_work(b);
 else if (k == c) c_work(c);
 else if (k < 0) negative_work(k) else positive_work(k);
 return final_work(k);
}

2.29 goto statement

The goto label; statement allows execution control to be transferred:

size_t merge(int src[], size_t n, int src2[], size_t n2,
 int dest[], size_t nd)
 require(n <= src.max[0] && n2 <= src2.max[0]
 && nd <= dest.max[0] && !(n1 ?+ n2)) {
 assert(nd >= n + n2);
 int *d = dest, *s = src, *end = s + n
 int *s2 = src2, *end2 = s2 + n2;
 if (n > 0 && n2 > 0)
 for (;;)
 if (*s < *s2) {
 *d++ = *s++;
 if (s1 == end1) goto end;
 } else {
 *d++ = *s2++;
 if (s2 == end2) goto end;
 }
end:
 while (s < end) *d++ = *s++;
 while (s2 < end2) *d++ = *s2++;
}

The only restriction on the goto label statement is that it can not jump over local

2.29 goto statement 69

variable declarations that remain in scope, i.e. that are still accessible at label. In the
merge() function above the goto end; could be replaced by break, see §2.32.

2.30 switch statement

The switch statement:

switch (expression) compound_statement

The switch statement evaluates an integer valued expression and compares the
value with the case constant_expression: labels within the compound_state-
ment, if the value of the expression is equals to the value of one of the constant
expressions in the case labels, execution continues with the statements with that la-
bel, as if a goto statement to that label had occurred. If no case constant_ex-
pression: is equals to expression, execution continues at the default: label, if
there is one, otherwise execution continues after the switch’s compound_state-
ment.

Any statement within the compound_statement or its sub-statements can be la-
beled with one or more case constant_expression: labels or with the default:
label. The constant_expression values must all be different, the default: label
can be used at most once. An example of the switch statement follows:

bool is_white_space(byte b) {
 switch (b) {
 case ' ': // space
 case '\t': // tab
 case '\n': // newline
 case '\r': // carriage return
 return true;
 default:
 return false;
 }
}

The order of the default: and case constant_expression: labels is immate-
rial, execution proceeds to the default: label if the value of the switch expression
is not equals to any of the case constant_expression: labels, irrespective of
their order. Sometimes for brevity when multiple case apply to the same statement
they are placed in a single line.

Execution continues down the statement list, uninterrupted, as other labels are en-
countered, for example in the zero_memory_small() function shown below, which
is a specialized function that zeros up to 7 bytes of memory.

70 COOGL's C subset: CLEAN Chapter 2

void zero_memory_small(ubyte mem[], size_t size) {
 assert(size <= 7);
 switch (size) {
 case 7: *mem++ = 0;
 case 6: *mem++ = 0;
 case 5: *mem++ = 0;
 case 4: *mem++ = 0;
 case 3: *mem++ = 0;
 case 2: *mem++ = 0;
 case 1: *mem = 0;
 }
}

For example, if the value of size is 5 then 5 sequential assignments are executed.
The purpose of this form of zeroing memory is to unroll the zeroing of small memory
regions for performance purposes.

The zero_memory_small() function is used by the zero_memory() function to
deal with the zeroing of small memory areas of up to 7 bytes in various circum-
stances. Number 7 corresponds to the value of sizeof(ularge) - 1 on systems
whose native types are 64 bits wide, or less.

void zero_memory(ubyte mem[], size_t size) {
 if (size < sizeof(ularge)) {
 zero_memory_small(mem, size);
 return;
 }
 size_t x = cast(size_t) mem % sizeof(ularge);
 if (x != 0) {
 x = sizeof(ularge) - x;
 zero_memory_small(mem, x);
 mem += x;
 size -= x;
 }
 if (size >= sizeof(ularge)) {
 ularge *m = try_cast(ularge *, mem, NULL) mem; //§14.12
 ularge *endm = m + size / sizeof(ularge);
 while (m < endm) *m++ = 0;
 size %= sizeof(ularge);
 mem = cast(ubyte *) endm;
 }
 zero_memory_small(mem, size);
}

The more complicated case corresponds to zeroing bytes until a ularge aligned
boundary is encountered, then zeroing memory in units of ularge sized words, and
then zeroing the leftover bytes.

The break statement causes control to be transferred after the switch statement:

2.30 switch statement 71

bool is_white_space(byte b) {
 bool result;
 switch (b) {
 case ' ': case '\t': case '\n': case '\r':
 result = true;
 break;
 default:
 result = false;
 break;
 }
 return result;
}

2.31 do while iteration statement

The do while statement has this syntax:

do statement while (expression)

The statement is always executed once. Then the expression is evaluated, and
if its value is non-zero, the statement is executed again, this process is repeated un-
til the expression if false. For example:

bool prompt(char question[]) {
 char answer;
 do {
 prompt_user_y_or_n(question);
 answer = get_answer();
 } while (answer != 'y' && answer != 'n');
 return answer == 'y';
}

2.32 break and continue statements

The continue statement is used to cause control flow to be transferred to the con-
trolling part of the closest surrounding iteration statement. The use of continue
within the while on the left is is equivalent to the code on the right:

while (expression) {
 some_statements;
 if (expression)
 continue;
 other_statements;

}

while (expression) {
 some_statements;
 if (expression)
 goto cont;
 other_statements;
cont: ;
}

The use of continue within the for statement in the left is equivalent to the code
one the right:

72 COOGL's C subset: CLEAN Chapter 2

for (initialization_expression;
 expression;
 iteration_expression) {
 some_statements;
 if (expression)
 continue;
 other_statements;

}

for (initialization_expression;
 expression;
 iteration_expression) {
 some_statements;
 if (expression)
 goto cont;
 other_statements;
cont: ;
}

The break statement is used to cause control flow to be transferred after the closest
surrounding iteration statement or switch statement. The use of break within
switch and while statements on the left is equivalent to the goto based code
shown on the right:

switch (expression) {
case constant_expression:
 statements;
 break;
case constant_expression:
 while (expression) {
 statements;
 if (expression)
 break;
 statements;
 switch (expression) {
 case constant_expression:
 statements;
 break;
 case constant_expression:
 statements;
 break;
 }
 statements;
 }
 statements;
 break;
default:
 statements;
 break;
}

switch (expression) {
case constant_expression:
 statements;
 goto switch_end;
case constant_expression:
 while (expression) {
 statements;
 if (expression)
 goto while_end;
 statements;
 switch (expression) { //2
 case constant_expression:
 statements;
 goto switch_2_end;
 case constant_expression:
 statements;
 goto switch_2_end;
 }
 switch_2_end: statements;
 }
 while_end: statements;
 goto switch_end;
default:
 statements;
 goto switch_end;
}
switch_end:

3 - Array descriptors, tuples, and literals

“There are two ways of constructing a software design:
one way is to make it so simple that there are obviously
no deficiencies, and the other way is to make it so
complicated that there are no obvious deficiencies.
The first method is far more difficult.”

-- C. A. R. Hoare

Array descriptors are a built-in data type, they are a building block
for the safe programming nature of COOGL. Variable length and dy-
namically allocated arrays are described in §13. Tuples are a light-
weight data structuring construct whose principal use is by functions
that return more than one value. Literals are compile time constants.

3.1 Array descriptors

An array descriptor is a compiler implemented data type that is used to describe a
contiguous area of memory organized as an array. The following sections introduce
various concepts related to array descriptors and safe programming. Variable length
arrays and other details about array descriptors are presented in chapter §13.

Traditional C arrays, variable length arrays, and array descriptors have these mem-
bers: start, end, and max[N], start points to the first element of the array and
end points immediately after the last element of the array. The number of elements
for the ith dimension of the array, counting from zero and numbered left to right, is
max[i]. These members don't exist in memory at run time for traditional C arrays,
because their values are known at compile time. An example showing some invari-
ants:

void f() {
 int a[2][3];
 assert(a.max[0] == 2 && a.max[1] == 3 &&
 a.start == &a[0][0] && a.end == &a[1][2] + 1);
 assert(a.end - a.start == a.max[0] * a.max[1]);
}

A declaration that uses the [] declarator, without a size between the square brack-
ets, specifies an array descriptor, for example:

int tab[10];
void f() { int desc[] = tab; }

74 Array descriptors, tuples, and literals Chapter 3

The use of [] in C, where it is used as an alternative syntax to declare an argument
of pointer type, is source code compatible when COOGL, see §S.6.

For source code compatibility with C, assuming a unidimensional array (a tradi-
tional C array, or a variable length array, or an array descriptor), the array name is the
same as the array’s start value. The name of a multidimensional array is not the
same as its start value. For example:

int tab[10];
void f() { int desc[] = tab; increment(desc); }
void increment(int *p) { (*p)++; }

The last element of tab is tab[9], desc.end points to memory that is not part of
tab. The range of memory described by an array descriptor is the open ended range:
[start, end) starting with start and up to, but excluding, end. Array descriptors
are capable of describing empty arrays, i.e. when start is equals to end. For every
array descriptor it is always the case that start <= end.

An array descriptor can also describe a sub-array within another array or another ar-
ray descriptor, for example:

int tab[10];
int desc[] = tab;
int last5[] = &tab[5];
int same_last5[] = &desc[5];

Both, last5 and same_last5, refer to the last 5 elements of tab[10]. The sub-ar-
ray descriptor is specified by the address of the starting element, and extends to the
last element of the array.

An array descriptor that refers to elements within an array that doesn't extend to the
last element of the array can be specified with two indexes separated by a colon, i.e.
[first : after], first is the index of the first element, and after is the index
of the element after the last element that is to be included in the array descriptor. The
number of elements included is after - first. For example:

int tab[10];
void example() {
 int first5[] = &tab[0 : 5]; // tab[0] ... tab[4]
 int last5[] = &tab[5 : 10]; // tab[5] ... tab[9]
 int last2[] = &last5[3 : 5]; // tab[8] ... tab[9]
 int cut = 3; // cut in 1 ... 8
 int low[] = &tab[0 : cut]; // tab[0] ... tab[cut-1]
 int high[] = &tab[cut : 10]; // tab[cut] ... tab[9]
 int empty[] = tab[4 : 4]; // empty array descriptor
}

The creation of an array descriptor with indexes that are out of bounds or where the
first index is greater than the after index causes a run time exception, see §14.28.
Note that the range specified in &tab[5 : 10] does not specify an out of bounds in-

3.1 Array descriptors 75

dex by specifying 10, it doesn’t raise an exception, because the index of the last ele-
ment to be included in the array descriptor is 9 (i.e. 10 - 1) which is a valid element
within the array.

Array descriptors can be walked with various iteration loops, even if they describe
an empty range:

void work(int desc[]) {
 for (index i = 0; i < desc.max[0]; i++) use(desc[i]);
 for (index i = desc.max[0]; --i >= 0;) use(desc[i]);
 for (int *p = desc.start; p < desc.end; ++p) use(*p);
 for (int *p = desc.end; --p >= desc.start;) use(*p);
}

Walking the array backwards with pointers, as shown above in the last for loop, is
correct, the equivalent code in C is supposed to be undefined behavior in C89 and its
descendants (even though on modern systems the generated code does what is ex-
pected) because the value of p, when it is decremented so that it is not greater or
equals to desc.start, undefined behavior in the C standard in this area is to accom-
modate hardware that uses segment based addressing. Idiomatically this kind of code
does occur in practice, and because it only has trouble with obsolete segmented archi-
tectures, this C89 restriction is not imposed by COOGL, which is not supported on
those obsolete segment based systems.

3.2 Multi dimensional array descriptors

Multi-dimensional array descriptors are declared with multiple empty square brack-
ets. An example declaration and use of a multi-dimensional array descriptor:

void work(int m[][][]) {
 for (index i = 0; i < m.max[0]; i++)
 for (index j = 0; j < m.max[1]; j++)
 for (index k = 0; k < m.max[2]; k++)
 use(m[i][j][k]); // walk array with indexes
 for (int *p = m.start; p < m.end; ++p)
 use(*p); // walk array with pointer
}

The array int d[4][2], is initialized to have sequential values from 0 to 7:

int d[4][2];
void work() {
 for (index i = 0, n = 0; i < 4; i++)
 for (index j = 0; j < 2; j++)
 d[i][j] = n++;
 int sub3by2[][] = &d[1]; // same as &d[1 : 4]
 int middle2by2[][] = &d[1 : 3];
 int tab[] = &d[1][0]; // same as &d[1][0 : 2]
}

76 Array descriptors, tuples, and literals Chapter 3

Shown below in increasing address order:

d[0][0]: 0

d[0][1]: 1

d[1][0]: 2

d[1][1]: 3

d[2][0]: 4

d[2][1]: 5

d[3][0]: 6

d[3][1]: 7

The memory layout of the sub3by2[][] sub-array is:

sub3by2[0][0]: 2

sub3by2[0][1]: 3

sub3by2[1][0]: 4

sub3by2[1][1]: 5

sub3by2[2][0]: 6

sub3by2[2][1]: 7

The layout of the middle2by2[][] sub-array is:

middle2by2[0][0]: 2

middle2by2[0][1]: 3

middle2by2[1][0]: 4

middle2by2[1][1]: 5

The first two sub-arrays above have the same number of dimensions as their base
array. The tab[] subarray has a single dimension:

tab[0]: 2

tab[1]: 3

3.3 Array descriptor access restrictions

Array descriptors are value like objects, almost as if they were addresses, but in-
stead of specifying a single object in memory, they describe multiple objects and their
organization in memory, i.e. the indexing structure through which they are accessed.

The address of an array descriptor can not be obtained by using the address-of oper-
ator, &, with an array descriptor, such use obtains the address of the data that the ar-
ray descriptor refers to, i.e. the underlying array entries.

3.3 Array descriptor access restrictions 77

Array descriptors that are not initialized explicitly are initialized by the language to
a zero element array. Array descriptors can be declared in any context, other than as a
member of a structure or a union. Array descriptors can only be changed in a con-
trolled way. Their start, end, and max[] members can not be changed individually.

3.4 Restricted array descriptors

The array elements that the array descriptor refers to, and its start, end, and
max[N] members can only be accessed when the array descriptor is a local non-static
variable of a function. All other array descriptors: members of an object, static local
variables, or global array descriptors are restricted array descriptors. The only opera-
tions that can be performed on restricted array descriptors are:

 use as an argument to a function

 use as the return value of a function

 use as the source value in an assignment to another array descriptor

 use as the target of an assignment from another array descriptor

Copying a restricted array descriptor to a local non-static variable ensures that the
copy of the array descriptor can not be changed concurrently by another thread, or
even another function invoked by the same thread, because its address can not be ob-
tained. Forcing all accesses to occur through a non-static local array descriptor vari-
able allows for compiler optimization without concern for address aliases or concur-
rency aspects related to the array descriptor itself.

3.5 Restricted array descriptor accesses are atomic

Assignment to non-local array descriptors is performed in such a way that it occurs
atomically. Concurrent code referencing the array descriptor sees all of the old values
of its members, or all of their new values, not a combination of them.

The implementation of the atomicity of assignment and of fetching of restricted ar-
ray descriptors is platform dependent, see §1L.3 for the Intel/AMD x86/64, ARM 64
bit, and IBM POWER implementations. The performance characteristic of these op-
erations can be assumed to be highly optimized by the compiler, and is very close to
the performance of the memory operations that would be required if the operations
where not atomic, see §1L.3 for performance measurements.

The performance of fetching or storing local array descriptors with N dimensions
corresponds to the inline memory load or store operations of their underlying mem-
bers: start, end, max[0], … max[N].

Atomicity of non-local array descriptor accesses do not lead to deadlocks in their
implementations, for example, when two global array descriptors, a[] and b[], are

78 Array descriptors, tuples, and literals Chapter 3

assigned concurrently in separate threads as: a = b and b = a deadlock never oc-
curs, what is atomic is the individual fetching and storing of them, not the whole
combined fetch and store operations. The implementation of a = b; can be consid-
ered to be equivalent to the following pseudo code, without any function call over-
head, where t is a temporary local array descriptor:

t = b.atomic_fetch();
a.atomic_store(t);

3.6 Array and array descriptor indexing is checked

Indexed accesses to arrays and array descriptors are checked, either at run-time, or
at compile time. The example functions, above, have their indexed accesses checked
at compile time, invariants about the values of i, j, and k are used to determine, at
compile time, that all the array element accesses are safe.

Run time checks are performed when it is impossible to determine, at compile time,
under global compilation, if the array element accesses are safe. The compiler pro-
duces a warning when it generates run time checks as a reminder to the programmers
that they have not provided evidence that the access is always valid. For example in:

int rand_val(int array[][]) {
 return array[random_index()][random_index()];
}

An out of bounds memory access attempt causes an out of bounds exception. The
behavior of run time exceptions is explained in §14.33.

3.7 Arrays of arrays vs multidimensional arrays

Conceptually, C does not have multidimensional arrays, what it has is unidimen-
sional arrays. When multiple dimensions are required in an array, what is technically
declared are arrays of arrays. For example, int a[2][4] , declares a to be an array
with two elements, each one of those two elements is an array of four elements. This
technical and conceptual view is completely proper for C and it is the simplest way to
support multi-dimensional arrays in the C programming language.

It is important to emphasize that in COOGL the declaration int a[2][4], declares
a multidimensional array, in this case a two dimensional array. It behaves exactly as a
C array, for example the expression a[1] refers to the second subarray of 4 elements
within the a array. For all practical purposes there is no difference between both lan-
guages, the only difference is that in the context of array descriptors, a concept that
does not exist in C, when a is used in a context that requires an array descriptor to be
created by the compiler, for example to pass it as an argument to a function that re-
quires an array descriptor, the array is considered as a whole to derive and produce a
multidimensional array descriptor.

3.7 Arrays of arrays vs multidimensional arrays 79

It is important also to indicate that there is no such thing as array descriptors of ar-
ray descriptors. Multidimensional array descriptors are not implemented as arrays of
array descriptors. Jagged arrays, can be simulated in C with arrays of pointers that
point to arrays of various sizes, for example:

int a0[11], a1[22], *a[2] = {a0, a1};

Where accesses like a[0][10] and a[1][20] are valid and look like a two dimen-
sional array reference. Apart from an intellectual curiosity jagged arrays are not used
often. Syntactically they could be declared in COOGL as an array of array descrip-
tors:

int a0[11], a1[22], a[2][] = {a0, a1};

Note that unless a was a non-static local declaration array indexing expressions
such a[1][20] would cause a compilation error because the array descriptor a[1] is
a restricted array descriptor and can not be used in such an expression.

3.8 Array descriptor use in expressions

A non-static local array descriptor can be used in expressions to refer to sub-arrays
of fewer dimensions. For example:

int example(int a[], int u[][], int x[][][]) {
 int *b = a; // a stands for &a[0]
 int v[] = u[0]; // u[0] is a unidimensional sub-array
 int y[][] = x[0]; // x[0] is a two dimensional sub-array
 int z[] = x[0][0]; // x[0][0] is a unidimensional sub-array
}

3.9 Pointer arithmetic and array descriptors

Pointer arithmetic is only allowed if it is known, at compile time, that the pointer
points within an array, for this knowledge to be available, the compiler must be able
to determine, at compile time, that the pointer is associated with a specific array de-
scriptor. For example, the following code, which is unsafe C code, is safe COOGL
code because the bound check to avoid accesses past the array is inserted by the com-
piler:

large total_until_zero(int a[]) {
 large sum = 0; // add all values until a zero value is seen
 int *p = a;
 int v;
 while (v = *p++)
 sum += v;
 return sum;
}

The bound checking C11 code generated by the compiler is shown below. If the

80 Array descriptors, tuples, and literals Chapter 3

bound check fails a run-time exception is raised, see §14.33:

large total_until_zero(int *a, size_t a__max0) {
 int *auto__a__end = a + a__max0;
 large sum = 0; // add all values until a zero value is seen
 int *p = a;
 int v;
 while (v = (lang__bound_check(p, auto__a__end), *p++))
 sum += v;
 return sum;
}

If it is possible that a pointer at a specific code location, could refer to array ele-
ments within more than one array, a compilation error is produced, for example:

int example(bool use_a, int a[], int b[]) {
 int sum = 0;
 int *p = use_a ? a : b;
 int v;
 while (v = *p++) // error: unknown array bounds
 sum += v;
 return sum;
}

All such code can be corrected by using an additional local array descriptor to sat-
isfy this requirement, this simplifies the compiler and doesn't seem to be too burden-
some to require the programmer to address this.

3.10 Use of pointers based on array descriptors is always safe

Use of pointers based on an array descriptor are always safe, see §14, run time
checks are performed when it is impossible to determine, at compile time, if a pointer
is safe, as shown above.

Iterating over the array elements within an array or array descriptor, walking it for-
wards or backwards, through pointers or indexes (e.g. walking from 0 to max[0]),
does not introduce run time checks. For example:

large total(int a[]) {
 large sum = 0;
 for (int *p = a, *end = a.end; p < end; ++p)
 sum += *p;
 return sum;
}

Run-time checks are not required in this case because the array descriptor can not
be affected by any other code path. By construction array descriptors always refer-
ence valid memory, or if the array descriptor has not been initialized, it refers to a
dummy zero element array.

3.10 Use of pointers based on array descriptors is always safe 81

There is always an array element before and another one after every array, with the
exception of arrays within a struct, union, or a class struct see §7.6, which
must follow the structure layout of the C compiler. An array within a struct can not
have its address used to form an array descriptor unless the array descriptor is for a
subset of the array that guarantees that there is at least one extra element prior to the
array descriptor described sub-array and another one after it. In consequence, for ev-
ery array descriptor, objects at start-1, and at end always exist, they are either
properly constructed objects or uninitialized objects set to their deconstructed values,
see §14.22, dereferencing pointers whose values are start-1 or end is not unde-
fined behavior, it could be a programming error or it could be what the programmer
intended depending on what they are doing.

3.11 Functions that return array descriptors

Functions that return array descriptors, for example trim_space() receives an ar-
ray descriptor for a character array, and returns an array descriptor that refers to the
same memory but excluding and leading or trailing spaces. Note that the array de-
scriptor declarator for the unidimensional array descriptor, [], for the return value
goes to the right of the function’s argument list:

char trim_space(char buf[])[] {
 index first = 0, max = buf.max[0], last = max;
 for (; first < max; ++first)
 if (!libc.isspace(buf[first])) break;
 while (last > first)
 if (!libc.isspace(buf[--last])) break;
 return &buf[first : last + 1];
}

A function that returns a two dimensional array descriptor:

int d[4][2];
int middle2by2()[][] { return &d[1 : 3]; }

3.12 Implicit array descriptor for string literals

When a pointer to a character type is initialized to point to a string literal, an im-
plicit array descriptor is associated with the pointer, allowing pointer arithmetic
within the string literal according to the array descriptor:

char g() { char *p = "dog"; p += 2; return *p; }

3.13 Tuples

Tuples are a lightweight data aggregation construct, their principal use is in func-
tions that return multiple values. Functions that return a tuple value, variables that are

82 Array descriptors, tuples, and literals Chapter 3

tuples, and type definitions for tuple types are allowed. Tuple expressions are used to
form tuples and to extract values from tuples. Tuple declarations allow for the tuple
members to be initialized. A function that returns a tuple value, whether the tuple is
declared by a typedef or declared as part of the function declaration itself has the
members of the tuple as local variables that are used to built the value returned byt
the function. The value of a tuple is the value of its last member. All of this is shown
in the following example.

typedef tuple [int fd = -1, error_t err = libc.EINVAL] fderr_t;

fderr_t topen(char name[], int mode) {
 if (!name) return; // same as: return [fd, err];
 if (name[0] == '\0') return [-1, libc.ESRCH];
 if ((fd = libc.open(name, mode)) == -1)
 return [-1, libc.errno];
 return [fd, 0];
}

tuple [int fd = -1, error_t err = libc.EINVAL]
 topen2(char name[], int mode) return topen(name, mode);

void use() {
 tuple [int fd, error_t e] r = topen("file", libc.O_RDONLY);
 fderr_t fe = topen("file", libc.O_RDONLY);
 if (fe.error == -1) return;
 int x;
 error_t e;
 if ([x, e] = topen("file", libc.O_RDONLY)) return;
 fe = [x, e];
 assert(fe.fd == x && fe.err == e);
 [x, e] = [-2, 0];
 assert(x == -2 && e == 0);
 int a = 1, b = 2;
 [a, b] = [b, a]; // result unspecified, values not swapped
}

A function can be invoked with tuple values as part of the argument list, the func-
tion itself can specify its arguments with, or without tuples, the only requirement is
that all the arguments be passed and that the types match. For example:

void f(int x, error_t e){ ... }
void g(fderr_t fe){ ... }
void use() {
 fderr_t fe;
 f(fe); f(-1, libc.EINVAL);
 g(fe); g(-2, libc.ENOENT);
}

3.14 Literals 83

3.14 Literals

A literal declaration is a declaration of a compile time constant, its initialization ex-
pression must be a constant expression

lit int N = 100;
lit int NBPB = 8; // number of bits per byte
lit ularge ULARGE_MSB = 1uLL << (sizeof(ularge) * NBPB - 1);
lit double PI = 3.1415926535897932384626433832;

Note that in C const is used to indicate that a data item can not be modified, it is
not used to declare constants.

84 Array descriptors, tuples, and literals Chapter 3

[This page left blank to work around issue in LibreOffice that is causing an empty
blank page to be created in the next chapter in between its pages]

4 - Classes and inheritance

“The fundamental mechanism for decomposition in ALGOL
60 is the block concept. As far as local quantities are
concerned, a block is completely independent of the rest of
the program. … A block is a formal decomposition, or
“pattern”, of an aggregated data structure and associated
algorithms and actions. …”

“The notion of block instances leads to the possibility of
generating several instances of a given block which may co-
exist and interact, such as, for example, instances of a
recursive procedure. This further leads to the concept of a
block as a “class” of “objects”, each being a dynamic
instance of the block, and therefore conforming to the same
pattern.”

“An extended block concept is introduced through a “class”
declaration and associated interaction mechanism such as
“object references” (pointers), “remote accessing”, “quasi-
parallel” operation, and block “concatenation.”

-- Ole-Johan Dahl, Bjørn Myhrhaug, and Kristen Nygaard

COOGL unifies the notions of class and function. A class is a func-
tion, and a function is a class. Member functions are a simplified
form of nested functions.

4.1 Contract specification: vital, require(), and promise()

A class declared vital indicates that every object that could be created by the lan-
guage specification must be created, without any object being removed because of
various optimizations related to value objects. A function declared vital indicates
that its value must always be used, it can not simply be ignored, see §9.10 and §9.11.
If vital is used, it must immediately follow the functions declaration and prior to its
body or defer or redef keywords, see §4.6, §6.4, and §6.6.

A function, or a class, can include in its declaration a contract specification, an idea
borrowed from the Eiffel programming language. The requirements for the function
to be called appropriately, i.e. the requirements on the function's caller, can be option-
ally specified in a require(expression) specification, immediately following the
function's declaration (or vital if that is specified) and prior to the function's prom-

86 Classes and inheritance Chapter 4

ise() specification, if any, or otherwise prior to its body (or defer or redef key-
words). The promises made by the function or class to its caller can be optionally
specified in a promise(expression) specification after the require() specifica-
tion, if any, or otherwise after the function's declaration (or vital if that is speci-
fied), and prior to the functions body (or defer or redef keywords). The require-
ments and promises are the pre-conditions and post-conditions to the function invoca-
tion, or to the construction of an object. The expression must be true for a correct
execution, if they are not true a run-time exception is raised, see §4.2 for an example.
A compile time error might occur if it can be determined that the expression is al-
ways false. See §4.8 for contract specification details that relate to inheritance and
member function redefinitions.

4.2 Class declarations are function declarations

The class keyword is used for the declaration of a class. The fundamental data
structure abstraction mechanism in COOGL is the class. Use of struct is for C
language interfacing and traditional C style programming in COOGL.

A class declaration provides the data content of objects of the class type, and it is
also the function used to construct such objects. Class stack, shown below, allows
its user to pass the maximum stack capacity as an argument to the constructor, this is
an improvement over the earlier version shown in §1.3. The constructor sets *error
to a non-zero error value if the stack construction failed.

class stack(size_t max, int *error) promise(empty()) {
 priv int entries[];
 entries.create(max); // allocate space for stack §13.8
 priv int *sp = entries;
 *error = !sp ? libc.ENOMEM : 0; // ENOMEM error if no space
 return;

 pub void deinit() { entries.destroy(); } // free space §13.8
 pub bool empty() { return sp == entries; }
 pub bool full() { return sp == entries.end; }
 pub void push(int v) require(!full())
 promise(!empty()) { *sp++ = v; }
 pub int pop() require(!empty()) { return *--sp; }
 pub int top() require(!empty()) { return sp[-1]; }
 pub int count() { return sp - entries; }
}

4.3 Accessibility modifiers and member declarations

Variables declared with an accessibility modifier, i.e. pub, priv, or prot, are data
members of the class. Data members declared without static, are non-static data

4.3 Accessibility modifiers and member declarations 87

members, i.e. they are per object data. Data members declared with static are static
members of the class, a single instance of the static member data exists, irrespective
of the number of objects of the class that exist. Both entries and sp are non-static
data members of stack. Their lifetime is the lifetime of the object that contains
them. Local variables and arguments of the constructor function, such as max and
error, are not members of the object being constructed, they are not members be-
cause they were declared without an accessibility modifier.

A function argument can also be declared as a member, this allows for the common
case of matching constructor arguments and members to be unified as shown below
for this modified stack and its new member max.

class stack(priv size_t max, int *error) promise(empty()) {
 // ... rest unchanged ...
}

A public member is declared with the pub accessibility modifier, which makes it
accessible from outside of the class, the member is part of the class specification,
code that isn't part of the class code can access pub members. A private member is
declared with the priv accessibility modifier, which renders it inaccessible by any
code other than the class constructor and its member functions, priv members exist
only to implement the class functionality, for example entries and sp in stack
above. See §6.7 and §6.8 for more on accessibility modifiers. The bytes static data
member added to stack below:

class stack(size_t max, int *error) promise(empty()) {
 priv int entries[];
 entries.create(max);
 priv int *sp = entries.start;
 *error = sp ? libc.ENOMEM :
 (bytes += max * sizeof(int), 0);
 return;

 priv static size_t bytes = 0;
 pub void deinit() {
 if (entries.start != entries.end) {
 bytes -= entries.max[0] * sizeof(int);
 entries.destroy();
 |
 }
 pub static void info() {
 on ("memory used: "; bytes; '\n') print();
 }
 // ... rest unchanged ...
}

Total memory allocated internally for the entries of all stack objects is tracked in
bytes. The lifetime of the priv static bytes member is the lifetime of the class

88 Classes and inheritance Chapter 4

itself, which is the lifetime of the program execution, unless stack is in a dynami-
cally loaded module, in that case its lifetime starts at module load time and ends at
module unload time. The ability to have members is not a special feature of classes,
non-class functions can have them as well, this is explained in §4.15.

Members must be declared within the outermost block of a function or class decla-
ration, i.e. they must be declared within the block that is the class or function body;
member variables can also be declared as arguments. Members can not be declared
within compound statements, or within statements subordinate to other statements,
for example, within the statement that is executed subordinate to an if statement.

The notions of members and member declarations have complementary notions, lo-
cal entities and local declarations, also known as non-member entities and non-mem-
ber declarations. Local entities are the arguments and other entities that were declared
within a class, or a function, without pub, priv, or prot.

Access to a static member does not require an object of the type of the class to be
provided because the member is global to the class, it is not a member that is per ob-
ject. A static member can be accessed through the class type name or through an ob-
ject. Like any other member, access to static members is subject to its accessibility
modifier.

4.4 Object declarations and decl

An object declaration and its construction is a combination of the declaration syntax
and the function invocation syntax, as shown below for s. Note that when the con-
struction function requires arguments at object declaration time, the declaration must
be preceded by the decl keyword or by an accessibility modifier (if declaring a
member), to make it clear that it is a declaration, and not just a function invocation:

void test() {
 int error;
 decl stack(100, &error) s;
 if (error) libc.abort("s construction failed");
 s.push(1);
 assert(!s.empty());
 int v = s.pop();
 assert(s.empty() && v == 1);
 s.info();
 stack.info();
}

4.5 Member functions

A member function does not have access to non-member entities of the class con-
structor, for example, the error argument of the stack constructor function. The

4.5 Member functions 89

lifetime of local variables ends when the constructor function returns, whereas the
object, i.e. the entity formed by the members, continues to exist until the object is de-
structed, at a later time.

A non-static member function of a class can access all of its members, irrespective
of whether they are static or non-static. Non-static member functions operate on ob-
jects of the class type, they implicitly refer to the object's members. Non-static mem-
ber functions can only be invoked on objects.

Static member functions can only access static members of the class. When a static
member function is invoked from a function that is not one of its member functions,
it can be invoked using the class name or an object of the class. For example, in
test(), above, s.info() uses the s object to invoke the static member function
info() which makes that invocation indistinguishable from s.pop(), it doesn't syn-
tactically reveal that what is being invoked is a static member function. The second
invocation stack.info() uses the class name stack, instead of an object name.

The classname.member form of member access can only be used to access static
members. To access non-static members an object has to be specified. For example:

void test() { stack.pop() } // error: pop() requires an object

An object on which to pop()was not specified, resulting in a compilation error.

4.6 Introduction to inheritance and member function redefinition

Inheritance declarations in COOGL are member declarations with the inherit
modifier, the member is usually unnamed. For example, polar inherits from point:

class point(priv double x, priv double y) {
 pub int print() {
 int n = on ("x="; x; " y="; y) print();
 return lang.on_int_count_result(n, 4); // see §9.2
 }
}
class polar(double x, double y) {
 pub inherit point(x, y);
 priv double ro = libm.sqrt(x * x + y * y);
 priv double teta = libm.atan2(y, x);
 return;

 pub int print() redef {
 int n = point.print();
 if (n <= 0) return n;
 n = on (" ro="; ro; " teta="; teta) print();
 return lang.on_int_count_result(n, 4); // see §9.2
 }
}

90 Classes and inheritance Chapter 4

The polar class, inherits from point, it adds polar representation in radians. The
print() member is redefined to show both representations, note the redef above.

Use of point and polar:

int main() {
 decl point(1.0, 0.0) p1;
 decl polar(1.0, 1.0) p2;
 on ("p1: "; p1; " p2: "; p2; "\n") print();
}

The output is:

p1: x=1 y=0 p2: x=1 y=1 ro=1.414214 teta=0.785398

The term named inheritance refers to inheritance declarations that include an iden-
tifier, polar uses unnamed inheritance in its inheritance of point. Use of named in-
heritance is usually not required unless the inheritance causes name clashes. When-
ever there are name clashes, name disambiguation is required, named inheritance can
be used to resolve these ambiguities, as shown later in §6.13.

4.7 Access to redefined member functions

Note, above, that the redefined print() member function in polar is allowed to
access the original print() member function of point by specifying the class
name, point, and using the dot operator on it to select point(), i.e.
point.print(). Only member functions of the class that redefined the member
function are allowed to use this syntax, it can not be used to access redefinitions
made earlier by its ancestor classes. For example, colored_polar can not access
point.print():

class colored_polar(double x, double y, priv rgb_t color) {
 pub inherit polar(x, y);
 return;
 pub void print() redef {
 //point.print(); // error: point.print() inaccessible
 int n = polar.print();
 if (n <= 0) return n;
 n = on (" color="; color) print();
 return lang.on_int_count_result(n, 2); // see §9.2
 }
 pub void print_base() { polar.print(); } // valid
}

4.8 Contract specifications and member function redefinitions

The contract specification of a member function applies also to redefinitions of the
member function. A contract specification can only be specified for a member func-

4.8 Contract specifications and member function redefinitions 91

tion within the class declaration where the function was first declared, not in redefini-
tions of the functions in classes that descend from it. If a member function is de-
clared, deferred or not, without a contract specification, then subsequent redefinitions
of the member function can not specify a contract for them. This restriction in con-
tract specifications makes them very simple, it might be tempting to allow relaxing
the requirements and strengthening the promises of a redefined function, as in Eiffel,
but it is too complex to allow choosing which contracts to honor and which to ignore.

4.9 Restrictions on constructor calls to non-static member functions

While an object is being constructed, non-static member functions can not be in-
voked on it, with one exception, a void priv non-static member function can be in-
voked as part of the final return statement of the constructor, an exception made to
allow constructor related code to be in other functions see §4.11. The void priv
non-static member function can not reference explicitly this, see §4.13, within its
code and can not call other non-static member functions on the object with the excep-
tion of other priv non-static member functions that follow these same restrictions.
This restriction exists to ensure that member functions always operate on a fully
formed object, not a partially constructed object.

For the same reason, member functions can not be invoked from the destructor,
with a related exception for modularization of a large destructor, see §5.4. Also see
§6.14 for additional technical details about these restrictions and their relationship to
inheritance and when pre and post-conditions are evaluated.

This restriction on the constructor is relaxed for member functions of non-class
functions, a non-class function can invoke it's non-static member functions as long as
they do not access members that have not yet been constructed at the time the mem-
ber function is invoked, they are allowed to call other non-static member functions
that follow this same restriction.

4.10 Constructor organization

To facilitate reading a class declaration, its data members are, by convention, de-
clared towards the beginning of the class, unless intervening local variables and
other code are required for the efficient construction of the members.

Another style convention is for member functions to be declared towards the end of
the class, after a final return statement in the class constructor, which indicates
the end of executable code and its non-static data members. Any code or non-static
data members after the final return statement are thus unreachable and result in a
compilation error. Thus this final return is a reliable indication that no additional
constructor code follows after it, this stylistic convention assumes that there are no
goto statements that target labels beyond that final return. If such a baroque con-

92 Classes and inheritance Chapter 4

structor is required, the label ought to immediately follow the return which could
otherwise have been perceived as the final return statement. A better approach is to
move the bulk of the construction work to a void priv non-static member function,
as explained in section §4.11.

4.11 Complicated constructor and the ini() programming idiom

Classes with complicated constructors should declare a non-static member function
and invoke it from the class constructor to do within it most of the construction,
which can make the class declarations easier to read. As a convention such a member
function is named ini(). The actual construction of the non-static members of such
a class can not be deferred to the ini() function, thus there usually is some minimal
construction that occurs within the constructor function itself. For example:

class stack(size_t max, int *error) promise(empty()) {
 priv int entries[];
 priv int *sp;
 return ini(max, error); // use priv void non-static member
 // function, only allowed here §4.9
 priv void ini(size_t max, int *error) inline {
 entries.create(max);
 sp = entries.start;
 *error = !sp ? 0 : libc.ENOMEM;
 }
 // ... rest unchanged …
}

4.12 Member declarations and initialization are unified

The unification of class and function declarations allows for member declaration
and initialization to occur in one place, which reduces errors that occur in other lan-
guages where declaration and construction must be in separate places (e.g. C++).

The following Hanoi Towers class, towers, has three members of type stack,
which are declared and constructed based on towers ' n argument.

class towers(pub lit int n, int *error) {
 int e, e2, e3;
 priv stack(n, &e) left;
 priv stack(n, &e2) middle;
 priv stack(n, &e3) right;
 if (!e && !(e = e2)) e = e3;
 *error = e;
 if (e) return;
 for (int i = n; --i >= 0;) left.push(i);
 // ... some other code …
}

4.12 Member declarations and initialization are unified 93

Syntactically, when an object is being declared the argument list is specified as the
argument list of the constructor function, not as an argument list associated with the
name of the entity being declared (as is done in C++). Assuming the modified version
of class stack, below, which only sets *error if an error occurred:

class stack(size_t max, int *error) promise(empty()) {
 priv int entries[];
 entries.create(max);
 priv int *sp = entries.start;
 if (!sp) *error = libc.ENOMEM; // only set *error on error
 return;
 // ... rest unchanged ...
}

Then the towers class, which also only sets *error on errors, is more succinct:

class towers(pub lit int n, int *error) {
 priv stack(n, error) tower[3];
 if (*error) return;
 for (int i = n; --i >= 0;) tower[0].push(i);
}

When a declaration, such as the declaration of tower[3] above, declares more than
one object, the constructor function is invoked multiple times, once for each object, 3
times in this case. The expressions used as arguments to the constructor are also eval-
uated multiple times, once per invocation. In the play() function, below, variables
toy and world had to be declared in separate declaration statements because the ar-
guments for their construction are different. The ++x expression in the declaration of
the 7 towers, bunch[7], is evaluated once for each, so bunch[0] has 3 stacks of 1
element each, and bunch[6] has 3 stacks of 7 elements each. When constructing the
bunch[] array the constructor is invoked 7 times.

int play(int *e) {
 int x = 0;
 decl towers(7, &e) toy;
 decl towers(64, &e) world; // world end when solved at 1m/s
 decl towers(++x, &e) seven[7];
}

4.13 Object pointer: this

Each object has its own instance of the non-static class members. A non-static
member function operates on a specific object, the object on which it was invoked.
From a language implementation perspective a pointer to the object is passed as the
first argument to the non-static member functions. A member function can access the
members of its containing class directly, as if they were its local variables, which of
course they are not. Sometimes access to the implicit object pointer argument is re-

94 Classes and inheritance Chapter 4

quired, the keyword this is used to refer to it, it can be used as any other pointer
variable with the exception that its value can not be changed. The type of this is
constant pointer to the class type.

For example, some buggy code is invoking pop() on some empty stack, stack
has been changed, temporarily, to print this when that happens:

class stack(size_t max, int *error) promise(empty()) {
 // ... rest unchanged ...
 pub int pop() {
 if (empty())
 on ("pop() on empty() stack: this==0x";
 (cast(uintptr_t)this).hex(); "\n") print();
 assert(!empty());
 return *--sp;
 }
 // ... rest unchanged ...
}

The type of this within the non-static member functions of stack() is:

stack *const this

Assignment to this or taking its address is invalid, it causes a compilation error.

4.14 A stack iterator and the use of this in the class constructor

The class constructor, i.e. the class function, is not a member function of itself. A
class constructor can be a member function of a different class, i.e. when a class is
declared within another class. Nonetheless, when the class constructor invokes a
member function (see §4.9 and §4.11), the member function is invoked on the object
that the constructor is in the process of constructing.

A class constructor does not have a this variable that refers to the object that is be-
ing constructed. A class constructor only has a this variable when the class is a non-
static member function of another class, in that case this does not refer to the object
being constructed, it refers to another object on which the constructor was invoked as
a member function. For example, in class iterator, a non-static member of stack:

4.14 A stack iterator and the use of this in the class constructor 95

class stack(size_t max, int *error) promise(empty()) {
 // ... rest unchanged ...
 pub int get(size_t i) require(i < entries.max[0])
 { return sp[i]; }
 pub class iterator {
 priv size_t ix = count();
 priv stack *stk = this; // this' type is: stack *const
 pub bool end() { return ix == 0; }
 pub int get() { return stk->get(--ix); }
 }
}

The iterator constructor requires a stack object to be invoked on, as shown in
the declaration of itor below:

int average(stack *s) {
 int count = s->count();
 if (count == 0) return 0;
 large sum = 0;
 decl s->iterator itor;
 while (!itor.end())
 sum += itor.get();
 return cast(int) (sum / count);
}

The type iterator, a member class of stack, is invoked on the *s object to con-
struct the itor object, during itor 's declaration: decl s->iterator itor; . A
stack object must be provided to invoke iterator on, because it is a non-static
member function of stack, iterator needs access to this to keep a copy of it in
its stk member variable for later use by iterator 's members.

The mandatory use of decl in the declaration of itor makes it easier to identify it
as a declaration than if the decl keyword was not required. Particularly if the expres-
sion that resulted in the stack object on which iterator was invoked was a much
more complicated expression.

In C, the name of a function stands for a function pointer to it, using the function
name, by itself, i.e. without parentheses, does not result in the invocation of the func-
tion, it results in the address of the function, a value. For non class functions the same
rule applies in COOGL. For class function invocations, i.e. the invocation that is part
of an object declaration, the use of parenthesis is not required, unless the constructor
invocation requires arguments. Thus, the declaration of itor did not require paren-
theses to indicate that iterator was a function to be invoked to construct the object.
In contexts other than the type used in a declaration, the class name stands for a class
literal value, a value that refers to a type that can be used for generic programming.
For example, when type arguments are used, the class name stands for a type, see
§11.3.

96 Classes and inheritance Chapter 4

4.15 Functions as degenerate types and nested member functions

The fundamental difference between a class as a function and a traditional func-
tion, is that a class as a function defines a new named type, a type that can be used
to declare variables or dynamically allocate objects. A traditional function does not
introduce a new named type that can be used in such a way. Nonetheless, a traditional
function does introduce a new named scope, its static and lit members can be
referenced from outside the function, see §7.8. A traditional function can be thought
of as a degenerate type for a short lived object that doesn't need to exist beyond the
time of its construction. The type is made from the member fields declared within the
function, just as if it were a class. When a traditional function is invoked it can be
thought of as if the memory for the object was allocated on the run-time stack, at
function return time the object is destroyed and the memory on the run-time stack be-
comes available for reuse.

The non-static member functions of a non-class function don’t have access to the
underlying object through a this variable. A pointer to the object is passed to them
with the same calling convention as when non-static member functions of a class are
invoked, but the object itself is not accessible explicitly through this.

A member function declared within another function (i.e. nested within it) can ac-
cess the outer function's members. Thus member functions nested within another
function, in COOGL, are no different than regular member functions. Member func-
tions of other functions are similar to nested member functions in other languages.
Member functions of another function are allowed access only to members of the
function that directly contains them. In this respect they are very different than the ar-
bitrarily nested functions of ALGOL68 and Pascal, where any variable or function in
scope can be accessed, whether the variable or function is within the immediately en-
closing function or within another function that directly or indirectly encloses that
function.

Support for arbitrarily nested functions with access to all the state of all of the en-
closing functions is of questionable value, it can make the amount of code that might
alter the local state of a function much larger than the function's code, verifying the
correctness of the function requires a careful examination of all of the functions
nested within it to determine their hidden shared state dependencies.

The nested member functions of COOGL are simpler than nested functions in those
languages, shared state is restricted to the function's members, and only one level of
nested functions can access them. Their implementation is also much simpler, it is
identical to the class member function implementation.

A common use of nested member functions is to hide functions used only to aid in
the implementation of a function, even when no data is shared through members be-
tween them, for example:

4.15 Functions as degenerate types and nested member functions 97

void rotate(byte a[], size_t n) { // rotate n bytes to the end
 size_t size = a.max[0];
 assert(n <= size);
 priv void reverse(byte b[]) {
 for (byte t, *first = b, *last = b.end - 1;
 first < last; ++first, --last)
 t = *first, *first = *last, *last = t;
 }
 reverse(a, n);
 reverse(a + n, size - n);
 reverse(a, size);
}

The constrained lifetime of a function call makes its object allocation and dealloca-
tion no different than the run time stack management required to allocate and free
space for local variables. The overheads of local variables whose addresses are
passed to a function, and of function objects on which member functions are invoked,
is the same. If more than one local variable needs to be modified by another function
it is more efficient to make them members instead of passing multiple pointer argu-
ments.

Passing a few small (e.g. pointers, integers, floating point values, etc.) variables by
value and returning their new values in a tuple can be faster in some circumstances,
particularly on modern systems with their large register and dedicated register sets
(integer registers versus floating point registers) and their calling conventions that al-
low passing several values in registers and returning several values in registers. From
a programming cleanliness perspective, functions are more easily understood, when
arguments and tuples are used, instead of arguments that contain pointers where val-
ues are to be returned or when members are used.

4.16 Functions with default argument expressions

Function argument declarations can include an initialization expression, a default
argument value, used if the argument is not provided at function invocation time. The
expression is not restricted to a compile time constant expression, it can make use of
the values of arguments that appear before it in the argument list. For example, a
memory allocation function that returns an array descriptor that refers to the memory.
The memget() function allows for optional specification of an alignment require-
ment, its default value is computed based on the the size argument:

char memget(size_t size, bool cached = true, align =
 size >= sizeof(large) ? sizeof(large) :
 size >= sizeof(int) ? sizeof(int) :
 size >= sizeof(short) ? sizeof(short) : 1)[] {...}

The order of evaluation of argument expressions is not specified by the language,

98 Classes and inheritance Chapter 4

with the exception of omitted optional arguments and the default argument expres-
sion, only in that case are the depended upon argument expressions evaluated prior to
the omitted default argument expressions that depend on it. Invocations of a function
that have more than one default argument can only omit the arguments from right to
left, for example:

char p[] = memget(16, true);
char q[] = memget(16, , 1); // error: syntax error

See §11.3 for optional arguments and generic programming.

4.17 Stringify operator #

The #argument expression can be used to direct the compiler to create a string
with the text representation of the expression that produce the value of argument,
stringifying can only occur in the default argument of a function. For example:

void assert(bool expr, char msg[] = #expr,
 char file[] = lang.file, int line = lang.line) {
 if (!expr) assert_failed(msg, file, line);
}

For another example, puts_if(expr), see §17.

5 - Construction, assignment, and destruction

“A data structure, its internal linkings, accessing
procedures and modifying procedures are part of a
single module. … The formats of control blocks used in
queues in operating systems and similar programs
must be hidden within a control block module. It is
conventional to make such formats the interfaces
between various modules. Because design evolution
forces frequent changes on control block formats such
a decision often proves extremely costly. ... It is almost
always incorrect to begin the decomposition of a
system into modules on the basis of a flowchart. We
propose instead that one begins with a list of difficult
design decisions or design decisions which are likely
to change. Each module is then designed to hide such
a decision from the others. Since, in most cases, design
decisions transcend time of execution, modules will not
correspond to steps in the processing.”

-- D. L. Parnas, December 1972

COOGL provides execution control, through member functions,
when an object is constructed, initialized from another object, initial-
ized by default, assigned, and destructed. The relevant member func-
tions are introduced briefly in the first sections of this chapter, the fi-
nal sections of this chapter revisit these member functions in the con-
text of a string class example while describing other details of
them.

5.1 Value like objects

A value-like object is an object that is both initializable and reinitializable. An ob-
ject that can be initialized at declaration time from another object of the same type is
said to be initializable. Initialization is a complementary form of construction. An ob-
ject that has been previously constructed that can be reinitialized, i.e. assigned, from

100 Construction, assignment, and destruction Chapter 5

another object of the same type is said to be reinitializable.

Initialization of an object from another object also occurs when:

 an argument to a function is initialized from another object of the same type;

 the value returned by a function is initialized from a return expression.

The fundamental types (e.g. char, int, float, etc.) are value like, for example:

int factorial(int n) {
 assert(n >= 0);
 int v = n; // v initialized with value of n
 while (--n >= 2)
 v = v * n; // v reinitialized with value of v * n
 return v; // return value initialized with value of v
}
void use(int x) {
 // f initialized to value returned by factorial(x)
 // argument n of factorial initialized with x
 int f = factorial(x);
}

Structures and unions are also value like, irrespective of the type of their members,
they can be initialized and reinitialized.

Arrays are not value-like, an array can not be: initialized from another array, passed
by value, returned as a function value, or assigned to another array. But an array that
is a member of a structure or union is initialized and reinitialized as part of the initial -
ization and reinitialization of a structure or union that contains them.

Pointers and array descriptors are value like. For pointers the value that is value-
like is the pointer not the memory that the pointer points to. Similarly, for array de-
scriptors, the value that is value-like is the description and organization of the mem-
ory that the array descriptor refers to, not the memory itself, so when an array de-
scriptor is assigned to another one, or when passed as an argument to a function, etc.
the underlying memory that the array descriptor refers to doesn't change. For exam-
ple:

void example(int a[]) {
 int v = 0;
 decl int(++v) positive[10];
 v = 0;
 decl int(--v) negative[10];
 negative = positive; // error: array assignment is invalid
 int p[] = positive;
 int n[] = negative;
 n = p; // n and p both refer to positive[],
} // negative[]’s values don’t change

5.2 Abstract classes, interfaces and deferred member functions 101

5.2 Abstract classes, interfaces and deferred member functions

The following concepts are introduced informally in this section. They are used in
subsequent sections, they are explained in detail in chapter §6, the following brief de-
scriptions are adequate for now.

An abstract class is a class that is not allowed to be used to declare objects of
its type, pointers to objects of its type are allowed, it is meant to be used as the base
class for other classes, see §6.1. Inheritance from a class, abstract or not, is specified
with an inherit declaration.

An interface is a collection of member functions, very similar to a class declara-
tion, other interfaces and classes can choose to provide the interface, see §6.2. An in-
terface can not declare non-static data members. The declaration that a class, or an in-
terface, provides the functionality of an interface is specified with an is declaration.
The use of inherit and is is not interchangeable, this makes clear at the declara-
tion location the nature of the entity being inherited, i.e. a class (abstract or other-
wise), or an interface, respectively. An interface can not be used used to declare
objects of its type, pointers to objects of its type are allowed to be declared. A class or
an interface that specifies another interface with an is declaration is said to provide
the interface.

Interfaces and abstract classes are a specialized form of class declaration, with vari-
ous restrictions for the purpose of preventing the complexity that arises from uncon-
strained multiple-inheritance as occurs in C++.

A deferred member function is a member function whose implementation is not
provided, defer; is specified instead of the function’s body, see §6.4. A class with
deferred member functions must be declared as an abstract class. The deferred
member function might be declared within it, or inherited by it from another abstract
class, or the deferred member function being a member of the class because it was
part of an interface that the class provides, directly, or indirectly by providing an in-
terface. If all the deferred member functions were obtained by the class through in-
heritance or by providing an interface, and they are all actually implemented by the
class, then the class doesn't have to be declared as an abstract class.

5.3 Destructor, the deinit() member function

Inheritance is presented fully in chapter §6. Inheritance is used informally in the
following sections. Object deinitialization is provided by implementing the
deinit() member function. All classes that don’t explicitly inherit from another
class inherit implicitly from class void, the signature for deinit() comes from it:

pub abstract class void {
 pub void deinit() defer;
}

102 Construction, assignment, and destruction Chapter 5

The deinit() member function is special, if it is not implemented by the program-
mer, it is generated by the compiler automatically, and even if implemented by the
programmer, some additional code might still be generated at the end of it by the
compiler, see §5.12.

5.4 Destructor can not call non-static member functions

The destructor is not allowed to make use of non-static member functions, with the
exception of single call to a priv void non-static member function which must be
invoked as the first statement of the destructor. The priv void non-static member
function can not reference explicitly this within its code, and can not call other non-
static member functions with the exception of priv non-static member functions that
follow these same restrictions. The relaxation of the restriction is to allow for the
deinit() member function to have some of its code modularized into various non-
static member functions that might be required for other destruction purposes. These
restrictions also apply to init_deinit() and to reinit_deinit(), see §5.8.

The promise(expression) post-condition of the constructor is allowed to call
member functions because the object is fully formed when the constructor returns,
which is the time at which the promise() expression is evaluated. The re-
quire(expression) pre-condition expression of the destructor is allowed to in-
voke member functions because the object is still well formed prior to its destruction.

See §6.14 for additional technical details about these restrictions, and their relation-
ship to inheritance and when pre and post-conditions are evaluated.

5.5 Brief introduction to namespaces

A namespace is an outermost declaration of a named scope within which other dec-
larations can be made, its purpose is to reduce the number of names introduced into
the global name space. Namespaces are open in the sense that declarations can be
added to a namespace from different locations in a source code file and from multiple
source code files with the extend namespace , see §8.7, syntax shown below. In the
code that follows, in §5.6, various interfaces are declared within the lang namespace
which is where language related declarations are located.

5.6 Default construction, init_default() static member function

Classes that support the ability of being initialized by default, i.e. without a value
being specified, must provide the defaultable() interface and implement the
init_default() static member function:

5.6 Default construction, init_default() static member function 103

extend namespace lang {
 pub interface defaultable(genre void type) {
 pub static void init_default(type raw *to) defer;
 }
}

This interface is a generic interface, see §11, its member function’s arguments are
based on a type specified as an argument to the interface. The type of the to argu-
ment of init_default() is type raw *, is a pointer to the raw object. A pointer
to raw memory is a pointer that refers to memory that has not yet been initialized, it
does not refer to a fully formed object. Calling non static member functions through
the to pointer is invalid. Section §5.13 describes pointers to raw memory.

5.7 Value classes, init() and reinit() and member functions

Objects of a type that implement the interface initializable are almost value-
like in so far as initialization from other objects is concerned. For an object to be
reinitializable (i.e. assignable), they also need to implement the reinitializable
interface.

extend namespace lang {
 pub interface initializable(genre void type) {
 pub void init(type raw *to) defer; // init to from this
 pub void init_deinit(type raw *to){// redef to optimize
 this->init(to);
 this->deinit();
 }
 }
}

These interface are generic interfaces see §11, its member function’s arguments are
based on a type specified as an argument to the interface.

extend namespace lang {
 pub interface reinitializable(genre initializable type) {
 pub void reinit(type *to) defer;
 pub void reinit_deinit(type *to) { // redef to optimize
 if (this == to) return;
 this->reinit(to);
 this->deinit();
 }
 }
}

5.8 Optimization with init_deinit() and reinit_deinit()

The compiler invokes the compound member functions init_deinit() and

104 Construction, assignment, and destruction Chapter 5

reinit_deinit() whenever possible instead of invoking init() followed by
deinit() or reinit() followed by deinit(), respectively. The implementations
of init_deinit() and reinit_deinit() are shown above. The programmer can
redefine these member functions for optimization purposes, if required.

5.9 The lang.value interface

The interface, lang.value, is used by value-like classes:

extend namespace lang {
 pub interface value(genre void type) {
 pub is initializable(type);
 pub is reinitializable(type);
 pub is defaultable(type);
 }
}

Class point, a point in 2 dimensional space, is a value-like type:

class point(pub float x, pub float y) {
 pub is lang.value(point);
 pub void init(point raw *to) redef { to->x = x; to->y = y;}
 pub void reinit(point *to) redef { to->x = x; to->y = y; }
 pub static void init_default(point raw *to) redef {
 to->x = to->y = 0.0;
 }
}

As described in §6.6, the redef keyword must be used when an inherited member
function is redefined, as shown above in the redefinitions of init(), reinit(), and
init_default().

5.10 Member functions specified by lang.value

The member functions specified by lang.value are summarized below for refer-
ence (after expanding in place the interfaces that lang.value is based on):

pub interface value(genre void type) {
 pub static void init_default(type raw *to) defer;
 pub void init(type raw *to) defer;
 pub void init_deinit(type raw *to) defer;
 pub void reinit(type *to) defer;
 pub void reinit_deinit(type *to) defer;
}

Note that classes get deinit() from class void, not from lang.value.

5.11 A string class example 105

5.11 A string class example

The following sections implement a simple string class, it doesn't use generic
programming for the type of its characters to support strings of either char or unic
characters. See §1L.6 for a similar class, str, the COOGL library generic string.

class string(char cstr[]) {
 pub is lang.value(string); // strings are values
 index size = cstr.max[0];
 if (size > 0 && !cstr[size - 1)) --size; // don't copy '\0'
 priv index base = 0; // [base, base+len) is value
 priv index len = size;
 priv char buf[];
 if (size > 0) {
 buf.create(size);
 assert(buf.start); // no error handling for now
 libc.memcpy(buf, cstr, size);
 }
 return; // continued below

5.12 Object deinitialization: deinit()

 The function void deinit() is the class destructor, string 's deinit() is:

 pub void deinit() redef { buf.destroy(); } // continued below

Object deinitialization occurs, i.e. the deinit() function is invoked, when:

 A scope where a non-static object was declared as a local variable is exited.
This includes objects passed by value as arguments to functions, which are
deinitialized when the function returns.

 An object is a member of another object and that object is being deinitial-
ized.

 The execution of an expression that includes objects returned as the values of
functions has been fully evaluated, these temporary value objects are deini-
tialized after the full evaluation of the expression.

 Functions are classes, thus regular non class functions can also have have a
deinit() member function. When a non class function, that has a
deinit() member function returns, its deinit() member function is in-
voked. The object implied by the non class function's non-static member
variables is destroyed at function return time. For more about the role of a
non class function's deinit() see §5.23.

 Invoked explicitly, this usually only occurs when an object that was allocated
from a memory heap is being destroyed, e.g. internally as part of the imple-
mentation of the destroy() member function.

106 Construction, assignment, and destruction Chapter 5

 The destructor can also be invoked explicitly for a member object of a class.
This is only valid from the destructor of the class whose member is being deini-
tialized, in that case, the compiler omits the compiler generated object destruc-
tion that it would otherwise generate as part of the destructor of a class. Com-
piler generated deinit() invocations are done in the reverse order of the mem-
bers construction, this is an order determinable at compile time, i.e. an order that
is not affected by the flow of control within the constructor. A constructor can
not return leaving some of its members unconstructed, doing so causes a compi-
lation error.

 If the object is a global or static variable, when the program terminates normally,
i.e. through a return from main() or an invocation of libc.exit().

 At module unload time, if the object is a global or a static variable, when the
module that declared it is unloaded.

The compiler synthesizes the deinit() function if an implementation is not pro-
vided and if any data member of the class needs to be deinitialized. The synthesized
deinit() deinitializes its members in the reverse order of the order in which they
were declared. If the deinit() function is provided, but it doesn't explicitly deini-
tialize some of its non-static members, then the ones that were not explicitly deinitial-
ized have their deinitialization synthesized, the synthesized deinitialization occurs af-
ter all user provided code in the deinit() function has been executed.

5.13 Pointer to raw memory

A pointer to raw memory, for example the to argument of init_default() (see
§5.6) is a pointer to the raw memory of an object, prior to being initialized, it does
not refer to a fully formed object. Calling non static member functions on a pointer to
a raw objects is not allowed.

5.14 Some string operations

String operations shown below can be used to: obtain its length; trim n characters
from the start or the end; find the first occurrence of a character, from the start or
from a specified start index, or the last occurrence backwards from the end or from
a specified last index; and relationally compare against another string. To effi-
ciently support trimming, and later other operations such as appending and prepend-
ing, a subset of the buf[] array descriptor is described by [base, base + len), it
specifies the current value of the string.

5.14 Some string operations 107

 pub index length() { return len; } // string
 pub index trim(index n) {
 if (n < len) return base += n, len -= n;
 return base = len = 0;
 }
 pub index trim_end(index n) {
 if (n < len) return len -= n;
 return base = len = 0;
 }
 pub int compare(string *other) { // this vs other <0, 0, >0
 size_t min = len < other->len ? len : other->len;
 int result = libc.memcmp(&buf[base],
 &other->buf[other->base], min);
 if (result != 0 || len == other->len) return result;
 return len < other->len ? -1 : 1;
 }
 pub index find(char c, index start = 0) {
 string(&buf[base : base + len], /*contruct on:*/ to);
 if (start >= len) return -1;
 if (start < 0) start = 0;
 for (index i = base + start; i < len; ++i)
 if (buf[i] == c) return i - base;
 return -1;
 }
 pub index find_last(char c, index last = len - 1) {
 if (last < 0) return -1;
 if (last >= len) last = len - 1;
 for (index i = base + last; i >= base; --i)
 if (buf[i] == c) return i - base;
 return -1;
 } // continued below

5.15 Initialization constructor: init()

The init() member function's purpose is to allow the value of an existing object,
this, to be used to initialize an unconstructed object, whose address is provided in
the to argument. The implementation of init() for the string class follows:

 pub void init(string raw *to) redef { // string
 string(&buf[base : base + len], /*contruct on:*/ to);
 } // continued below

The init() member function is invoked implicitly when:

 an existing object is used to initialize another object at declaration time, this
includes the case of function argument initialization at function call time; or

an existing object is returned as the value of a function and it is used to initialize an-

108 Construction, assignment, and destruction Chapter 5

other object, possibly a temporary object managed by the compiler.

The string() constructor is invoked explicitly by init() to do its work, note
that an additional argument to string() is specified, the string declaration only has
one argument, but two arguments are specified, the second one, to, is used to specify
the memory that is to be used by string() to construct the object on.

The type of to is string raw *, raw means that the memory for the object has
not been initialized, the object can't be used as an initialized object until all of its data
members have been initialized, if a function needs to be invoked to aid in the initial-
ization, then the argument of that function must also be a pointer to the raw type.
Non static member functions can not be invoked on a raw object pointer.

To ensure safety, the compiler prevents the memory that to references from being
treated as an initialized object, for example by preventing the pointer to be given to
other functions through a non-raw pointer, unless it can prove that the object at that
point has become fully initialized. Access to the object's non-static data members
within init() is controlled, they can not be accessed unless the compiler can deter-
mine that they have already been initialized. Non-static data members can be explic-
itly initialized by invoking, init(), or init_default() on them. Similarly, mem-
bers that are pointers or array descriptors can not be dereferenced or copied unless
they have been initialized.

When an object's declaration has an initializer expression the class constructor in-
vocation can not specify constructor arguments, for example:

void example() {
 decl string("hello") s; // string() invoked
 string t = s; // s->init(&t) invoked
 decl string("wrong") e = s; // error
}

5.16 Brief preview of strings of generic value types

Generic classes are presented in §11. Briefly, a generic class, interface, or function,
has an argument list that consists of two sub-lists. The first sublist is a list of type ar -
guments, i.e. arguments declared starting with the genre keyword; the second sublist
is the traditional argument list of the class constructor or function.

A generic string class, for example str below, that allows the base character type
to be specified when an object is declared, and that allows an object to be initialized
from another object, must specify the generic type arguments when an object is ini-
tialized from another object, it must not specify non-generic constructor arguments
(as shown in the incorrect declaration of e in example() below).

The first argument, type, of the generic str class is a type argument, it must im-
plement the lang.value interface, i.e. it must be value-like:

5.16 Brief preview of strings of generic value types 109

class str(genre lang.value type, type val[]) { ... }
void example() {
 decl str(char, "hello") s; // str() invoked
 decl str(char) t = s; // s->init(&t) invoked
 decl str(char, "wrong") e = s; // error
}

5.17 Object slicing along incorrect type boundaries is not allowed

Initialization of an object is allowed only if init() exists, and only from another
object of the same exact type. Initialization from an object whose type inherits from
the object's type is not allowed. If the type is not knowable at compile time, the com-
pilation fails. There is no notion of object slicing along incorrect type boundaries in
COOGL. Object slicing (for example in C++) occurs when an object whose type de-
scends from another type is used to initialize, or to be assigned to, an object of an an-
cestor type. If such operations were allowed information would be lost, at a mini-
mum, and even worse, the information that is not lost might be invalid.

In general, objects are not passed by value or returned as the value of functions, in-
stead pointers to them are passed, preventing object slicing is not particularly burden-
some. Most objects that are passed and returned by value are simple value objects or
handle objects for which this restriction doesn’t pose a problem.

5.18 Pseudo constructors

The integer() function, together with an implicit invocation of init(), can be
used as a pseudo-constructor to construct a string from an int, as shown in the
example() function below:

 pub static string integer(int i) { // string
 char m[sizeof(int) * 3], *p = m + sizeof(m);
 do
 *--p = i % 10;
 while (i /= 10);
 return string(p);
 } // continued below

Code that makes use of init():

void example() {
 string("hello") s; // string("hello") invoked
 string t = s; // init() invoked
 string u = string.integer(7); // init() might be invoked
}

When integer(7) is invoked, it returns as its value the object constructed by
string(p). Then init() is invoked on that object to perform the initialization of

110 Construction, assignment, and destruction Chapter 5

u, the temporary object returned by integer(7) is then destroyed. That object con-
struction and its immediate destruction is wasteful. The compiler is allowed, by the
language definition, to remove temporary objects that are used to initialize another
object and are then immediately destructed. A class whose objects are precious and
should not be subject to this optimization should be declared vital, see §9.11.

When a function returns an object of a user defined class by value, the location
where the object is to be placed is given as a hidden argument to the function. In this
case the address of u is given to integer() which then uses that address as the raw
memory onto which to construct the object constructed by the return string(p)
statement. Thus, in example() above, init() is not actually invoked to initialize u.

5.19 Default construction

Default construction for string:

 pub static void init_default(string raw *to) redef { // string
 char empty[];
 string(empty, to);
 } // continued below

The declaration of empty uses init_default():

string empty; // init_default()
string("hi") hi; // constructor, string(), invoked
string ciao = hi; // init() invoked

5.20 Object reinitialization: reinit()

The function void reinit(type *to), is invoked on an object when it is to be
assigned to another object that has been previously initialized. Continuing with the
string example:

 pub void reinit(string *to) redef { // string
 if (this == to) return; // Assigning to itself.
 to->deinit(); // This code is incorrect
 init(to); // for assignment to itself.
 } // continued below

Assignment to another object is an operation on the source object, the argument to
reinit() is the destination object, the object being assigned to. This makes the sig-
nature of reinit() similar to the signature of init(). An example use of init():

void example() {
 string("hello") h; // initialized by: string()
 string("world") w; // initialized by: string()
 string t = h; // initialized by: h->init(&t)
 t = w; // reinitialized by: w->reinit(&t)
}

5.20 Object reinitialization: reinit() 111

Assignment to an object is allowed only if void reinit() exists, and only if both
objects are of the same exact type. If the type is not knowable at compile time, the
compilation fails. There is no notion of object slicing in COOGL.

5.21 Optimizing assignment of returned values: reinit_deinit()

In the assignment to pin, below, example() passes the address of the raw memory
for a temporary object where number() is to store the object returned by it. The as-
signment of that temporary object to pin, is immediately followed by the destruction
of the temporary object:

string number(int n) {
 lit size_t N = sizeof(int) * 8 / 3 + 5; // overestimated
 char buf[N], *p = &buf[N];
 uint u = n > 0 ? n : -n;
 *--p = 0;
 // not assert(p >= &buf[1]), 1 digit + 1 '-' (if n < 0)
 for (; assert(p >= &buf[2]), u > 0; u /= 10) {
 *--p = u % 10;
 if (n < 0) *--p = '-';
 return string(buf);
}
string pin;
void example(int n) { pin = number(n); }

The construction of the temporary object, its use as the source of the assignment to
pin, and its immediate destruction is a source of overhead that can be minimized, if
required, by implementing reinit_deinit(). The reinit_deinit() member
function will be invoked, if present, when it would have invoked from-
>reinit(to) immediately followed by from->deinit(). For string, below, it is
faster to take over the source value being assigned than to make a copy of it followed
by the destruction of the source object:

 pub void reinit_deinit(string *to) redef { // string
 to->base = base;
 to->len = len;
 to->buf = buf;
 } // continued below

5.22 Optimizing initialization from returned values: init_deinit()

In the initialization of x, below, example() passes the address of the raw memory
for a temporary object where string.integer(n) is to store the object returned by
it. The assignment of that temporary object to x, is immediately followed by the de-
struction of the temporary object:

void example(int n) { string key = numer(n); }

112 Construction, assignment, and destruction Chapter 5

The construction of the temporary object, its use as the source of the assignment,
and its immediate destruction is a source of overhead that can be minimized, if re-
quired, by implementing reinit_deinit(). The reinit_deinit() member func-
tion will be invoked, if present, when it would have invoked from->reinit(to)
immediately followed by from->deinit(). For string, below, it is faster to take
over the source value being assigned than, to make a copy of it followed by the de -
struction of the source object:

 pub void reinit_deinit(string *to) redef { // string
 to->base = base;
 to->len = len;
 to->buf = buf;
 } // continued below

5.23 Regular function's deinit() and retval

Regular functions (i.e. non-class functions) can also have a deinitialization func-
tion, i.e. a deinit() member function, which is a convenient place for cleanup code
common to various return paths, it is invoked when the function returns.

The retval keyword is a compiler managed local variable, accessible within the
deinit() member function of a non-void regular function, and within a prom-
ise() contract of the function. It is a pointer to the value returned by the function.
Its type depends on the type of the value returned by the function. For example:

error_t work() {
 pub void deinit() {
 // the type of retval here is: error_t *retval;
 }
}

Extending the class stack with a trypush() function:

extend class stack {
 pub bool trypush(priv int value) {
 priv int cnt = count();
 priv stack *stk = this;
 if (full()) return false;
 push(value);
 return true;
 priv void deinit() { assert(!stk->empty() &&
 (!*retval && stk->full() &&
 cnt == stk->count() ||
 value == stk->top() &&
 cnt + 1 == stk->count()));
 }
 }
}

5.23 Regular function's deinit() and retval 113

The retval keyword is similar to the this keyword in the sense that it is known
and managed by the compiler. The value of retval can not be changed, e.g. to make
it point to something else, nor can its address be obtained through &retval. The
trypush() function, below, pushes value if there is space on the stack. It returns
true to indicate that the value was pushed, false otherwise.

The deinit() of trypush(), above, does various postcondition checks to test the
operation. For deinit() to be able to reference stk, cnt, and value, they must be
members of trypush(). For deinit() to reference the stack object that try-
push() operates on it is saved in the stk member. Nested functions, including their
promise() post conditions, can only access the members of their directly enclosing
function.

The retval keyword refers to the address of the value being returned by the func-
tion, the value being returned should not be affected because that usually makes the
code obscure and hard to follow, but the language doesn’t mandate that it not be
changed. The value returned might be an object, it is possible to further affect the ob-
ject. Affecting the returned value is discouraged, it should only be done for sound
systematic reasons, for example error injection testing.

5.24 Object arguments and return values

C allows struct and union variables to be: assigned, initialized, passed by value
as arguments, and returned as the value of a function. The meaning of these opera-
tions is very simple, the underlying memory is copied, it makes the C type system
more orthogonal. Copying structures through raw memory copies can make no logi-
cal sense, for example a structure that can be within a list with previous and next
pointers as part of the structure.

Performing raw memory copies by default on objects of a user defined class type,
is inappropriate. Object copying related to these operations is under programmer con-
trol, by implementing the lang.value interface, and providing the member func-
tions init() and reinit(). If raw copying is appropriate, it can be implemented in
those functions, but COOGL does not make that the default behavior.

5.25 Literal members

A literal member, i.e. a literal declared within a class as a member, is implicitly a
static member. Literal members can not be redefined through redef.

114 Construction, assignment, and destruction Chapter 5

[This page left blank to work around issue in LibreOffice that is causing an empty
blank page to be created in the next chapter in between its pages]

6 - Abstract classes, interfaces, and inheritance

“The class concept … is a remodeling of the record
class concept proposed by Hoare. ... A prefix notation
is introduced to define subclasses organized in a
hierarchical tree structure. The members of a class are
called objects. Objects belonging to the same class
have similar data structures. The members of a
subclass are compound objects, which have a prefix
part and a main part. The prefix part of a compound
object has a structure similar to objects belonging to
some higher level class. It can itself be a compound
object.”

-- Ole-Johan Dahl and Kristen Nygaard

Inheritance declarations are member variable declarations with the
modifier inherit, the name of the variable can be omitted. Named
inheritance allows for name clash resolution when required. Accessi-
bility modifiers dictate the set of classes that are aware of the inheri-
tance. The pub and priv modifiers lead to fully public or completely
private inheritance. Accessibility modifiers allow inheritance relation-
ships to be visible to subsets of classes, a form of partial revelation.

An interface is a specialized class declaration that doesn’t have
non-static data members. A class can inherit from a single class, it can
only have a single base class. A class can implement any number of
interfaces.

6.1 Abstract classes and concrete classes

An abstract class is a class declared with abstract class, abstract class declara-
tions can inherit from other classes. If a class contains deferred member functions,
then it must be declared as an abstract class.

A concrete class is a class that is not an abstract class, a concrete class is a class that
is declared with class, not with abstract class, furthermore all of the member
functions of a concrete class must specify their code, none of them can be a deferred
member function.

116 Abstract classes, interfaces, and inheritance Chapter 6

6.2 Interfaces

An interface is a specialized class that uses interface instead of class, interface
declarations are not allowed to have non-static data members. Interfaces specify a set
of operations that can be implemented by unrelated classes that provide the function-
ality specified by the interface. Usually all the member functions declared by an in-
terface are deferred member functions, but they don’t have to be.

Conventionally most interfaces have names that end in able. Interfaces usually con-
vey an ability, something that a class that implements the interface is capable of do-
ing, for example: allocatable, serializable, readwritable, seekable, initializable, reini-
tializable, etc.

Interfaces can have literal data members. Specifically, literal data members that are
arguments to the interface function allow choosing of variations or customization
of an implementation obtained through the interface at the time the use of the inter-
face is specified. For example, see the arguments to lib.creatable for run-time ar-
ray creation support in §13.8.

6.3 Single inheritance and multiple interfaces

A class can inherit from up to one class, whether concrete or abstract, and can im-
plement any number of interfaces. An interface can only implement other inter-
faces, it can not inherit from a class. These restrictions make the language very sim-
ple and the object memory layout trivial, the complexity morass of multiple inheri-
tance in C++ is avoided, while allowing objects to provide multiple unrelated inter-
faces while being part of an inheritance hierarchy. See §XXX about preclass, and
prefix class inheritance, a limited form of multiple inheritance that is used to imple-
ment cross-cutting functionality across many types, used to implement various as-
pects of language safety and various polymorphic dispatch mechanisms.

Inheritance from a class is specified with the inherit modifier. Inheritance from
an interface is specified with the is modifier. For example:

class polar(double xx, double yy) { // changes to polar, §4.6
 pub inherit point(xx, yy); // point declared in §4.6
 pub is lib.creatable(polar); // provides creatable APIs
 ... // rest unchanged
}

The class polar inherits from point and provides the lib.creatable interface,
which allows polar objects to be allocated dynamically at run time:

int main() {
 point *p = polar.create(-1.0, -1.0);
 p->print();
}

6.3 Single inheritance and multiple interfaces 117

The object created is of polar type even if its address is stored in a pointer to
point. Polymorphic invocation of print() ensures that polar 's print() member
function is invoked, instead of invoking point 's print(). The output is:

x=-1 y=-1 ro=1.414214 teta=-2.356194

6.4 The defer and redef function modifiers

 Abstract classes and interfaces usually don't implement their member functions.
Unimplemented member functions use the defer keyword followed by a semicolon,
instead of the function body. The defer keyword only applies to member functions
and member class declarations. Global functions and non-member nested functions
can not defer their implementations.

An example of member function redefinition follows, total_stack inherits from
stack, it keeps the total sum of the values stored on the stack:

class total_stack(size_t max, int *error) {
 pub inherit stack(max, error);
 pub large tot = 0;
 return;

 pub large total() { return tot; }
 pub void push(int v) redef {
 stack.push(v);
 tot += v;
 }
 pub int pop() redef {
 int v = stack.pop();
 tot -= v;
 return v;
 }
}

Type total_stack inherits from stack, thus &s is a valid argument to
pop_all() even though s is of type total_stack:

void pop_all(stack *s) {
 while (!s->empty()) s->pop();
}
void work() {
 int error;
 total_stack(10, &error) s;
 assert(!error);
 s.push(1); s.push(2); s.push(3); s.push(4); s.pop();
 assert(s.total() == 6);
 pop_all(&s);
}

118 Abstract classes, interfaces, and inheritance Chapter 6

6.5 Single inheritance and multiple interfaces example

A larger example follows, it uses both interfaces and a class hierarchy as part of the
design of the file system type independent layer in a UNIX-like operating system, it
uses these interfaces: node, dir, file, fifo, bdev, cdev, rdwr, and rdwrat.

The rdwr interface specifies the notion of being able to be read and written se-
quentially:

interface rdwr {
 pub size_t read(byte buf[], size_t n) defer;
 pub size_t write(byte buf[], size_t n) defer;
}

The rdwrat interface specifies the notion of being able to be read and written
sequentially, or read written at a specific file offset location:

interface rdwrat {
 pub is rdwr;
 pub size_t readat(byte buf[], size_t n, off_t off) defer;
 pub size_t writeat(byte buf[], size_t n, off_t off) defer;
}

The node interface has several deferred member functions:

interface node {
 pub enum flag_t { exec=1, write=2, read=4, trunc=8, ... };
 pub file *is_file() { return NIL; }
 pub dir *is_dir() { return NIL; }
 pub fifo *is_fifo() { return NIL; }
 pub bdev *is_bdev() { return NIL; }
 pub cdev *is_cdev() { return NIL; }
 pub err_t open(flag_t flag, cred_t *cred) defer;
 pub void release() defer;
}

A member function, whether deferred or not, of an inherited class (or provided by
an interface in an is declaration), can be redefined in a descendant class. To ensure
that the programmer knows that the function is being redefined, a plain function re-
definition causes a compilation error, the redef modifier must be used as part of the
function declaration, as shown below for is_dir():

interface dir {
 pub is node;
 pub dir *is_dir() redef { return this; }
 pub err_t remove(name_t *name) defer;
 pub file *create_file(name_t *name, cred_t *cred) defer;
 pub dir *create_dir (name_t *name, cred_t *cred) defer;
 pub fifo *create_fifo(name_t *name, cred_t *cred) defer;
 pub node *lookup(name_t *name) defer;
}

6.5 Single inheritance and multiple interfaces example 119

A previously defined function might be redefined to be deferred in a descendant
class, in which case both redef and defer must be used.

A node provides the notion of a file system entity such as a file, a directory, a
named pipe (also known as a fifo), a block device, or a character device, each of
which is specified by a specialized interface : dir, file, fifo, bdev, and cdev.

interface file {
 pub inherit node;
 pub file *is_file() redef { return this; }
 pub is rdwrat;
}
interface fifo {
 pub inherit node;
 pub fifo *is_fifo() redef { return this; }
 pub is rdwr; // only sequentially read pr write
}
interface bdev {
 pub inherit node;
 pub bdev *is_bdev() redef { return this; }
 pub is rdwrat;
}
interface cdev {
 pub inherit node;
 pub cdev *is_cdev() redef { return this; }
 pub is rdwrat;
}

Operating systems include support for multiple file system types, for example, disk
based file systems, network file systems, removable optical media file systems, flash
file systems, etc. Each file system implementation would define a concrete class to
represent its file system nodes, and would derive from it concrete classes to represent
its directories, files, and so forth. For example a network file system, such as NFS,
might define these classes:

120 Abstract classes, interfaces, and inheritance Chapter 6

class nfs_node {
 prot nfs_handle_t handle;
 prot nfs_fs_t *fs;
 ...
}
class nfs_file {
 pub inherit nfs_node;
 pub is file;
}class nfs_dir {
 pub inherit nfs_node;
 pub is dir;
}
class nfs_fifo {
 pub inherit nfs_node;
 pub is fifo;
}

 From the perspective of the file system independent components of the operating
system (high level file system system calls, program execution support, etc) any file
system entity is accessed and manipulated through pointers to objects that provide
certain interfaces (node, file, dir, etc.), without any knowledge of the underlying
classes used by each file system type in its implementation.

6.6 Redefining static member functions

The defer and redef keywords serve the same role for static member functions.

6.7 Accessibility modifiers

There are three accessibility modifiers: pub, priv, and prot. They are used with
classes, functions, and interfaces, described in the following sections. They are also
used with namespaces and modules, see §8. Access to members declared pub is un-
restricted. Members declared priv are only accessible by the members of the class or
interface, priv is used to hide implementation details of the class or interface.

Members of a class or interface that are internal to it, but that must be accessible to
classes that inherit from the class or that implement the interface are declared prot.
For example assuming the class stack, from §4.2, with the entries and sp mem-
bers changed from priv to prot, and the rest of the class unchanged, users of
stack are unaffected by this change:

class stack(size_t max, int *error) promise(empty()) {
 prot int entries[];
 prot int *sp = entries.create(max);
 // ... rest unchanged …
}

6.7 Accessibility modifiers 121

Class opstack, below, inherits from stack, it uses entries and sp to provide an
operate()member function to provide fast access to at least 1 and at most 3 ele-
ments on the stack, it allows those top 3 stack entries to be accessed directly, it addi-
tionally allows a valid number of elements to be pop() 'd from an opstack in a sin-
gle operation. Assume that the performance of the operate() member function is
critical and that access of arbitrary memory is to be avoided. To make opstack as
fast as possible, its operate() member function is inline, see §10.3, which would
allow its function pointer argument to be expanded in line as well, when possible.

The opstack implementation is simplified by allocating three extra entries in the
stack and then adjusting the number of entries to the number that the user actually
specified, thus ensuring that extra dummy memory is always addressable at sp-1,
sp-2, and sp-3, even if the opstack is empty:

class opstack(size_t max, int *error) {
 pub inherit stack(max + 3, error);
 if (*error) return;
 entries[0] = entries[1] = entries[2] = 0;
 sp += 3;
 return;

 pub size_t count() redef { return stack.count() - 3; }
 pub bool empty() redef { count() == 0; }
 pub typedef size_t (*operation)(int cnt, int *first,
 int *second, int *third);
 pub void operate(operation op) inline {
 size_t cnt = count();
 size_t n = op(cnt, sp - 1, sp - 2, sp - 3);
 assert(n >= 0 && n <= cnt);
 sp -= n;
 assert(sp >= entries.start + 3 && sp <= entries.end);
 }
}

The count() and empty() non-static member functions were redefined to com-
pensate for the extra 3 entries. The evaluation of the promise(empty()) made by
class stack only occurs after the construction of class opstack is complete.
The empty() member function invoked in the promise() is the one redefined by
class opstack, see §6.14.

6.8 Accessibility modifiers versus inherit and is declarations

Members inherited from the base class are visible outside of the derived class with
the most restrictive access that results from combining the accessibility modifiers of
the members of the base class and the accessibility modifier of the member through
which the inheritance is expressed.

122 Abstract classes, interfaces, and inheritance Chapter 6

Similarly, members provided by an interface specified in an is declaration are visi-
ble outside of the entity that implements the interface, a class or another interface,
with the most restrictive access that results from combining the accessibility modi-
fiers of the members of the interface specified in the is declaration and the accessi-
bility modifier of the is declaration.

The syntax: pub !inherit can be used to declare a static member function that is
not to be inherited by a class that inherits from the class, see §11.11 for an example.

6.9 Member access aliases

The following declaration syntax, where .member2 through .memberN are op-
tional, indicates that name stands for the series of member accesses specified on the
right hand side of the = operator.

alias name = member1.member2 … .memberN;

These member accesses must be strictly contained members within the subordinate
classes, structures, or unions, no hidden memory references are allowed. It is valid
for a memberX to be an array indexed by a constant expression as long as it is a com-
pile time dimensioned array, not a pointer, nor an array descriptor, nor a variable
length array, see §13. The xyz declaration is valid only if x and z are traditional C
arrays:

alias xyz = x[0][3].y.z[7]

This construct is used to replace one of the uses of C #define, used to pretend that
an inner structure or union member is an outer level member of an outer structure or
union. Having alias in the language allows symbolic debuggers to receive cut and
pasted source code, for example to print an expression, without the programmer hav-
ing to do the #define expansion. The memberX fields themselves can also be de-
fined through other alias definitions.

An alias declaration doesn't completely address the whole class of #define
name substitution possibilities. If indirection through pointers and run time array in-
dexing was supported, then those would be addressed as well. The rationale for these
restrictions and the prohibition against indirection is to force the programmer to be
more careful about what they are doing. Any requirements beyond the ones met by
alias are not supported, it is best to force the programmer to do the data structure
splitting job completely, instead of hiding the required indirection through a hidden
indirection behind an alias declaration. Allowing indirection would lead to hidden
costs behind what would otherwise seem like plain member accesses. It is a bad idea
to have something in the language whose cost cannot be trivially understood by look-
ing at its use. With the limitations imposed on alias, the cost of member references
is always a compile time constant expression offset relative to a register, i.e. a cost
that is no different than the cost of accessing a regular member.

6.9 Member access aliases 123

The scope of the identifier declared by alias is the scope within which it is de-
clared. The scope within which the name is introduced must be such that the series of
member accesses for which it stands corresponds to existing members and sub-mem-
bers accessible from the scope that declared the alias. If the scope is global then
member1 must be a global variable, not a member.

An alias declaration introduces a new name for a member, the access to the un-
derlying member can be modified through an accessibility modifier, i.e. pub, priv,
or prot. The alias accessibility modifier, can be used to allow access to members
that the containing class can access, but that would otherwise not be accessible to
code outside of the class.

An example of this is shown below. The queue class allows for insertion and re-
moval from its head and tail through insert_at_head(), remove_from_head(),
insert_at_tail() and remove_from_tail(), it also provides access to the entry
at the head or tail of the queue through head_value() and tail_value().

class queue(size_t max, int *error) require(max > 0)
 promise(empty()) {
 priv int entries[];
 entries.create(max);
 *error = entries ? 0 : libc.ENOMEM;
 priv size_t free = max;
 priv int *head = entries.end - 1, *tail = entries.start;
 return;

 pub void deinit() { entries.destroy(); }
 pub bool empty() { return free == entries.max[0]; }

124 Abstract classes, interfaces, and inheritance Chapter 6

 pub bool full() { return free == 0; }
 pub int head_value() require(!empty()) { return *head; }
 pub int tail_value() require(!empty()) { return *tail; }
 pub void insert_at_head(int v) require(!full()) {
 --free;
 if (++head >= entries.end) head = entries.start;
 *head = v;
 }
 pub int remove_from_head() require(!empty()) {
 ++free;
 int v = *head;
 if (head == entries.start) head = enries.end;
 --head;
 return v;
 }
 pub void insert_at_tail(int v) require(!full()) {
 --free;
 if (tail == entries.start) tail = entries.end;
 *--tail = v;
 }
 pub int remove_from_tail() require(!empty()) {
 ++free;
 int v = *tail++;
 if (tail == entries.end) tail = entries.start;
 return v;
 }
}

A stack class, functionally equivalent to the stack class from prior examples can
be implemented with alias declarations, as shown below. Members of the q mem-
ber, are selectively renamed and made public by stack. A drawback from this is that
the interface that stack exposes is not easily understood, the queue interface has to
be examined for that.

class stack(size_t max, int *error) promise(empty()) {
 priv queue(count, error) q;
 return;
 pub alias empty = q.empty;
 pub alias full = q.full;
 pub alias top = q.head_value;
 pub alias push = q.insert_at_head;
 pub alias pop = q.remove_from_head;
}

The interface extraction option of the compiler, described in §2, produces the fol-
lowing output for the stack interface, which is easy to understand:

6.9 Member access aliases 125

class stack(size_t max, int *error) promise(empty()) {
 pub bool empty() { ... }
 pub bool full() { ... }
 pub void push(int v) { ... }
 pub int pop() { ... }
 pub int top() { ... }
}

6.10 Qualified accessibility modifier

An accessibility modifier can also be used in a class, function, or an interface to
give access of a member to named classes, functions, or interfaces, a comma sepa-
rated list of their names, within curly braces, that follows either the pub or prot ac-
cessibility modifiers is a qualified accessibility modifier. The use of a qualified acces-
sibility modifiers are only allowed after a mandatory non-qualified accessibility mod-
ifier, which must be a more restrictive accessibility modifier than the qualified ones.
For example:

class c {
 priv pub {a, b} int p; // a and b see p as pub
 prot pub {a} int q; // a sees q as pub
 priv pub {a} prot {b} int r; // a sees r as pub
 // b sees r as prot
 pub prot {a} int s; // error: prot constraints pub
}

For example, the stack class, below, gives access to its private members: entries
and sp to the walk() function:

class stack(size_t max, int *error) promise(empty()) {
 priv pub {walk} int entries[];
 entries.create(max);
 priv pub {walk} int *sp = entries.start;
 // ... rest unchanged …
}

The walk() function can access the private members, as if they were public:

typedef void (*operation)(int v, ularge arg);
void walk(stack *s, operation function, ularge arg) {
 int *p = s->sp;
 int *base = s->entries;
 while (p > base)
 function(*--p, arg);
}

If access needs to be given to an unknown set of classes, access can be given to a
dummy public interface, which is idiomatically called intrusive, the classes or
functions that need access specify their intrusiveness with the stack.intrusive in-

126 Abstract classes, interfaces, and inheritance Chapter 6

terface, for example:

class stack(size_t max, int *error) promise(empty()) {
 pub interface intrusive {};
 priv pub {intrusive} int entries[];
 entries.alloc(max);
 priv pub {intrusive} int *sp = entries.start;
 // ... rest unchanged ...
}

The modified walk() function provides the stack.intrusive:

typedef void (*operation)(int v, ularge arg);
void walk(stack *s, operation function, ularge arg) {
 priv is stack.intrusive;
 int *p = s->sp;
 int *base = s->entries;
 while (p > base)
 function(*--p, arg);
}

A class that allows access to its members through this mechanism will be harder to
maintain, but at least the classes, functions, or interfaces that have access to it are
easy to identify by searching for use of stack.intrusive. The open ended access
to some of the internal details of a class might be seen as bad design, but it is up to
the programmer to decide to provide the access or not, it can not be forced by other
classes without cooperation of the entity whose internals are being exposed.

The qualified accessibility modifier mechanism can be used with inherit or with
is to make class inheritance or the support for an interface visible to some entities
and not visible to others. These forms of constrained member, inheritance, and inter-
face visibility are referred to as partial revelation.

6.11 Single inheritance example

The following subsections implement the io abstract class and several implementa-
tions of it. An io object is a form of sequential input output end point, implementa-
tions of the io interface provide:

 Sequential input from a file and sequential output to another file.

 Network input output over a network end point.

 Message queue input output.

 Shared memory based input output across processes.

 Input and output buffering of another io object.

Classes that derive from io implement the member functions read() and
write() which are deferred member functions of io, a deferred member is an unim-

6.11 Single inheritance example 127

plemented member of a class. Syntactically, the defer keyword must be used to in-
dicate that the implementation of the function is deferred.

abstract class io {
 return;
 pub err_t read(void *mem, size_t count,
 size_t *nread) defer;
 pub err_t write(void *mem, size_t count,
 size_t *nwritten) defer;
 pub err_t flush() defer;
 pub void deinit() defer;
}

The bio implementation of io, shown below, is a class meant to be used as a base
class for other classes. It provides support for read() and write() buffering for
other implementations of io to use.

The arguments to the bio class include a pair of possibly NIL buf pointers used
for buffering. If buffering of reads or writes is required, the buffer is provided exter-
nally. It is not managed by the bio class because the entity itself that makes use of a
bio class would have better knowledge about what memory should be used. For ex-
ample, a memory mapped file, a shared memory segment, memory contiguously allo-
cated to the bio object itself, etc. Inheritance of bio from io:

class bio(priv io *other, priv buf *readbuf,
 priv buf *writebuf) {
 pub inherit io;
 priv err_t readerr = 0;
 return;

128 Abstract classes, interfaces, and inheritance Chapter 6

 pub err_t write(void *mem, size_t count,
 size_t *nwritten) redef {
 buf_t *bp = writebuf;
 if (bp) {
 if (count > bp->avail()) {
 err_t err = flush();
 if (err) {
 *nwritten = 0;
 return err;
 }
 }
 if (count <= bp->avail()) {
 bp->add(mem, count);
 *nwritten = count;
 return 0;
 }
 }
 // not buffered or it didn't fit after flushing
 return other->write(mem, count, nwritten);
 } // continued below

The bio.write() function, above, buffers the writes if its writebuf member is
non-NIL. If the data to be written doesn't fit in the space available in the write buffer,
the write buffer is flushed first. If the data still doesn't fit, the write buffer is bypassed
and the write is performed directly, i.e. without buffering.

The flush() member function of bio follows:

 pub err_t flush() redef { // class bio
 buf *bp = writebuf;
 if (bp)
 while (bp->used() > 0) {
 size_t nwritten;
 err_t e = other->write(bp->base(), bp->used(),
 &nwritten);
 bp->buf_trim(nwritten);
 if (e || (e = other->flush())
 return e;
 }
 return 0;
 } // continued below

The internal flush() from the require in deinit() is an extra safety net to
avoid data loss when flush() was not invoked prior to the destructor invocation, the
assert() on the error from this flush() is an additional safety net to ensure that
those flush() errors are not ignored. Delayed read errors are ignored because con-
ceptually they occurred for data that was never asked to be read. The other pointer
to the underlying io object buffered by bio, is not deinitialized by deinit() it is

6.11 Single inheritance example 129

not it’s responsibility.

 pub redef void deinit() { // class bio
 if (readbuf) readbuf->deinit();
 if (writebuf) {
 err_t error = flush();
 assert(!error);
 writebuf->deinit();
 }
 } // continued below

The bio.read() member function, below:

 pub err_t read(void *mem, size_t count, // class bio
 size_t *nread) redef {
 char *m = mem;
 err_t err;
 size_t rd;
 *nread = 0;
 buf *bp = readbuf;
 if (bp)
 for (;;) {
 size_t used = bp->used();
 if (used > count) used = count;
 if (used) {
 bp->remove(m, used);
 count -= used;
 m += used;
 }
 *nread += used;
 if (count == 0) return 0;
 assert(bp->empty());
 if (readerr) return readerr;
 if (count > bp->capacity()) break;
 rd = 0;
 err = other->read(bp->base(),
 bp->capacity(), &rd);
 bp->setsize(rd);
 readerr = err;
 }
 // not buffered; or after emptying it, what is
 // leftover to read is bigger than its capacity
 rd = 0;
 err = other->read(m, count, &rd);
 *nread += rd;
 return readerr = err;
 }
} // class bio

130 Abstract classes, interfaces, and inheritance Chapter 6

The bio.read() function satisfies as much of the read as possible from what is
buffered, if any, and if what remains to be read is larger than what can be read ahead
in the read buffer, it is read directly into the user's memory bypassing the read buffer.
If what remains is smaller than the read ahead buffer, the read ahead buffer is filled to
its buffering capacity, and what remains to be moved to the user's buffer is extracted
from it.

Bio.read() does read ahead if the readbuf is non-NIL, it is more complicated
than bio.write() because it deals with partial buffer reads and delayed error re-
porting to the caller. While data remains to be read the error won't be returned. The
error will only be returned when the read ahead buffer is drained. It also deals with
non error partial reads that don't fill the read ahead buffer to its capacity.

The UNIX file descriptor based io implementation, fdio, performs input output
on a pair of UNIX file descriptors:

class fdio(priv int rdfd, priv int wrfd) {
 pub inherit io;
 return; // continued below

The fdio.read() function is not shown, it is similar to fdio.write() and
fdio.flush() are:

 pub err_t write(void *mem, size_t count, // class fdio
 size_t size_t *nwritten) redef {
 size_t nw = unix.write(wrfd, mem, count);
 return nw >= 0 ? *nwritten = nw, 0 :
 *nwritten = 0, errno;
 }
 pub void flush() redef { unix.fsync(wrfd); }
}

The bfdio derived class is a compound class that makes use of both fdio and bio
to implement buffered UNIX file descriptor I/O. It simply compounds these other
two while allowing its user to choose the underlying buffering memory.

class bfdio(int rdfd, int wrfd,
 buf_t *readbuf, buf_t *writebuf) {
 priv fdio(rdfd, wrfd) fdinout;
 pub inherit bio(&fdinout, readbuf, writebuf);
 return;
}

The read() and write() member functions that bfdio inherits from bio do all
the work. A custom destructor is not required either, the destructor that is generated
by the compiler is equivalent to the following one, destruction of members is gener-
ated in the reverse order of their construction:

6.11 Single inheritance example 131

 pub void deinit() redef { // generated by compiler for class bfdio
 bio.deinit();
 fdinout.deinit();
 }

6.12 Pointers and inheritance

A pointer to an ancestor class can be assigned a pointer to a publicly derived class.
A pointer to an interface can be assigned a pointer to a class or another interface that
publicly provides the interface. Assuming the classes shown in section §6.11:

err_t copy(io *src, io *dest) {
 size_t nr, nw;
 err_t err;
 byte mem[1024];
 while (!(err = src->read(mem, sizeofex mem, &nr)))
 for (; nr > 0; nr -= nw)
 if (err = dest->write(mem, nr, &nw))
 return err;
 err_t ferr = dest->flush();
 return err ? err : ferr;
}

Derived class pointers are compatible with the base class pointer arguments in
copy(), thus s and d both of bfdio type can be passed as if they were pointers to
io:

err_t copy3into1(bfdio *s1, bfdio *s2, bfdio *s3, bfdio *d) {
 err_t e;
 if (e = copy(s1, d)) return e;
 if (e = copy(s2, d)) return e;
 return copy(s3, d);
}

6.13 Duplicate member names

COOGL has no support for any form of name overloading. A member inherited
from a base class whose name is the same as the name of a member in the derived
class causes a compilation error. A member of the base that is not accessible by the
derived class, i.e. because it is priv, doesn't result in name collisions. The same oc-
curs for members of an interface that a class or another interface provides through an
is declaration.

Duplicate member names can be easily addressed by using named inheritance.
Names that are not duplicate continue to be accessible directly, duplicate members
are not directly accessible. An alias declaration can be used to make a duplicate
name accessible with a different name. For example:

132 Abstract classes, interfaces, and inheritance Chapter 6

class base { pub int i, pub int j; }
class derived {
 pub int i;
 pub inherit base b; // named inheritance
 pub alias bi = b.i;
 i = bi = 17;
}
int example() {
 derived d;
 return d.i + d.bi + d.j;
}

Even though named inheritance of base occurs in derived, the j member of de-
rived is directly accessible, because it is not a subject of name collision.

Similar to the duplicate names that can occur with inheritance, providing one or
more interfaces with or without inheritance can also cause name collisions between
the accessible members of the interfaces themselves or the base class. Name collision
can be addressed through named inheritance or by naming the interfaces provided in
the is declarations, and the names disambiguated appropriately with alias declara-
tions.

Repeated implementation of the same interface, with multiple is declarations is not
allowed, irrespective of whether the repeated is declarations occur directly or indi-
rectly through inheritance or through intermediate interfaces. This restriction simpli-
fies the language semantics. An object either implements an interface, or not, but if it
does there is no question about the single implementation of it, there is no need to
choose between multiple equivalent interfaces.

6.14 Constructor and destructor restrictions and contracts

As explained in §4.9 and §5.4, non-static member functions can not be called from
the constructor or from the destructor, other than a single call under very restricted
circumstances.

The technical rationale for not allowing non static member functions to be invoked
while an object is being constructed or destructed is that an object that is not fully
formed is not an appropriate object to be operated upon by a non-static member func-
tion, particularly if the member function has been redefined, or could be redefined in
the future, the amount of confusion and incorrect code that this can lead to is tremen-
dous. Simple questions such as the type of the object while it is being partially con-
structed would require potentially different answers at different times, which is the
case in more complex languages such as C++. The type of objects is fixed from the
start of their outermost constructor until it is finally destructed, in COOGL the types
of objects never change dynamically.

6.14 Constructor and destructor restrictions and contracts 133

Furthermore, because of inheritance and redefinition of member functions, the post-
conditions of a constructor can not be guaranteed until the outermost object has been
constructed.

Similarly the pre-conditions of a base class destructor can not be guaranteed while
the destructor of the descendant class has already begun to deconstruct the object, be-
cause its invariants might no longer hold, and its implementations and redefinitions
might have rendered the base class out of its own invariants at this time.

A base class can not ensure its post-condition, its promise(), is met if the member
functions it depends on have been redefined. Not allowing calls to member functions
from the constructor makes sense. Allowing calls to member functions from prom-
ise(expression) makes sense only if the expression is verified at the end of the
construction of the outermost object, i.e. after the outermost object is fully formed,
which is the time when the promise() expression is evaluated, irrespective of
which constructor defined it.

A base class can not ensure its pre-condition, its require(), is met if the member
functions it depends on have been redefined. Not allowing calls to member functions
from the destructor makes sense. Allowing calls to member functions from re-
quire(expression) makes sense only if the expression is verified prior to the
start of the destruction of the outermost object, i.e. before the object is began to be
deformed from its outermost perspective, which is the time when the require()
expression is evaluated, irrespective of which destructor defined it.

134 Abstract classes, interfaces, and inheritance Chapter 6

[This page left blank to work around issue in LibreOffice that is causing an empty
blank page to be created in the next chapter in between its pages]

7 - Extension, continuation, and other class topics

“How can one check a large routine in the sense of
making sure that it is right? In order that the man
who checks may not have too difficult a task, the
programmer should make a number of definite
assertions which can be checked individually, and
from which the correctness of the whole program
easily follows.”

-- Alan Turing, June 24th 1950

This chapter covers miscellaneous topics about classes. A class can
be extended independently of its declaration through the extend key-
word. The declaration of a class can be continued elsewhere, through
the use of the continue keyword, for example to split the class code
into multiple source code files. The sizeofex operator can not be
used unless the compiler can determine at compile time its value. The
memory layout of objects is chosen by the compiler, independent of
the declaration order of its members (unless it is a class struct).
Declarations can not hide symbols other than global symbols. The
name lookup operator ^ looks up names within the scope of a function
when it is used in an expression that is an argument to the function.
Various aspects of class and array initializers are presented. Object
oriented callbacks are supported by delegate functions.

7.1 Class extension: extend class

A class must be declared once in the set of source code files that make the compiled
program. A class can be extended, through the extend syntax, for example, assum-
ing the stack class shown in §4.2 a popall() member function can be added:

extend class stack {
 pub void popall() { while (!empty()) pop(); }
}

The declarations within an extend declaration are limited to member functions,
lit, enum and static data members. The body of an extend declaration does not
contain executable code, i.e. no additional constructor code can be added.

A class extension cannot add non-static data members. Static data and member

136 Extension, continuation, and other class topics Chapter 7

functions can be added but only if they don't redefine anything inherited by the class.
For example adding print() to int is valid. Redefining the write() member
function of an io object, from §6.11, is not.

7.2 Class declaration continuation: continue class

The declaration of a class can be continued elsewhere, usually in another source
code file, through the use of the continue class syntax. The continue class
declaration can not add executable code to the class constructor, nor can it add non-
static data members to it, it is similar to an extend class declaration, but it is al-
lowed to redefine member functions inherited by the class. For example the class
opstack can have its declaration from §6.7 continued in a separate file where both
push() and pop() are redefined to maintain a static count of each operation:

continue class opstack {
 pub static size_t pops = 0, pushes = 0;
 pub int pop() redef { ++pops; return stack.pop(); }
 pub void push(int v) redef { ++pushes; stack.push(v); }
}

A continue class declaration is pure syntactic sugar, a continue class decla-
ration must be the only declaration within the file that contains it, unless it is located
in the same source file that contains the class declaration. The file scope visible to the
continue class declaration is the same file scope that is visible to the class decla-
ration, thus from a compilation perspective this syntactic sugar could be implemented
by appending the contents of the each continue class declaration to the end of
their corresponding class declaration, prior to their closing curly brace.

The purposes for the continue class syntax are two, one to allow very large classes
to have their code split into multiple files, and to support turning regular pointer dec-
larations into smart pointer declarations, described in §Error: Reference source not
found.

7.3 Class of pointers and array descriptors implicit declaration location

When a class is declared, the class of pointers to the class is considered to be im-
plicitly declared in the same source file. Recursively, the class of pointers to pointers
to the class, etc, is thus also considered to be declared in the same source file. The
same occurs for arrays and array descriptors based on the class declaration, and the
arbitrary compounding of their declarations, for example, pointers to arrays of point-
ers to array descriptors of a class, their implicit declaration location is the file where
the class is declared.

7.4 Pointer arithmetic 137

7.4 Pointer arithmetic

Walking arrays passed as a pointer argument, instead of as an array descriptor, is
not allowed, even though it is idiomatic in C. Inheritance makes such walking poten-
tially incorrect because the type of the underlying object might be different than the
static type of the pointer used to access the object. If the indexing or pointer arith-
metic were to be correct it would require that the sizeofex of the objects (or an
equivalent internal operation) used to perform pointer arithmetic and array indexing
to produce the size of the dynamic type, not of of the static type.

Instead of adding complexity to the language, use of the sizeofex operator causes
a compilation error when the compiler can not reliably determine, at compile time,
the types involved. The same occurs with pointer arithmetic or indexing of arrays
when the compiler can not guarantee that the operation is correct. Variable length ar-
rays, and array descriptors, can be reliably walked with indexes, or pointers, without
these problems, see §13 for more on this subject.

7.5 sizeof and sizeofex operators

The grammar of COOGL is context free, a COOGL program can be parsed without
the aid of a symbol table. The grammar of C is not context free, in various places the
parser can not determine if a name corresponds to a type or not, and the parsing can
not progress without that determination. COOGL restricts the use of sizeof to be
used with types, not with expressions. To determine the size of the result of an ex-
pression the sizeofex operator should be used. For code meant to used both as
COOGL and as C code (i.e. CLEAN code) the sizeofex can be #defined to be
sizeof when the code is compiled as C code. The sizeofex of an array with zero
elements, the sizeof of an empty class, and the sizeof(void) are all zero.

7.6 Layout control of class objects: class struct

Layout control of the memory of objects is completely under the control of the
compiler which can ensure that the object's data is organized in the most memory ef-
ficient order irrespective of the declaration order of its members. The compiler is able
to commingle data from various members, for example by using the pad space avail-
able because of data alignment constraints within a member to store in that pad space
the data of another member. This is something that can not be done with most pro-
gramming languages without destroying the modularity of the code.

Sometimes layout control is required by the programmer a class can be declared
with both keywords: class struct. See §Error: Reference source not found for an-
other example:

138 Extension, continuation, and other class topics Chapter 7

class struct foo { pub char c; pub large l; pub short s; }
void test() { assert(sizeof(foo) == sizeof(large) * 3); }

The class will be laid out exactly in the order used by the programmer, any inheri-
tance must be the first non-static data member of the class struct and arguments
to the class constructor of a class struct can not be data members.

7.7 Only global declarations can be hidden

Function arguments, local variables, and members can not be hidden by declara-
tions in nested scopes. Nested scopes allow the introduction of new variables as long
as their names are not the same as the names of the function’s arguments, its local
variables, or its members. Only global declarations can be hidden by a declaration in
a nested scope.

Hiding an existing declaration usually leads to confusion and bugs where it is as-
sumed that a single variable exists instead of multiple variables at different times.
The restrictions against hiding symbols ensures that most such mistakes are caught.
The reason to allow the hiding of global variables is that the introduction of a global
declaration should not cause unbounded amounts of unrelated code to have compila-
tion errors. The number of global declarations is significantly reduced in COOGL
programs when compared to C programs, their hiding is not a significant source of
problems.

7.8 Name lookup relative to the scope of a function

Function argument expressions can use the ^ unary operator to indicate that an
identifier should be interpreted relative to the scope of the function being invoked, in-
stead of the scope of the function invoking it. For example:

int fileopen(byte *name, int flag, int mode = 0644) {
 pub enum { READ = 1, WRITE = 2, TRUNC = 4, CREAT = 8 };
 ...
}
void use() {
 int fd = fileopen("/tmp/foo", ^READ | ^WRITE);
 ...
}

The use of the ^ name lookup unary operator is only valid in function argument ex-
pressions, an identical expressions elsewhere results in a compilation error. Normal
access rules apply, the name's accessibility is checked against the calling context.

Typically the function whose scope is searched by a ^name reference in an expres-
sion is a member function, the name is usually not defined within the member func-
tion itself, but in the class that it is a member of. For example:

7.8 Name lookup relative to the scope of a function 139

class file(priv byte *name) {
 priv int fd = -1;
 pub enum flags {READ = 1, WRITE = 2, TRUNC = 4, CREAT = 8};
 pub error_t open(int flag, int mode = 0644) { ... }
}
void use() {
 decl file("/tmp/foo") f;
 error_t e = f.open(^READ | ^WRITE));
}

7.9 Structure and array initializers

C style structure initialization is part of the COOGL language:

struct person {
 char *name;
 int age;
};
person j = {"Jill", 29};
person k = {.name = "Ken", .age = 31};

Traditional C array initialization, i.e. with values in curly brace delimited lists is
supported. An alternative array initialization syntax, from the Plan 9 C language, al-
lows specific array entries to be initialized by specifying an index within square
brackets before the initializer. Both forms of array initialization can be used together,
an explicit index specifier sets the base for the subsequent entries that don't include
an index specifier. This is similar to what occurs for explicit and implicit enumeration
values.

For example a typical character classification table and interfaces to use it:

class cis {
 priv lit ubyte L = 0x01; // lower case
 priv lit ubyte U = 0x02; // upper case
 priv lit ubyte D = 0x04; // decimal digit
 priv lit ubyte O = 0x08; // octal digit
 priv lit ubyte X = 0x10; // hexadecimal digit
 priv lit ubyte P = 0x20; // punctuation
 priv lit ubyte S = 0x40; // space

 priv lit uint N = 128; // must be power of two
 priv lit uint MASK = N - 1;

140 Extension, continuation, and other class topics Chapter 7

 priv static ubyte map[N] = { // Assumes ASCII
 ['A'] U|X, U|X, U|X, U|X, U|X, U|X, // 6 = A-F
 ['G'] U, U, U, U, U, U, U, U, U, U,
 U, U, U, U, U, U, U, U, U, U, // 20 = G-Z
 ['a'] L|X, L|X, L|X, L|X, L|X, L|X, // 6 = a-f
 ['g'] L, L, L, L, L, L, L, L, L, L,
 L, L, L, L, L, L, L, L, L, L, // 20 = g-z
 ['0'] D|X|O, D|X|O, D|X|O, D|X|O,
 D|X|O, D|X|O, D|X|O, D|X|O, // 8 = 0-7
 ['8'] D|X, D|X, // 2 = 8-9
 [' '] S, ['\t'] S, ['\n'] S,
 ['\f'] S, ['\r'] S, ['\v'] S, // 6
 [33] P, P, P, P, P, P, P, P,
 P, P, P, P, P, P, P, // 15 = [33,47]
 [58] P, P, P, P, P, P, P, // 7 = [58,64]
 [91] P, P, P, P, P, P, // 6 = [91,96]
 [123] P, P, P, P, // 4 = [123,126]
 }
 priv static bool v(int c, ubyte m) inline {
 return map[MASK & c] & m;
 } // continued below

Which allows for cis.alpha() style functions, similar to standard C library char-
acter classification functions (e.g. isalpha()):

 pub static bool alpha(int c) { return v(c, L|U); } // class cis
 pub static bool alnum(int c) { return v(c, L|U|D); }
 pub static bool digit(int c) { return v(c, D); }
 pub static bool xdigit(int c){ return v(c, X); }
 pub static bool odigit(int c){ return v(c, O); }
 pub static bool space(int c) { return v(c, S); }
 pub static bool punct(int c) { return v(c, P); }
 pub static bool print(int c) { return v(c, L|U|D|S|P); }
}

7.10 Delegate functions: deleg

The notion of delegates arises from the need to allow arbitrary code, together with a
data context for it, to be invoked by unrelated code in a type safe manner, the invok-
ing code could have been compiled completely separate from the called code, for ex-
ample the calling code could be in a dynamically loadable module that was devel-
oped by a third party who had absolutely no knowledge about the type in question,
e.g. the type in question might have been developed by others at a later time.

The stack class provides a member function, iterate(), below, that allows code
to be passed to it such that the code can access the values stored on the stack, while
restricting its knowledge and preventing direct access to the internal representation of

7.10 Delegate functions: deleg 141

stack. For example to compute the sum of the values on the stack, an iterator class
as shown in §4.14 could be used, alternatively a delegate function pointer argument
to an iterate() function could be used:

extend class stack {
 pub void iterate(void work(int val) deleg) {
 for (int *p = sp; --p >= ent;) work(*p);
 }
}

Calling code follows, a simpler version is shown further below.

void use() {
 int error;
 decl stack(100, &error) stk;
 assert(!error);
 fill(&stk);
 priv class sum {
 priv large total = 0;
 pub void add(int v) { total += v; }
 pub large result() { return total; }
 }
 sum s;
 stk.iterate(s.add);
 on ("sum = "; s.result(); "\n") print();
}

The work argument is a delegate function pointer. Delegate function pointers are
implemented by a pair of values: a C function pointer and an object pointer. For the
s.add delegate function pointer argument the delegate function is add() and the ob-
ject pointer is &s.

To reduce code clutter in the caller, the notion that a function is a class that has its
own members is used, resulting in this simpler idiomatic code:

void use() {
 int error;
 decl stack(100, &error) stk;
 assert(!error);
 fill(&stk);
 priv large total = 0;
 priv void add(int v) { total += v; }
 stk.iterate(add);
 on ("sum = "; total; "\n") print();
}

The object associated with the work delegate function pointer is the nameless ob-
ject associated with use(), its members are add() and total. When the delegate
function is invoked the object pointer is provided transparently by the delegate invo-
cation mechanism. Because add() is a member function being passed as an argu-

142 Extension, continuation, and other class topics Chapter 7

ment within the scope of its class constructor, use() in this case, the pointer to the
object in question is known implicitly and passed together with the function as the
pair that makes the delegate function pointer value.

With the global compilation model, and in line code expansion performed by the
compiler, no actual function call, nor does the add() function actually end up exist-
ing. The C code produced by the compiler is similar to the code shown below:

void use() {
 stack stk;
 large total = 0;
 { int *p = stk.sp; *end = stk.ent + stk.MAXENT;
 while (p < end) total += *p++; }
 char__pointer__print("sum = ");
 large__print(total);
 char__pointer__print("\n");
}

7.11 Other aspects of delegate function pointers

Regular function pointers and delegate function pointers are different. A function
pointer is assigned the address of a function with a signature that matches the signa-
ture of the function pointer. A function pointer does not refer to any specific object. A
delegate function pointer refers to an object and to a member function of the object.
Comparisons between function pointers are well defined and have an easily under-
stood meaning. Comparison between delegate function pointers could have several
possible interpretations depending on which values are compared: function, object
pointer, or both. For the sake of language simplicity, comparison between delegate
function pointers is invalid. Assignment of NIL, and comparison between a delegate
function pointer and NIL are also invalid.

The memory layout of delegate function pointers is defined by the language as a
class struct, its mandatory layout is required to allow completely unrelated and
separately compiled code to interact through them. It is also defined for the obscure
circumstances under which actual access to its fields are required. The address of a
delegate function pointer can be taken and accessed through an unsafe cast to a
pointer to a lang.delegfp:

extend namespace lang {
 pub class struct delegfp {
 pub void (*function)(void *object);
 pub void *object;
 }
}

8 - Name spaces, modules, and initialization order

“Controlling complexity is the essence of computer
programming.”

-- Brian Kernighan

A collection of entities can be grouped into a collection of names
with a namespace declaration. Modularity aspects related to inde-
pendently developed binaries, that are loaded together at run time to
form a single program, are specified by the language, shared libraries
and modules loaded and unloaded at run time have language speci-
fied semantics. Complicated static member initialization is done id-
iomatically through the construction of global objects. Construction
order of global objects is under programmer control.

8.1 Modules and name spaces in C

Some programming languages have mechanisms that allow the name space of iden-
tifiers to be partitioned in such a way that the likelihood of name clashes between un-
related components is significantly reduced. Name space partitioning together with
information hiding are very important for large programs, particularly extensible pro-
grams whose development is not meant to end and are continuously adapted to new
environments and requirements. These programs are usually developed by a large
team of programmers, and sometimes independently by unrelated parties, their code
bases brought together as part of a large system, either in source code form or in bi -
nary form. Extensible programs, such as operating systems, databases, transaction
monitors, web servers, browsers, etc. all benefit from modules and name spaces.

The idiomatic way of avoiding name clashes in C, through naming conventions has
been good enough for most programs, the identifier name space is partitioned by
short prefixes or some other naming convention. For example the BSD UNIX operat-
ing system kernel uses these and many other prefixes: ufs_, vm_, net_, eth_, etc.
The C89 standard reserved all names that start with _X where X is any uppercase let-
ter, for example C99 added the _Bool type without concern for name clashes.

Given that C symbols declared static have only file scope visibility, i.e. are hid-
den from other source code files, making it the natural mechanism in C for module
support. The C static symbol hiding feature is sometimes implemented by not
placing static symbols in the symbol table of the compiled object file. As a conse-

144 Name spaces, modules, and initialization order Chapter 8

quence, the link editor doesn't see the static symbols, they are not visible for link
time resolution if referenced from other C source files. The C symbol table based im-
plementation of modules is restrictive in that a function can not be expanded inline
into a source code file if it refers to static symbols declared in another file. Such
inline expansion would require that the static symbols be placed in the object
file's symbol table in a special way to make the symbol globally unique to account
for the possible global name collisions that could otherwise occur, and for the symbol
references in the location where the inline expansion was to occur to be adjusted ac-
cordingly.

Constraining a module to a single source file is too restrictive, modules end up be-
ing made of multiple files, which leads to entities being accessible needlessly, usually
leading to tighter coupling of the software and making it harder to ascertain what the
actual interfaces to the module are. Some projects don't use static to hide module
internals and use instead naming conventions as a way to specify symbols that are not
meant to be used outside of a module. For example, a trailing underscore, or a trailing
_p, or another symbol prefix. Sometimes different conventions are used depending
on the nature of the symbol, private fields might use a trailing underscore, and private
functions might have a different function prefix, for example mod_ for public inter-
faces and modp_ for private ones where mod is some abbreviation of the module
name. Because of the need to use header files in C, separate header files can be used
to hide the internals of the module and not expose them in the header file through
which the module interface is exposed, sometimes partial declarations are exposed
without exposing the full declaration, for example through a typedef struct
mod_s mod; declaration where mod is used as part of the interface but mod_s is not
exposed in the module interface header file, which works reasonably well but doesn't
allow for the inline expansion of functions that reference fields of mod into code out-
side the module.

The fundamental problems with name spaces and module support in C is that there
is no name space and no module support in the language, it is up to each project to
come up with its own conventions to implement them, sometimes tools are imple-
mented to verify that the conventions are not being violated. When code bases of un-
related projects, with different conventions, are brought together into a single project
the multiplicity of conventions makes the aggregate project even more complex.

Some C dynamic linking environments allow for all symbols in a program to be
hidden from other modules. In those environments the notion of module is a sepa-
rately bound executable file, which could be a shared library (in UNIX or GNU/
Linux or a DLL in Windows) meant to be loaded at program start time, or a module
meant to be loaded and unloaded dynamically at run time, usually as a means of ex-
tending a program. For example: device drivers for an operating system, graphics
drivers for a window system, compiled stored procedures for a data base, language
extensions for an interpreter, authentication modules for programs that use an exten-

8.1 Modules and name spaces in C 145

sible authentication infrastructure, etc. In some environments the symbols within
these separately compiled C based modules are only visible to other modules if they
are explicitly exported, for example, through export and import mechanisms that are
outside of the language. These export / import mechanisms can be found in Microsoft
Windows, IBM's AIX, the Linux kernel, and other systems.

8.2 Global declarations in C

Traditional C programs consist of global declarations with few if any nested or hid-
den declarations, other than local variables. In C information hiding is done through
selected inclusion of header files and by using the static keyword, which makes
functions and global variables inaccessible from other files. In some C implementa-
tions, the use of static for global variables and functions interferes with the ability
to debug the code, their names are not placed in the symbol table, not even for debug-
ging purposes, and are thus inaccessible to debuggers.

The legacy notion of C file based encapsulation is supported by COOGL with some
differences described below. The following code shows the use of static to imple-
ment two C modules random.c and use.c, one provides a random number genera-
tor, the other uses it. The file random.c hides its implementation data by using
static.

static int random_prev = 1; // C code in file random.c
void random_seed(int seed) { random_prev = seed; }
int random() {
 random_prev = random_prev * 168071 + 71111111;
 return random_prev & 0x7FFFffff;
}

File use.c attempts to access the static variable random_prev. When ran-
dom.c and use.c are compiled and linked into a program the link step fails because
the random_prev symbol reference is use.c can not be resolved.

extern int random_prev; // C code in file use.c
int main() { random_prev = 0; }

In C the only declarations globally visible across files are those that are part of the
program at run time, i.e. functions and variables. C does not make typedef, enum or
struct declarations in a C file visible to other source files, because C source files
are compiled separately, any such declaration sharing is done through header files
and #include preprocessing directives; thus typedef, enum and struct declara-
tions are implicitly private when placed in a C source file, and selectively public
when placed in a header file meant to be included via #include. Portions of header
files can also be selectively hidden under the control of #if or #ifdef C preproces-
sor directives, which are mechanisms sometimes used for modularity purposes.

146 Name spaces, modules, and initialization order Chapter 8

8.3 Modules and accessibility modifiers

A module is a set of source files compiled and linked together into an executable, or
into a program binary meant to be loaded at run time. At the operating system level
modules are contained in dynamic libraries on macOS, shared libraries (aka as dy-
namic shared objects) in UNIX and GNU/Linux, or DLL files in Windows. Modules
can be loaded at program startup, or dynamically at run time.

Accessibility modifiers, when used in global declarations, have a relationship to
source file boundaries and modules. Global declarations that don't have an accessibil-
ity modifier or that use prot are only accessible within the module, those that use
priv are only accessible within the source file that contains them, and those that use
pub are accessible by other modules.

Given that COOGL doesn't have header files, declarations other than variables or
functions, e.g. typedef, enum, class, struct, etc. are visible by default in other
files within the same module, they are implicitly prot by default. This behavior is
different from C's behavior with respect to those declarations in a C source file,
which makes them inaccessible to other source files. Access to typedef, enum,
class, or struct declarations can be restricted to the source files that contains them
by declaring them priv, or unrestricted so that they be can accessible to other mod-
ules by declaring them pub.

The use of static to support the C notion of file based symbol hiding is supported
by COOGL, very similar, but better behavior is obtained by using priv. An impor-
tant difference between priv and static in global declarations is that, priv func-
tions and data declarations have their names adjusted in a simple manner, see §2S.11,
to include the file name and module name within the mangled name, thus making the
symbols accessible to debuggers. Another difference is that inline functions that ac-
cess global static functions or data can not be expanded in line outside of the file
that contains them, whereas inline functions that access global functions or data (de-
clared priv or prot) can be expanded into any invocation location.

Global declarations can make use of qualified accessibility modifiers to allow ac-
cess to a global declaration to specific classes, interfaces, functions, or namespace,
independent of their source file locations.

8.4 Publicized and published declarations

Global declarations that are pub are said to have been publicized across modules.
Global declarations that are not publicized but whose implementation details are used
for the implementation of publicized entities, directly or indirectly, are said to be
publicized indirectly. Declarations that are publicized directly or indirectly are said to
have been published.

8.4 Publicized and published declarations 147

The internal details of a published declaration are represented and implemented in a
well specified way that is standard across compilers, data layout rules are followed
strictly and function calling conventions are also followed without exception, no in-
tra-module optimizations are performed on them. The compiler is still free to create
specialized versions of a function optimized for intra-module calls that can be opti-
mized because of global knowledge of all the calls within the function. For example,
if for all the calls within a module an argument to the function is always the same
constant value, then the code within the function can be specialized to take advantage
of that fact, possibly causing a series of expressions to become compile time constant
expressions and possibly leading to a series of run-time tests to be eliminated.

The compiler compiles each module independently, globally, as if it were compiled
all at once, even if internally it compiles files only when required, thus the compiler
can determine what are the declarations that have been published. Entities that have
not been published can be compiled as aggressively as the compiler is capable of. For
example member functions for a class that has not been published, and that are not
called within the module, and whose address is not stored in a function pointer or a
delegate function pointer, can be removed from the module without harm, members
of the class that are only accessed by deleted member functions can also be removed
from the class, for example a stack that is just declared but never used, even though
its constructor and destructor are not completely trivial, the compiler can determine
that the work that it does has no side effect so the object can be removed. Classes de-
clared vital never have objects of their type optimized this way.

Data within a struct, union, or class struct type are never optimized, i.e re-
moved, even if they are not published because the entity presumably exists to com-
municate through its memory layout in a way that requires the layout to be honored.

8.5 Module specification

A module is the result of compiling and linking together a set of source code files,
the desired name of the module is specified as an argument:

$ coogl file1.cog file2.cog file3.cog -o name
$ coogl name # equivalent, name.spec lists the source files
$ cat name.spec
file1.cog
file2.cog
file3.cog
$

The result of the compilation and linking is an executable or a dynamically loadable
program file named with the module name and possibly with an extension depending
on the underlying operating system (e.g. .exe or .dll on Windows; or without an
extension or with .so on UNIX/Linux). A module specification file is also produced

148 Name spaces, modules, and initialization order Chapter 8

with the .pubmod extension. A directory is created with the name of the module fol-
lowed by -out, inside of it there are 5 or more files for each source code file, their
names are the same as the source code file name but with a different extension. There
is a public specification file with .pub extension, a protected specification file with a
.prot extension, a C source code file with a .c extension, a header file with a .h
extension, and an object file e.g. a .o or .obj file, there can be an assembly source
code file with a .s extension if machine level assembler instructions were requested
with the -S compilation option.

The compilation of a module can specify module specification files for other mod-
ules (.pubmod files) as part of the source code file list, for example when the entities
exposed publicly by the module are to be used by the module being compiled.

A module that has the main() function compiles into a module that can be invoked
as a program, a module with the main() entry point is referred to a program module.
Modules that are not a program module are meant to be loaded dynamically at run
time, or automatically when another module that was built against it is loaded either
at program startup time or when the other module is dynamically loaded.

Note that a module specification is extra-linguistic in the sense that it is not ex-
pressed within the source code of the module, it is expressed externally as an invoca-
tion of the compiler. Modules have no relationship with namespaces, modules and
namespaces don’t have to be in a one-to-one relationship with each other, but some-
times they are when required by the programmer, for example by having the C stan-
dard library in a module that also contains all of its source code within the libc
namespace, and when there are no other namespaces declared within its source code.

Arguments to the compiler can be specified in the command line or in the
name.spec file, the arguments have to be consistent across recompilations of the
module, the file name.args is produced by the compiler to contain the arguments
that were used in the prior compilation and it is used to decide if a full recompilation
is required, or if incremental recompilation is appropriate.

A module might be compiled with various compilation arguments, for different in-
struction sets, various levels of optimization or debugging information, etc. To allow
multiple such compilations to coexist with each other the --target target argu-
ment can be specified, the output files of the compilation are then: name-target,
name-target-out, name-target.pubmod, and name-target.args.

8.6 Controlling access to class as type vs as constructor

Sometimes it is required that objects of a given class type not be allowed to be de-
clared in a specific way, for example on the stack, globally, or as members of other
classes, while still allowing objects to be manipulated through pointers to them. If the
class is declared priv, then not even pointer variables that refer to the class type can

8.6 Controlling access to class as type vs as constructor 149

be declared. If the class is declared priv in the outer most scope, i.e. globally, then
this restriction applies only to other source files, but it still allows declarations within
the same source file to use it.

Use of a class as a type to declare objects or arrays of objects of that class, can be
constrained independently from the use of the class to declare pointers to objects or
array descriptors that refer to arrays of objects of that class. Objects and arrays of ob-
jects require that the constructor be invoked at declaration time. Pointers and array
descriptors don’t require that the constructor be invoked at declaration time.

An accessibility modifier can be placed immediately after the closing parenthesis of
the class constructor argument list, or immediately after the class name for classes
whose constructor doesn’t have an argument list. These accessibility modifiers, when
present, control the use of the class: as a generic argument type, and as a constructor
when it needs to be invoked to construct an object, i.e. when an object or an array of
objects is declared. The declarations of xp , ip, and gp are valid, the declarations of
x, i, and g are not:

pub class xval priv { pub int xx = 0; }
pub class ival(pub int ii = 0) priv {}
pub class gen(genre void type) { pub type tt; }
int f(xval xp[], ival *ip, decl gen(class ival *) gp) {}
xval x[10]; // error: xval not accessible
decl ival(0) i; // error: ival not accessible
pub gen(class ival) g; // error: ival not accessible

8.7 Name spaces

A collection of related entities can be declared with a namespace declaration:

pub namespace libc { // standard C library
 pub struct FILE { /*...*/ };
 priv FILE filetab[3];
 pub int lit EOF = -1;
 pub int fgetc(FILE *fp) inline ...;
 pub int fputc(int c, FILE *fp) inline ...;
}

A namespace declares a named scope in which other entities can be declared, enti-
ties declared within a namespace must be declared with an accessibility modifier,
they are global declarations as if they were declared in the global name space, they
are not member declarations as if they were members of a class. A namespace decla-
ration is not a class declaration, it doesn’t contain constructor code, a namespace is
not a type declaration, the name of the namespace can not be used as a type.

COOGL language related compile time and run time support declarations are all in
the lang name space. The COOGL library is defined within the lib name space.
The standard C library is defined within the libc name space, part of it shown

150 Name spaces, modules, and initialization order Chapter 8

above.

pub namespace lang { ... }// COOGL compile and run time support
pub namespace lib { ... } // COOGL library

Declarations can be added to a name space, in a source code location that is sepa-
rate from its declarations, with extend:

extend namespace libc {
 pub lit FILE *stdin = &filetab[0];
 pub lit FILE *stdout = &filetab[1];
 pub lit FILE *stderr = &filetab[2];
 pub int getchar() inline return fgetc(stdin);
 pub int putchar(int c) inline return fputc(c, stdin);
}

The name of the namespace can be used to refer to entities declared within the
namespace with the dot operator. For example, as shown below for libc:

int cat() {
 int c;
 while ((c = libc.getchar()) != libc.EOF)
 if (libc.putchar(c) == libc.EOF) return libc.EOF;
 return 0;
}

The cat() function, can import into its scope the libc namespace, allowing it to
access entities declared within libc without the libc. prefix as shown below. The
import statement must be in the outermost scope of a function, class, or interface, it
can not be in a nested scope.

int cat() {
 import libc;
 int c;
 while ((c = getchar()) != EOF)
 if (putchar(c) == EOF) return EOF;
 return 0;
}

A namespace that has a very long name can be imported with a shorter name. Thus
preventing the names from polluting the local name space while making their use less
cumbersome. For example, assuming:

namespace C99_standard_library { ... };

The excessively long name can be shortened:

8.7 Name spaces 151

int cat() {
 import C99_standard_library c99;
 int c;
 while ((c = c99.getchar()) != c99.EOF)
 if (putchar(c) == c99.EOF) return c99.EOF;
 return 0;
}

Use of import in the global scope is allowed. Legacy C code, on a file by file basis
can be adjusted, as COOGL code, to use the C library definitions as if they were a
bunch of global symbols, for example:

import libc;
int cat() {
 int c;
 while ((c = getchar()) != EOF)
 if (putchar(c) == EOF) return EOF;
 return 0;
}

An alias declaration can be used to provide access to an individual symbol in the
namespace without having to import the whole namespace.

int cat() {
 priv alias getchar = libc.getchar;
 priv alias EOF = libc.EOF;
 while ((c = getchar()) != EOF)
 if (putchar(c) == EOF) return EOF;
 return 0;
}

8.8 Modules and namespaces are independent concepts

Modules and namespace are unrelated facilities, a module might contain declara-
tions of entities within multiple namespaces, and a namespace might be defined in
one module and extended within other modules. Sometimes programmers choose to
place all the declarations for a namespace within a single module, and that module is
made to contain only declarations within that namespace.

8.9 Class initialization

A class might have some data structures that need to be initialized before objects of
its type are constructed. Declaring such data structures as static members is all that is
needed, i.e. their construction causes the class data structures to be appropriately ini-
tialized. If the initialization is particularly complex, to the point that it is impossible
through individual object constructions, then an auxiliary class can be declared and
its constructor made to invoke a static member function of the original class to do the

152 Name spaces, modules, and initialization order Chapter 8

complicated initialization. Thus the construction of a static object of the auxiliary
class triggers the initialization. The class keyword, below, uses the auxiliary class
hinit() for its initialization which occurs when the object dohinit is constructed:

class keyword {
 return;
 priv static hash(str, int) h;
 priv static str("if") if_kw;
 priv static str("while") while_kw;
 // ... same for all COOGL keywords ...
 priv enum { IF, WHILE };
 priv static class hinit {
 h.insert(&if_kw, IF);
 h.insert(&while_kw, WHILE);
 // ... same for all COOGL keywords ...
 }
 priv static hinit dohinit;
}

8.10 Global construction order

Construction of global objects follows this order:

 Objects declared within classes are constructed in declaration order.

 Classes and namespace are sorted in a user specifiable class order, by de-
fault: pragma, lang, libc, and lib. Classes and namespace that are not in
the user's list are added, sorted, to the end of the list, sorting uses the file-
name where the class is declared as the primary key and the class name as
the secondary key. Note that the order of files is also specifiable by the user.

 Static objects are constructed according to the order of their call type in the
order described above. All the static objects of a class type are constructed
prior to the construction of the static objects of the next class in the order.

 Construction of global objects whose class is not in the class order proceed
in file order. The order of the files is specifiable by the user.

 Unspecified files, if any, are sorted by their names, and follow the list of files
specified by the user, if any.

Compilation fails if objects are used prior to their construction. A naming conven-
tion would be required to make name based sorting more usable, name based sorting
is mostly for stability and determinism. The user specifiable lists are specified outside
of the language syntax, the lists are specified in files as part of the command line to
the compiler. To facilitate the maintenance of the lists, even though there are two log-
ical lists described above, the lists themselves can be composed from multiple files
which are appended in order to form the two logical lists.

9 - More about control flow and input output

“At one point, I took BCPL from Martin Richards at
MIT and converted it into what I thought was a fairly
straight translation, but it turned out to be a different
language so I called it B, and then Dennis took it and
added types and called it C.”

--Ken Thompson

The COOGL control flow extensions to C are: function destructors,
the on statement, and the loop statement which works in conjunc-
tion with loop member function that encapsulate iteration. Goto
statements can not jump ahead of an object declaration that would
still be in scope at the target of the jump. The syntax return ex-
pression; is valid within void functions. The value of vital func-
tions must be explicitly used, objects of a vital class can not be the
subject of optimizations, each and everyone of them must be con-
structed and the destructor invoked on it. Jump statements cause the
destruction of objects that are no longer reachable. COOGL does not
have nor does it need structured exception handling, because it does
not have constructs such as operator overloading or conversion opera-
tors which are incapable of reporting errors other than by throwing
exceptions.

9.1 Replacement of goto out idiom with deinit()

A function's deinit() is invoked at function return time, it can be used to re-
place uses of the goto out idiom. This idiom consists of one or more forward goto
out statements where the out label is towards the end of the function. The code after
the out label is where cleanup and resource releasing occurs for various paths that
fall through it or that goto it. After the cleanup and release of resources the function
returns, which is part of the idiom.

The goto out idiomatic code can be replaced with a deinit() function together
with return statements replacing the goto out statements. The C example below,
is rewritten in COOGL using deinit(), it is as efficient as the C code shown. The
reason for that is the compiler's single copy function in line expansion ability which
makes the compiled COOGL version equivalent to the C version.

154 More about control flow and input output Chapter 9

An example of the goto out idiom, written in C and with deinit() in COOGL:

void func() { /* C code */
 char buf[1024];
 char *m = buf;
 bool open = false;
 file_t f;
 int error;
 error = file_open(&f, "a");
 if (error)
 goto out;
 open = true;
 size_t len = file_size(f);
 if (len > sizeof(buf)) {
 char *x = malloc(len);
 if (!x) {
 error = ENOMEM;
 goto out;
 }
 m = x;
 }
 error = file_read(&f, m, sz);
 if (error)
 goto out;
 work(m, sz);
 if (invalid_condition) {
 error = EINVAL;
 goto out;
 }
 final_work(m, sz);

out:
 if (open) file_close(f);
 if (m != buf) free(m);
 file_deinit(&f);
 return error;
}

void func() { // COOGL code
 priv char buf[1024];
 priv char *m = buf;
 priv bool open = false;
 priv file f;
 int error
 error = f.open("a");
 if (error)
 return error;
 open = true;
 size_t len = f.size();
 if (len > sizeof(buf)) {
 char *x = malloc(len);
 if (!x)
 return ENOMEM;
 m = x;
 }
 error = f.read(m, sz);
 if (error)
 return error;
 work(m, sz);
 if (invalid_condition)
 return EINVAL;
 final_work(m, sz);
 return error;

 priv void deinit() {
 if (open) f.close();
 if (m != buf) free(m);
 }
}

9.2 on statement

Input and output that is terse, type safe, and extensible, requires a syntactical nota-
tion of some kind. The C printf() and scanf() functions are not type safe, they
require that the type of each argument be specified in the format string. The format
string is interpreted at run time, errors encountered at run time include: incorrect out-
put and invalid memory accesses. Even C compilers that support type checking of
printf() and scanf() format strings, such as the GNU C compiler (gcc), are lim-
ited to the specific types and format options known by the compiler. Furthermore,

9.2 on statement 155

they can not type check format strings specified at run-time. The C printf() and
scanf() functions are not extensible.

The on statement was added to COOGL to support extensible and type safe input
output, but it has no knowledge about input output, and can be used for other pur -
poses unrelated to input output. The on statement specifies, within parenthesis, a
semicolon separated list of expressions, followed by a function invocation expres-
sion. Each expression in the list is evaluated in left to right order, after each expres-
sion is evaluated the function invocation expression is invoked, as a member func-
tion, on the object that is the result of the expression evaluation.

In this example on is used to implement class point input output, it assumes the
input output support on fundamental types provided by the COOGL library, the rea-
son why these member functions return int will become clear shortly when the
value that on can produce is explained further below.

class point(priv int x, priv int y) {
 return;
 pub int print() return fprint(libc.stdout);
 pub int scan() return fscan(libc.stdin);
 pub int fprint(libc.FILE *f) {
 int n = on ("x="; x; " y="; y) fprint(f);
 return lang.on_int_count_result(n, 4);
 }
 pub int fscan(libc.FILE *f) {
 int n = on ("x="; x; " y="; y) fscan(f);
 return lang.on_int_count_result(n, 4);
 }
}

An example program that does input and output on point objects is:

int main() {
 point(1, 2) a;
 point(10, 11) b;
 on ("we have two points:\n";
 " a is "; a; '\n';
 " b is "; b; '\n';
 "using this form: x=4 y=5 x=14 y=15\n";
 " enter new values for a and b: ") print();
 on (a; " "; b; '\n') scan();
 on ("new value of a: "; a; '\n';
 "new value of b: "; b; '\n') print();
}

For the examples above to work, the types int, strlit(class const char) ,
and char require print() and scan() member functions, COOGL allows types to
be extended, to have member functions defined for them. A simple implementation of
those members, using the C library, are shown further below.

156 More about control flow and input output Chapter 9

The objects in the expression list of the on statement are of arbitrary types. The
member function invocation follows after the parenthesized list of expressions. For
the on statement to be valid, each expression in the list must have a member function
whose name and signature matches the member invocation expression. The on syn-
tax is superficially similar to the for(expr1; expr2; expr3) syntax in the way in
which the list of expressions is specified, i.e. a semicolon separated list within paren-
thesis.

9.3 on expression

The on statement can be used to produce a value through which results of multiple
operations are reported, the value can be used to initialize a variable being declared,
or in an outermost assignment expression, or in a return expression, but not in a
nested assignment expression. This restriction simplifies the language, it also pre-
vents code from using multiple on statements in unboundedly complex expressions.
When on is used in these circumstances it is called an on expression. Examples of on
expressions producing a value follow:

int main() {
 point(1, 2) a;
 point(10, 11) b;
 int n = on ("we have two points:\n";
 " a is "; a; '\n';
 " b is "; b; '\n';
 "using this form: x=4 y=5 x=14 y=15\n";
 " enter new values for a and b: ") print();
 assert(n >= 0 && n <= 9 || n == EOF);
 if (n != 9) libc.exit(1);

 n = on (a; " "; b; '\n') scan();
 assert(n >= 0 && n <= 4 || n == EOF);
 if (n != 4) libc.exit(2);

 n = on ("new value of a: "; a; '\n';
 "new value of b: "; b; '\n') print();
 assert(n >= 0 && n <= 6 || n == EOF);
 if (n != 6) libc.exit(3);
}

The member functions applied to the objects in an on statement all must have the
same return value type. They must all be void, or if they are not, they must all return
a signed integral type. The control flow aspects of the on statement are dictated by
whether a value is returned or not, i.e. signed integral vs void, they are not affected
by whether the value is used or not by the on statement. By definition the value is al-
ways used in an on expression.

9.3 on expression 157

If a value is returned by the member function, this means that an error might have
occurred as the result of invoking the member function on one of the expressions, in -
voking the member functions in subsequent expressions would only add to the confu-
sion, for example by producing confusing output or misreading values into the wrong
variables, thus it is important to stop the processing when an error is reported.

The on syntax is a general purpose mechanism, it can not be tied intimately to the
requirements of specific legacy C interfaces to the point that its generality is affected,
but it is designed in such a way that the values they return can be produced by the on
statement. For example, in C, printf() returns EOF or the number of bytes written,
and scanf() returns EOF or the number of variables that were scanned successfully.
For the purposes of this discussion, assume that EOF is a negative value, it is -1 in
every platform ever encountered by the author. Certainly every platform currently
supported or intended to be supported by COOGL defines it as a negative number.

When a negative value is returned from a member function invocation it means that
an error occurred, and processing must stop. If a value of zero is returned, it means
that the operation was not performed, and processing must also stop. A positive value
means that the operation was performed and processing should continue.

If a positive value is returned by the first member function invocation of the on
statement or expression, that value and all subsequent positive values are accumu-
lated, i.e. added, and the accumulated value is the value of the on statement. This im-
plies that when at least one member function succeeded, the value of the on state-
ment will never be negative, even if the processing of a subsequent member function
call returned a negative value.

At this point a translation example will help the explanation of how an on that pro-
duces a values is translated, this code fragment:

n = on (a; " "; b; '\n') scan();

Is equivalent to this COOGL code:

{
 if ((n = a.scan()) > 0) { // scanned something or EOF?
 int c; // same type as type of n
 if ((c = " ".scan()) > 0) {
 n += c; // accumulate scanned count
 if ((c = b.scan()) > 0) {
 n += c;
 if ((c = '\n'.scan()) > 0)
 n += c;
 }
 }
 }
}

If the value returned by a scan() member function invocation is not positive, the

158 More about control flow and input output Chapter 9

remaining scan() operations are skipped. If a negative value is returned by any of
the scan() member function invocation, other than the first one, it doesn’t affect the
value of n, thus the number of elements processed will be returned if a partial num-
ber of elements were processed. The individual scan() operations could have re-
turned the number of bytes read, instead of the number of elements processed, the
generated code would accumulate the number of bytes read or the number of ele-
ments processed irrespective of the meaning of the value returned. The return value
convention for scan(), fscan(), print(), and fprint() is based on the C
<stdio.h> interfaces, they are meant to be compatible and similar to them because
they operate on open files based on the <stdio.h> FILE type. They return:

 EOF, a negative value, indicates end of file or some other error condition, the
libc.feof(), libc.ferror(), and libc.clearerr() functions can be used
to determine what actually happened and how to proceed.

 0, value couldn’t be scanned or printed, for example an int was to be scanned
but the next characters to be read did not form an integer value, i.e. not one or
more digits possibly preceded by a + or - sign.

 1, value was successfully scanned or printed.

Which results in a return value convention for an on expression, with one or more
objects being print() or scan(), returning the number of elements processed, or
EOF if an error occurred with the first element, thus proper error handling on these
on expressions entails checking for the value being different than the number of ex-
pressions in the on expression, and if different, then doing whatever is appropriate,
particularly interactive programs can re-prompt the user for valid input.

A helper function is provided to aid in producing the correct return value, its re-
sult argument is the value produced by an on expression used to implement the op-
eration, wanted is the number that result should be equals to if all the member
functions in the on expression did their work, see §9.2 for example uses of it.

extend namespace lang {
 pub int on_int_count_result(int result, int wanted)
 promise(result > 0 && result <= wanted) inline
 return result == wanted ? 1 : result >= 0 ? 0 : result;
}

The code shown above is for illustration purposes, the code generated might be
similar to it, when the number of expressions in the on statement is small, but if it is
large, a table of delegate function pointers is created and a run time helper function is
invoked instead, which performs the work inside the first if with a for loop. The
equivalent COOGL code would then be:

9.3 on expression 159

{
 typedef int (*scandfp)() deleg;
 scanfp scantab[4] = {&a.scan, &" ".scan,
 &c = b.scan, &'\n'.scan};
 n = lang.on_array(int, scantab);
}

The helper function is similar to the function that follows, but it uses generic types
instead of the specific type int, see §1 for the actual generic helper function which,
also handles argument passing to the member functions.

extend namespce lang {
 int on_array(on_array.delegate a[]) require(a.max[0] > 0) {
 pub typedef int (*delegate)() deleg;
 int n = a[0]();
 if (n > 0)
 for (delegate *dp = a; ++dp < a.end;) {
 int c = (*dp)();
 if (c <= 0) break;
 n += c;
 }
 return n;
 }
}

String literal scan() and print(), their type is strlit(class const char) :

extend class const char[] {
 // type of this is: const char(*this)[]
 pub int print() return fprint(libc.stdout);
 pub int scan() return fscan(libc.stdin);
 pub int fprint(libc.FILE *f) {
 return libc.fputs(f, *this) != EOF ? 1 : EOF;
 }
 pub int fscan(libc.FILE *f) { // matches chars doesn’t
 const char mem[] = *this; // need to store them
 int c;
 for (const char *s = mem; s < mem.end; s++) {
 char e = *s;
 if ((c = libc.fgetc(f)) == e)
 continue;
 if (c == EOF) return EOF;
 libc.fungetc(f, c); // unexpected character
 return 0; // didn’t match
 }
 return 1; // matched
 }
}

Support for int scan() and print():

160 More about control flow and input output Chapter 9

extend class int {
 // type of this is: int *this
 pub int print() return fprint(libc.stdout);
 pub int scan() return fscan(libc.stdin);
 pub int fprint(libc.FILE *f) {
 char buf[64];
 size_t len = lib.inttostr(*this, buf);
 return libc.fwrite(buf, len, 1, f);
 }
 pub int fscan(libc.FILE *f) {
 libc.flockfile(f);
 libc.fskipspace(f);
 char buf[64], *p = buf, *last = buf.end - 1;
 bool first = true;
 *p++ = '+'; // implicit sign
 int v = 0, ret = 1; // assume int will be scanned ok
 for (;;) {
 int c = libc.getc_unlocked(f);
 if (c == EOF) {
 if (p == buf) ret = EOF;
 break;
 }
 if (first) {
 first = false; // + or - can only be first
 if (c == '-' || c == '+') {
 buf[0] = c; // save explicit sign
 continue;
 }
 }
 if (!libc.isdigit(c)) {
 libc.ungetc_unlocked(c, f);
 break;
 }
 if (p >= last) ret = 0; // too big, skip all digits
 else *p++ = c;
 }
 if (ret == 1 && p >= &buf[2]) { // sign and >= 1 digits
 assert(p < last);
 *p = 0;
 errno_t error;
 if ([v, error] = lib.strtoint(buf)) ret = 0;
 }
 libc.funlockfile(f);
 *this = v;
 return ret;
 }
}

9.3 on expression 161

String literal scanning is used to do input format matching, it doesn't store the char-
acters anywhere, it is used to do string literal character matching, for example for the
"x=" literal specified by point.scan() above.

This example uses the fmt(4,2) precision specification:

int main() {
 float f = 78;
 float c = ((f - 32) * 5) / 9;
 on ("temperature in Caracas: ";
 f; "(f) "; c.fmt(4,2); "(c)\n") print();
}

The native type float can be extended to support a fmt() member function used
for printing with a precision specification, a set of auxiliary formatting classes are
provided in the COOGL library. The invocation of fmt() causes the construction of
an object of type fmt, then the print() member function is invoked on that object
through the on statement.

A minimalist implementation of the fmt formatting class for the float type is
shown below. It only supports "%left.rightf" printf() equivalent formatting,
where left and right specify the number of digits left and right of the decimal period.
A trivial implementation based on libc follows:

extend class float {
 pub class fmt(priv int left, priv int right) {
 priv float value = *this;
 pub int print() return fprint(libc.stdout);
 pub int fprint(FILE *f) {
 char buf[128];
 lib.floattostr(value, left, right, buf);
 return libc.fputs(buf, f) == EOF ? EOF : 1;
 }
 }
}

9.4 Arguments to on statement member function and str strings

The expressions in the argument list of the member function invoked as part of the
on statement are evaluated for each of the expressions that control the on statement.
In the example below, the argument expression f ? f : stdout of fprint() is
logically evaluated for each invocation of fprint(). Compilers are capable of eval-
uating an expression once if it is safe to do so, as it is in this case:

void print7primes(FILE *f) {
 on (2; 3; 5; 7; 11; 13; 17) fprint(f ? f : stdout);
}

Errors can occur on both input and output, the underlying FILE streams become

162 More about control flow and input output Chapter 9

disabled until the error status is fetched, through stdout.ferror() and cleared
through stdout.clearerr(), COOGL library functions. This form of error han-
dling is appropriate for input output and doesn't require any additional language sup-
port. By stopping further operations, output doesn't become garbled with missing in-
formation, and input is not confused by values, going to the wrong variables and in-
put being consumed beyond the error condition.

The on statement can also be used for string manipulation for example by
sprint() and sscan() member functions that have as their argument a string one
which they append the formatted values they produce, or a string from which the data
is consumed and after the data is consumed it is truncated so that the data consumed
is no longer part of the string so that the next sscan() operation works on whatever
comes next on the string. The language library provides a str type that supports these
operations very efficiently. In this way on also subsumes the unsafe C variable argu-
ment functions sprintf() and sscanf() functionality.

9.5 Byte count vs operation count on value convention

The value convention of print(), fprint(), scan(), and fscan(), when used
in an on expression is based on the number of operations that succeeded. It is the
same as the C standard library scanf() return value convention, C’s printf() re-
turn value convention is based on the number of bytes written, which is not very use -
ful.

9.6 Compile time and run time enabled traces with on

Traditionally in C the preprocessor is used to define macros for the generation of
traces. These macros usually have two versions, one that does nothing and another
that does the tracing, the version of the macro chosen depending on some compile
time configuration, maybe through #ifdef to choose between production and debug
builds. The trace macros themselves, when they generate code, usually have a fast
way of being disabled at run-time, usually through a test of some global state. The
evaluation of arguments to the macro, including function invocations does not occur
when the tracing is disabled at run-time.

Compile time infrastructure can be done in COOGL with the on statement and a
dedicated trace() member function for that purpose, similar to how print() is
done. Alternatively with a family of functions whose argument expressions are only
evaluated when tracing is enabled, see the §9.7 section for more about that.

To cause the whole on statement to disappear, the first object in the on expression
list can be a dummy type, a version of which that causes its trace() member func-
tion to always return -1, and that is inlined, allows the compiler to see that the on is
to do no work after the first trace() on the first expression, and because that func-

9.6 Compile time and run time enabled traces with on 163

tion does nothing, the whole on statement produces no code. For example:

pub namespace tr {
 pub class start { pub int trace() return -1; }
 pub class stop { pub int trace() return -1; }
 pub start go;
 pub stop end;
}

Two versions of the code above would exist, one as shown above, another with ac-
tual tracing support. Assuming that other types have trace() member functions
added to them:

import tr;
int doit(int n, char name[]) {
 on (tr.go; "n="; n; "name="; name; tr.end) trace();
}

The version of namespace tr that supports tracing would have its start class
test whether traces are enabled at run-time, and if not, return -1. The function tr.-
go.trace() would prepare whatever memory is required for the tracing, insert com-
mon information for all traces (global sequence number, cpu, thread id, time, function
name, etc.), use of trace() on the data to be traced would then go into that memory,
and tr.end.trace() would complete the trace record. If tracing occurs to per-
thread tracing buffers then other than a global sequence number amount of shared
state no interference would occur between the threads. If the traces are to be in a
global trace buffer, then more complicated shared state management would be re-
quired.

9.7 Optional argument expression evaluation

The declaration of a function’s argument list can have one of the comma argument
declaration delimiters be a semi-colon instead of a comma. Invocation of such a func-
tion requires that the same argument delimiter be a semicolon. A function with such a
declaration indicates to its user that the arguments after the semicolon might not be
evaluated unless their values are required by the function. A valid degenerate form of
this syntax allows for a starting semicolon prior to the argument declarations and cor-
respondingly prior to the argument expressions in the function invocation.

An example use might be a function that has a fast path that only requires the argu-
ments after the list for its slow path, so the cost of evaluation those expressions,
which might involve function calls, etc. does not have to be incurred in the fast path.

An example is a collection of trace functions that are split into an inline function
and an out of line function which is only invoked by the inline function when tracing
is actually to occur, i.e. when run-time traces are not disabled, at compile time, or at
run-time. The inlined fast path could generate no code whatsoever, for example in a

164 More about control flow and input output Chapter 9

production build. Or whose fast path tests to see if tracing is enabled, and only in that
case, allows the cost of the argument expression evaluation to occur when the inlined
code calls the actual tracing function.

A sketch of a tracing example follows. It is important to emphasize that requiring
the semicolon to be used both in the declaration of trace() and in its invocation
makes the contract between it and its user explicit, the programmers that call
trace() knows that f(), g(), and h() will not be invoked under some circum-
stances, in this case when traces are disabled, so their code should not depend on
their invocation.

bool e = false; // run-time trace control; or
// lit bool e = false; // compile-time trace control

void trace(bool enabled; uint a0, uint a1, uint a2) inline {
 if (enabled) tracex(a0, a1, a2);
}
void tracex(uint a0, uint a1, uint a2) {
 on ("a0="; a0; "a1="; a1; "a2="; a2; "\n") print();
}

// f(), g(), and h() are not invoked unless e is true
int main() { trace(e; f(), g(), h()); }

9.8 Goto target restrictions

COOGL ensures that objects declared on the run time stack are constructed when
their declarations are executed and are destroyed when the scope in which they are
declared is exited. A goto that reaches a statement in which an object is in scope is
valid only if the object had already been constructed prior to the goto statement. If
the goto causes the object construction to be skipped, a compilation error occurs.

Frequent use of declarations intermixed with statements reduces the ability of goto
statements to be used. For example, a goto statement into the body of a for that has
some variables declared before the label makes such a control transfer invalid.

The most common forms of goto are:

 The goto out idiom, and the similar goto error idiom, which goes to a
label towards the end of the function to do cleanup and then return; and

 The goto restart idiom, where some operation that usually is performed
by straight line code in the function might need to be restarted from almost
the beginning because of some rare condition that is most easily handled by
restarting the operation.

Though a simple iteration statement coupled with continue instead of the goto
restart would be a normal rewrite of this second form of goto, the added level of

9.8 Goto target restrictions 165

indentation and the visual misconception caused by the loop construct leads some
systems programmers to prefer the goto restart idiom. This form of goto does
not run into trouble related to jumping past object declarations because it is a back-
wards jump to the same or an outer scope.

The goto out idiom can run into the trouble of jumping past object declarations.
The notion of destructors for functions (code that runs at function return time) allevi-
ates most of the goto out needs without the visual clutter of a nested scope, it also
tends to make such functions shorter and easier to follow. If the goto out is abso-
lutely required for some code, it can still be used by:

 Moving all declarations before the goto statement so that there are no inter-
vening declarations; or

 Enclosing intervening declarations in scopes that are exited before the target
label of the goto statement;

If trouble still occurs, it is probably time to rewrite the code and simplify it, because
most likely it has accumulated too many independent isolated changes over time and
a rewrite would likely reduce its size, complexity, and bugs.

9.9 Use of return expression; in void functions

A void function can use the return expression; form of the return statement,
for example:

void f() {...}
void g() {
 if (a()) return f();
 ... complicated code follows ...
}

This relaxation simplifies the language by allowing void functions to be thought of
as returning a value, a void value. With that in mind, the return expression;
statement in a void function can use any void expression. Without this simplifi-
cation of the language the g() function above would have to be written this way:

void g() {
 if (a()) {
 f();
 return;
 }
 ... complicated code follows ...
}

9.10 Function values that are vital

A function that has the vital keyword immediately after the closing parenthesis of

166 More about control flow and input output Chapter 9

its argument list indicates that the value can not be ignored, it must be used. Some-
thing must be done with it, otherwise a compilation error occurs.

For example, a function whose value is required as an argument to another func-
tion, to ensure that nested uses are correct. In example() below disable_lock()
disables interrupts to a certain level and then acquires a lock, it returns the previous
interrupt enabled level; unlock_enable() unlocks the lock and restores interrupts to
the level specified in its argument, these are AIX kernel APIs, many operating system
kernels have APIs similar to them:

int disable_lock(simple_lock_t *lock, int pri) vital { ... }
void example() {
 int pri1 = disable_lock(&lock1, INTIODONE);
 some_work(); // needs lock1
 int pri2 = disable_lock(&lock2, INTMAX);
 more_work(); // needs lock1 and lock2
 unlock_enable(&lock1, pri2);
 final_work(); // needs lock2
 unlock_enable(&lock2, pri1);
}

The re-enablement of interrupt levels must be done in the reverse order shown
above, even though the locks are released in a different order. This locking idiom oc-
curs when a hash or a hash chain is locked, then an object found through the hash is
locked, then the hash lock is released and the object lock is retained while some ob-
ject manipulation occurs.

The object oriented idiom of encapsulating the lock operations in an object and us-
ing the object destruction to cause the lock to be released, other than being obscure,
would be incorrect for the example above.

9.11 Classes whose objects are vital

A class declared with vital indicates that objects of its type must all be created
and individually destructed, no optimizations are allowed on them to reduce the num-
ber of short lived objects that are created, for example, if they are value like,
init_deinit() and reinit_deinit() won't be invoked on them. For example:

class trace() vital { ... }

9.12 Jump statements cause object destruction

Jump statements, i.e. break, continue, goto, and return cause the destruction
of any constructed in-scope objects that won't be in scope after the jump. Destruction
occurs in the opposite order of their construction. Between the jump statements and
their target an arbitrary amount of code can be executed, including infinite loops and
even program normal or abnormal termination. Thus instead of the C assembler like

9.12 Jump statements cause object destruction 167

almost immediate control transfer, additional work could occur during their execu-
tion. This is a significant expansion of the behavior of these constructs when com-
pared to their C behavior, it has both advantages and disadvantages, particularly be-
cause control transfer is no longer obvious. Other work that occurs under cover is the
destructor invocations when objects are no longer in scope, which is not apparent
when the scope is closed. In contrast, object construction is correlated to the object
declaration because the declaration and construction occur at the same time.

The standard C library functions setjmp() and longjmp() can not be be used in
COOGL they are unsafe. Even though they are useful for very drastic error handling,
or to build higher level mechanisms for error handling and they can be of good use in
the hands of a competent system designer they are best left out of the language.

9.13 Loop-member functions and the loop statement

To aid in the encapsulation of containers, (lists, trees, hashes, etc.), a class can im-
plement a special kind of member function, a loop-member function, used to abstract
the control flow and details related to iterating over the contents of the container. As-
suming the iterator non-static member class of stack, from §4.14, the class
stack can implement a loop-member function to iterate over the values of a stack,
top to bottom. Note that the loop-member function, values(), produces a series of
values, each value is produced by the continue itor.get() statement:

class stack(size_t max, int *error) promise(empty()) {
 // ... rest unchanged ...
 pub loop int values() {
 decl this->iterator itor;
 while (!itor.end())
 continue itor.get(); // produce int values
 }
}

Use of the loop-member function values() is shown below:

int average(stack *s) {
 large total = 0;
 int count = stack->count();
 if (!count) return 0;
 loop (int v = stack->values()) total += v;
 return cast(int) (total / count);
}

There are two forms of the loop control flow statement, a very simple one, shown
above. A second loop statement allows the 3 for statement optional expressions to
follow, separated by semicolon, the loop control declaration:

168 More about control flow and input output Chapter 9

void add_top_n(stack *s, size_t n) {
 int v, sum = 0;
 loop (int v = stack->values(); size_t i = 0; i < n; i++)
 sum += v;
 return sum;
}

The controlling expression of the loop statement can also be an assignment, it
doesn’t have to be a declaration, as shown in add_top_n() above. The result of
compiling show_top_n() is code similar to the code shown below:

int add_top_n(stack *s, size_t n) {
 int v, sum = 0;
 { decl this->iterator itor;
 for (size_t i = 0; !itor.end() && i < n; i++) {
 v = itor.get();
 sum += v;
 } }
 return sum;
}

The current version of the compiler, requires that the loop-member function pro-
duce its values from within an iterative control flow statement, either a for or a
while statement, and not from a do while or another loop statement. An addi-
tional restriction is that the values be produced from within a single location within
the iterative control flow statement, and not through recursive calls to itself, or other
functions. A future versions of the compiler could support multiple value producing
locations relatively easily. It is unlikely that a future version of the compiler will sup-
port recursively producing the values, it would require a co-routine like environment
with its own run-time stack to be preserved while the loop-member function was ac-
tive, i.e. while the loop-member function was being used to iterate on the container,
and the disposal of it if the loop statement terminated prematurely through a break,
a goto, or a return.

Its invalid to invoke a loop-member function other than from the loop controlling
declaration. The restrictions against recursion could be removed, but they don’t seem
worthwhile, it would require allowing loop-member functions to be invoked from
places other than loop-member functions, which would be meaningless if executed
from outside a loop-member function call-chain.

Recursive algorithms can be made non-recursive, with some extra effort, and even
though usually the code is not as easily comprehended, non-recursive algorithms can
be used to work-around this restriction. Generic high performance containers are usu-
ally very well written code, and the extra effort to remove recursion usually pays off
in higher performance, thus this restriction is not as bad as it might seem.

 If an inherently recursive algorithm needs to be used by the loop-member function,

9.13 Loop-member functions and the loop statement 169

it can arrange its own co-routine based implementation, it might also benefit (in run-
time performance) if the underlying iterator implementation uses a buffer that is man-
aged by the loop-member function, emptied by it, and replenished with multiple val-
ues (recursively) each time its emptied, thus reducing the costs of co-routine switch-
ing, increasing instruction cache locality, and benefitting from the inlining of the
itor.get() and of the loop-member function into the loop control flow statement.

9.14 No structured exception handling

COOGL does not have structured exception handling mechanisms, it doesn't need
them because it doesn't have other mechanisms, such as operator overloading or con-
version operators, which in other languages make exception handling a requirement.
The COOGL design excluded structured exception handling support because of the
flow control complexity morass that it engenders. The language complexity that re-
sults from language based exception handling is very high, particularly for a feature
to be used only to handle exceptional conditions.

Structured exception handling, as a programming language facility, is a language
design mistake, at least in COOGL. The fundamental reason is that once exceptions
are thrown freely by a multitude of code, libraries, and even by language facilities
themselves, no code can be written without worrying about what exceptions might be
thrown by functions down the call chain that ought to require continued consideration
in the current code.

Reliable systems can easily be written with traditional error handling paths, out of
line exception handling functions, and consistent use of return codes. Well designed
and well constructed systems might have one or more layers that represent failure do-
mains where errors are handled through out of line execution. Those systems are usu-
ally built with custom allocators, lock stacks, and setjmp() longjmp() like facili-
ties. They are much easier to build, understand and maintain because it is not the pre-
occupation of every function, and sometimes every block of code, to worry about
these exceptional circumstances. By definition, exception handling code is excep-
tional, and its correctness is correlated with its actual testing, which implies that only
a sideband orthogonal mechanism used between a few layers is the best way to orga-
nize such code. The alternative of having exception handling code spread throughout
the whole code base, and making it the source of concern for every line of code writ -
ten, is impossible to maintain, it is, after all, a form of a non local goto, but even
worst because the target of these non-local goto, the label is determined at run-time,
with the ever present possibility in some cases that there might not be a target for the
exception being thrown.

Providing language support for just a few exception handling layers is nothing
more than to add a feature that will be hardly used, so it shouldn't be in the language.
Providing it so that a moderate number of exception handling paths be written, thus

170 More about control flow and input output Chapter 9

possibly needing it in the language, is nothing more than an invitation for an untested
morass of paths, or even worse, code that actually actively uses these glorified non-
local goto statements under normal product operation. In some languages, such as
Java, its standard library interfaces include exceptions being thrown as a means of re-
porting errors, for example when a file open fails, which is not something excep-
tional, it is something that should be expected. Structured exception handling is simi-
lar to allowing a drunken pilot fly an airplane full of passengers, a very bad idea.

A system whose error handling would have been based on setjmp() and
longjmp() together with lock stacks and cleanup functions can still be implemented
by performing the cleanup work in the exception handler and coordinating with a
control thread to terminate the thread that caused the exception. Alternatively, the
thread can move its run-time stack to a different stack and start over from there after
disposing of its prior stack.

10 - Operators, expressions, keywords, and behavior

“At one point, I took BCPL from Martin Richards at
MIT and converted it into what I thought was a fairly
straight translation, but it turned out to be a different
language so I called it B, and then Dennis took it and
added types and called it C.”

“B is a computer language directly descendant from
BCPL. B is good for recursive, non-numeric, machine
independent applications, such as system and
language work. B, compared to BCPL, is syntactically
rich in expressions and syntactically poor in
statements.”

--Ken Thompson

COOGL inherits C's operators, their behaviors are identical. Some
operators, when used with a few other operators must parenthesize
their sub-expressions. Additional operators added by COOGL: sym-
bol lookup in function’s scope; absolute symbol referencing; fine
grain function inline control; checked operators that perform arith-
metic of signed or unsigned integers, and indicate if the operation
overflowed or involved a division by zero.

COOGL doesn’t have undefined behavior, wherever the C11 stan-
dard states undefined behavior, COOGL code behaves in a docu-
mented manner characteristic of the environment where the compiled
code runs.

10.1 Parenthesis requirement in certain error prone expressions

Parenthesis are mandatory in certain expressions to prevent certain programming
errors. The operators and their precedence levels are shown in the following page.
The precedence choices in C for the binary bitwise operators (groups 8, 9 and 10)
and the shift operators (group 5) is a common source of programming errors. Their
uses without parenthesis together with certain other operators is usually contrary to
what some programmers might have intended. Those choices are the result of C's
evolution from B, and B from BCPL, and the later incorporation of the && and ||
operators into C, replacing & and | as the natural logical operators.

172 Operators, expressions, keywords, and behavior Chapter 10

The following additional rules apply, they, mandate the use of parenthesis for the
troublesome cases:

 Uses of a binary bitwise operators: &, |, or ^ (groups: 8, 9 and 10) together
with operators: *, / %, +, -, <<, >>, <, <=, >, >= , ==, or != (groups: 3, 4,
5, 6 and 7) must have parenthesis. The binary bitwise operators have a very
low precedence, out of place between relational operators (groups 6 and 7)
and logical operators (groups 11 and 12).

Compilation Error Meaning in C Programmer Intent

i & j + 1
i & j == k
i | j * 3
i & ~1 < k

i & (j + 1)
i & (j == k)
i | (j * 3)
i & (~1 < k)

(i & j) + 1
(i & j) == k
(i | j) * 3
(i & ~1) < k

Historically the binary bitwise-and and bitwise-or operators, & and |, were
used also for logical operations in the ancestors of the C language (B, BCPL
and CPL). Those languages didn't have separate logical-and and logical-or
operators, i.e. && and ||, because the relational and comparison operators
produce a true or false value in those languages, 1 or 0 in the languages that
lack a boolean type, then expressions such as these were common and appro-
priate, the precedence of & and | didn't cause trouble in those languages, just
like this operation doesn't cause trouble in C, but this kind of use is not id -
iomatic in C:

if (min <= n & n <= max)

A problem with C is that C's historical lack of boolean types, and conver-
sions and strong type checking, causes code such as this to be silently wrong:

/* C code, some parentheses are needed to be COOGL code */
int a = 2, b = 1; /* non-zero means true */
assert(a & b); /* wrong! (2 & 1) is zero */
assert(a && b); /* right */
if (a & b > 0) go(); /* wrong! (2 & 1) is zero */
if (a && b > 0) go(); /* right */
if (a != 0 & b > 0) go(); /* right, not idiomatic */
if (a && b > 0) go(); /* right, idiomatic */

In K&R C no compilation errors occur when a & (bitwise and) operation is
performed between an integer and a relational expression, e.g. the first if
above, which is incorrect because even when both operands are non-zero, the
result of a & (bitwise and) might still be zero. Thus instead of salvaging in
COOGL these last vestiges of CPL and BCPL present in C, including the
correct but non idiomatic uses in the 3rd if above, it is best to prevent these
misuses.

 Uses of the binary bitwise-exclusive-or operator: ^ (group 9) together with

10.1 Parenthesis requirement in certain error prone expressions 173

one of the other binary bitwise operators: & and | (groups 8 and 10) must
have parenthesis. The ^ is a more complicated operation than | (bitwise-or)
and & (bitwise-and). The ^ is defined in terms of &, |, and ~ (bitwise-not)
as:

(a ^ b) == ((~a & b) | (a & ~b))

Having ^ precedence between the more fundamental operators of | and & is
counter intuitive, having ^ with higher precedence would make sense from
the mathematical perspective that more complicated operators defined in
terms of simpler ones have higher precedence than the ones on which their
definition is based. For example, multiplication is more complicated than ad-
dition, multiplication is defined as repeated addition, multiplication has
higher precedence. Thus ^ should have had higher binding than both | and
&. But because operator precedence cannot be changed in COOGL and con-
tinue to aspire to be an evolution of C, mandating parenthesis in this and the
various other cases that tend to cause confusion among some C program-
mers, is a simple improvement that prevents programming errors of this na-
ture.

 Uses of << or >> (group 5) together with *, /, %, +, or - (groups 3 and 4)
must have parenthesis. For example: i << j + k produces a compilation
error. The C language indicates that this expression means i << (j + k)
instead of (i << j) + k . Considering i * j + k means (i * j) + k,
in C and in math, and that p << k means p * 2k i.e. that the shift left opera-
tor is a multiplication by a power of two in disguise, then the precedence of
<< lower than + or - is mathematically counter intuitive. The same argu-
ment applies to right shift which is a division by a power of two:

Compilation Error Meaning in C Programmer Intent

i << j + k
i + j << k

p - q << r + s
p * q >> r / s

i << (j + k)
(i + j) << k

(p - q) << (r + s)
(p * q) >> (r / s)

(i << j) + k
i + (j << k)

p - (q << r) + s
p * (q << r) / s

Many code sequences don't need any extra parenthesis, for example in:

if (x & 1 && b == 0) go();

the C precedence already does what is expected, i.e.:

if ((x & 1) && (b == 0)) go();

10.2 Member lookup operator ^

The ^ member access operator is a unary operator (i.e. ^member) that is only valid
in expression arguments within function invocations. The member is looked up
within the name space of the function being invoked, instead of the name space of the

174 Operators, expressions, keywords, and behavior Chapter 10

calling function. Examples are shown in §7.8.

10.3 Fine grained function inline control

Section §Error: Reference source not found describes the func()inline form of
the function call operator. The use of inline is a syntactical form where the key-
word enhances the expression syntax, a kind of modifier used at function invocation
time. From a language perspective ()inline is another form of the function call op-
erator.

10.4 Checked arithmetic operators

Arithmetic operators that indicate if the operation overflowed are: ?++, ?--. ?-
(unary checked arithmetic negative), ?+, ?-, and ?* and the assignment-operation
operators: ?+=, ?-=, and ?*=. These operators can only be used with signed or un-
signed integer types, to efficiently determine if the operation resulted in an overflow.
These operators are particularly important for secure coding, where overflow detec-
tion is very important but awkward, expensive, and error prone to program in C.
Overflow detection is important to ensure that large value computations don't wrap
around in unexpected ways, possibly allowing, through the resulting unexpected val-
ues, attack vectors into the software that contains them.

Checked arithmetic operators that indicate if a division by zero would have oc-
curred are: ?/ and ?%, and their corresponding checked-assignment-operation opera-
tors ?/= and ?%=.

The precise C instruction sequence produced by these operators is carefully tuned,
through C intrinsics and/or asm expressions, to ensure that the underlying registers
are accessed as efficiently as possible. A base portable implementation of these in-
struction sequences expressed purely in C is also provided to allow the porting of the
compiler to new computer architectures and new underlying C compilers to be an
easier two step process, by allowing the tuning of these expressions to be performed
at a later phase after the compiler has been fully ported and tested.

The value of ?+, ?-, ?* , ?/, and ?% is a tuple with two members, the type of the
first is the type of corresponding arithmetic operator as dictated by the types of its ar-
guments. The second value of the tuple is a boolean, which is true if the operation
overflowed (for the first three) or if division by zero would have occurred (for the last
two), false otherwise. The value of the assignment-op operators: ?+=, ?-=, ?*=, ?/
=, and ?%= is a boolean that indicates if the operation overflowed (for the first three)
or if division by zero would have occurred (for the last two). The |= operator is used
idiomatically to accumulate the overflow condition. When overflow occurs the actual
value computed is arbitrary, but it is valid to use it in further computations, its use is
not undefined behavior. These operators are not allowed with floating point types.

10.4 Checked arithmetic operators 175

The checked-assignment, ?=, operator is an assignment operator whose value is a
boolean that indicates if the value being assigned is larger than the values that can be
represented by the target of the assignment. It is used when a larger type is used to
perform arithmetic involving values of a smaller type, and the final result is then as-
signed to the smaller type, at that point checking if the value was too large to fit. If
the value doesn't fit the result is truncated, when the types are integral.

tuple [int r, bool error]
a_times_b_minus_c_plus_d_div_e(int a, int b,
 int c, int d, int e) {
 [r, error] = a ?* b; // type of ?* is tuple [int, bool]
 error |= r ?-= c; // type of ?-= is bool
 error |= r ?+= d; // type of ?+= is bool
 error |= r ?/= e; // type of ?/= is bool
 return [r, error];
}

In the following example all the operations are performed with variables of type
large and the final value, lr, is then attempted to be assigned to a, presumably, nar-
rower variable, r, of type int. Note that for systems where the representations of
int and large are the same, the code below is equivalent to the code above, but if
int is not capable of storing every large value, and because both a multiplication
and a division are involved, it is possible that the final value might still fit in an int
while the intermediate values might have been too large for an int.

tuple [int r, bool error]
a_times_b_minus_c_plus_d_div_e(int a, int b,
 int c, int d, int e) {
 large la = a, lb = b, lc = c, ld = d, le = e, lr;
 [lr, error] = la ?* lb;
 error |= lr ?-= lc;
 error |= lr ?+= ld;
 error |= lr ?/= le;
 error |= r ?= lr;
 return [r, error];
}

10.5 Keywords

COOGL inherits from C all of its keywords and their semantics. COOGL intro-
duces several new keywords used for object oriented, generic programming, and a
few other features. The semantics of several C keywords are enhanced. A few C key-
words, that are no longer needed, were removed.

Many of COOGL new keywords and C keywords with extended or restricted se-
mantics have already been touched upon. The C keywords removed in COOGL are
shown in the table below, keywords removed from the language remain in the lan-

176 Operators, expressions, keywords, and behavior Chapter 10

guage as reserved keywords, any use of them causes a compilation error. C keywords
whose semantics have been enhanced or restricted in COOGL are also shown.

C keywords affected by COOGL

removed enhanced

auto
const
extern

long long
register
signed
unsigned
volatile

enum
union
static
void

Section §10.6 describes the removed keywords.

Use of enum to declare compile time constants is described in §20. Scoped enumer-
ations, specifically typed enumerations, and bit field structured enumerations can be
specified, see §Error: Reference source not found. Pointers can not occur within a
union declaration, see §14.7. Static members are declared with the static modifier,
see §4.3. The void keyword also corresponds to a very special class: class void.

Types added by COOGL in addition to the types that it inherited from C are shown
in the following table. From a language grammar perspective, these types (and void)
are not actual keywords, they are built in global types, see §Error: Reference source
not found. The new integer types: bool, byte, ubyte, ushort, uint, large,
ularge and unic are introduced in §18 and described in chapter §12. The C key-
words char and long are typedefs in COOGL as are uchar and ulong, which
were not keywords in C, they are also described in the same section.

Types added by COOGL, in addition to its C types

bool
unic

byte
large

ubyte
uchar

ushort
uint

ulong
ularge

Keywords added by COOGL in addition to the keywords that it inherited from C
are shown in the following table:

Keywords added by COOGL, in addition to its C keywords

identifiers declarators access modifiers statement

this
retval
argsof

class
extend
genre
fieldof
typenew

decl
pub
priv
prot

inherit
defer
redef
inline
vital

loop
promise
require

The new keywords are described in detail throughout this book, they are briefly de-

10.5 Keywords 177

scribed in the sections enumerated below.

The statement keywords:

 The loop control flow statement is presented in §9.13.

 The on statement is described in §1.4.

 The promise(expression) and require(expression) specifications are
used as part of the function declaration, prior to the function body, see §4.1.

Special identifiers:

 The current object can be referred through the this identifier, see §4.13.

 The argsof identifier stands for the a tuple whose members are identical to
the argument list of a function that argsof is a member of, see §11.9.

 The retval identifier is used to access the value returned by a function,
from the function's destructor, if it has one, see §5.23.

Declarators:

 Chapter §4 describes class, which is the central object oriented program-
ming facility.

 Classes can be extended through the extend keyword, see §7.1.

 Function and class arguments can be type names for generic programming
purposes. A type argument is declared with genre, see §11.3.

 Generic programming also makes use of the special fieldof declarator,
which allows arguments to be field names. This is described in §11.13. A
generic linked list implementations that make use of genre type arguments
and fieldof field name arguments in its implementation is in §11.15.

 Incompatible number types can be declared with typenew, see §Error: Ref-
erence source not found.

Accessibility modifier keywords:

 The access modifiers pub, priv and prot are described in §6.7.

 Local declarations within a function or class, i.e. non member declarations,
must start with the decl keyword when the base type for the declaration is a
type expression, i.e. an expression whose value is a type, see §4.4.

Other modifier keywords:

 Inheritance and polymorphism are specified through inherit, see §4.6 and
§6, together with defer and redef, see §6.4 and §6.6.

 The inline keyword provides control over function inlining, see §Error:
Reference source not found.

178 Operators, expressions, keywords, and behavior Chapter 10

10.6 Removed keywords

Several C keywords are removed from the COOGL language, they are preserved as
reserved keywords, their use results in a compilation error. The rationale for preserv-
ing them as reserved keywords is to minimize confusion when seen by C program-
mers as variable names and to allow them back in the language if the user base de-
mands it. The rationale for their removal is:

 auto - this modifier can only be used for local variables, it indicates that a
variable should be allocated on the run time stack. Its absence has the same
meaning as its presence, unless static is used, in which case the variable is
not allocated on the stack, it is allocated globally instead. This keyword is
hardly ever used by C code, it belongs mostly to the prehistory of C. The an-
cestral roots of auto are in PL/1 where it was required for stack variables.

 extern - this modifier is used to indicate that what might otherwise seem
like a local variable declaration or a global variable declaration is actually
only a type definition for a global variable declared elsewhere. It is used
when a variable or function needs to be used in source code compiled sepa-
rately from the source code that actually defines it. Uses of extern usually
appear in header files, though uses within a function are not uncommon, lo-
cal uses introduce complexity in the language because it goes against the
normal scoping rules. COOGL compilation is global, extern is not re-
quired.

 Long long - this is not actually a keyword in C, it is a special type that cor-
responds to a 64 bit type. COOGL introduces the large type which serves
this purpose without having to have special case ad hoc parsing for a single
type in the language. The ancestral roots of long long are from ALGOL68.

 register - this belongs to the early of C. It used to be used to direct early C
compilers to place a local variable in a register instead of in the run time
stack. Modern compilers do much better register allocation than a program-
mer can express through these means. Modern compilers simply ignore uses
of register, though C mandates that the address of such a variable cannot
have its address taken. Most C compilers honor that language definition left-
over.

 signed and unsigned - uses of these as types or as modifiers is not allowed
in COOGL. Instead explicitly typed integer types were added to the lan-
guage: ubyte, ushort, uint, ulong, and ularge. Declaration forms such
as these:

unsigned int ui;
unsigned u;
signed char sc;

10.6 Removed keywords 179

Are not valid in COOGL, they should be written this way instead:

uint ui;
uint u;
schar sc;

10.7 Undefined behavior and implementation dependent behavior

The definition of undefined behavior in C11 follows:

“3.4.3 undefined behavior”

“behavior, upon use of a nonportable or erroneous program construct or of
erroneous data, for which this International Standard imposes no require-
ments”

“NOTE Possible undefined behavior ranges from ignoring the situation
completely with unpredictable results, to behaving during translation or
program execution in a documented manner characteristic of the environ-
ment (with or without the issuance of a diagnostic message), to terminating
a translation or execution (with the issuance of a diagnostic message).” –
C11 3.4.3 n1570.pdf:4

Every undefined behavior aspect of the C language inherited by COOGL is treated
as “behaving during translation or program execution in a documented manner
characteristic of the environment (with or without the issuance of a diagnostic mes-
sage), to terminating a translation or execution (with the issuance of a diagnostic
message).” No aspect results in “ignoring the situation completely with unpre-
dictable results.” Furthermore “terminating execution” doesn’t occur in an uncon-
trolled way, instead an exception, that can be caught by an exception handler is docu-
mented to be raised when specific undefined behavior occurs, for example when an
array is indexed with an invalid index, or when a NIL pointer is dereferenced.

Not every aspect of undefined behavior in C is addressed in this section, a signifi-
cant source of undefined behavior in C relates to the unsafe aspects of C, for example
indexing an array out of bounds, accessing memory after it has been released, etc. In-
valid memory access aspects of C are addressed fundamentally, at the core of those
issues, by its safe language design, see §14.

COOGL source code is compiled into C11 code that does not contain any con-
structs that would be seen by the C11 compiler as undefined behavior. For every in-
stance of undefined behavior in the C11 standard a specific code generation approach
is chosen that prevents its occurrence. The approach might include causing the com-
pilation to fail and directing the programmer to address the issue at the COOGL
source code level.

For example, the underlying C11 compiler's limits for internal and external identi-

180 Operators, expressions, keywords, and behavior Chapter 10

fier lengths are determined and known by the COOGL compiler. The identifiers in
COOGL source code, after any adjustments required by the translation to C11 code,
(see Appendix §2S in page 291), are checked to ensure that the length of the adjusted
identifier doesn't exceed its length limit. If the limit is exceeded, a compilation error
occurs. Internal and external identifiers are described in §S9.

With respect to undefined behavior:

“Any identifiers that differ in a significant character are different identifiers.
If two identifiers differ only in nonsignificant characters, the behavior is
undefined.” – C11 6.4.2.1 n1570.pdf:60

To ensure that undefined behavior does not occur, the COOGL compiler produces a
compilation error instead of producing code with identifiers whose length exceed the
limits supported by the platform or the limits chosen by the programmer.

One of the most common and unexpected sources of undefined behavior in C pro-
grams is integer overflow:

“EXAMPLE An example of undefined behavior is the behavior on integer over-
flow.” – C11 3.4.3 n1570.pdf:4

The overflows() function:

bool overflows(int n) {
 if (n + 100 < n) return true;
 return false;
}

Is compiled by undefined behavior optimizing C compilers into this x86/64 code:

_overflows:
 xorl %eax, %eax // always return false
 retq

The compiler sees that a positive value, 100, was added the int n, and takes ad-
vantage that integers in math are infinite and that n+100 > n , is always true, in the
domain of the mathematical integers, and causes the function to always return
false. The compiler writers forget that the computer does not deal with infinite
mathematical integers, it deals with finite numbers in a modular wrap around way.
The compiler doesn’t even bother to tell the programmer that code was removed, the
whole if (n + 100 < n) return true; statement was removed. By doing this
the compiler is in essence hiding behind the standard description to insert what could
be a security hole or backdoor into code that in prior versions of the compiler would
have been compiled correctly. Particularly on computer systems where the underlying
hardware does not raise an exception on overflow and where signed integers are im-
plemented in two's-complement, e.g. all modern computer systems, the code above is
idiomatic code that determines if the addition of a positive number and an integer
overflows. The compiler writers might assume that this kind of micro-optimization

10.7 Undefined behavior and implementation dependent behavior 181

and silent code removal amounts to adding value, but what they are actually doing is
ignoring the programmer and silently introducing bugs.

In COOGL signed integer overflow or underflow does not cause undefined behav-
ior. The behavior is well defined and corresponds to what every modern computer
system does when performing arithmetic with two's complement numbers, i.e. on
overflow it wraps from the largest positive number representable to the smallest neg-
ative number representable, and vice-versa for underflow. Assuming 32 bit int, the
largest int is 231-1 = 0x7fffFFFF = 2147483647 the smallest int is -231 =
0x80000000 = -2147483648. For example adding 4 to 231-1 after overflow results
in -231+3 which is = 0x80000003 = -2147483645. This means that even when some
arithmetic might overflow, later arithmetic might cause it to underflow and the final
value could be the correct mathematical value, for example the overflow that pro-
duces the value of b is canceled by the underflow that produces the value of c:

int main() {
 int a = 2000111222;
 int b = a + 1000333444; // b == -1294522630 (overflowed)
 int c = b - 1000000000; // c == 2000444666 (underflowed)
 assert(a + 333444 == c);
}

Some C compiler writers will tell you with a straight face that their compiler might,
now, or in the future produce arbitrary values for b and c. The compiler could deter-
mine that the a + 1000333444 causes integer overflow, so the value of b doesn’t
have to be determined, nor does the value of c, so both could be arbitrary values.
Other compiler writer’s will snicker and say: “oh, that program, it is allowed to cor-
rupt all of your files, I can do whatever I want in that case.” Of course, computer
systems don’t behave that way, compilers are not supposed to behave that way either,
neither does COOGL.

Another case of undefined behavior is storing into C string literals, whose type is
const char array:

“It is unspecified whether these arrays are distinct provided their elements
have the appropriate values. If the program attempts to modify such an ar-
ray, the behavior is undefined.” – C11 6.4.5 n1570.pdf:71

The following code has undefined behavior in C, in COOGL the behavior is speci-
fied, an exception is raised, usually SIGBUS in UNIX and UNIX-like operating sys-
tems, the specific exception is platform dependent but is documented:

int main() { char *p = "hello"; *p = 'H'; }

Another example of undefined behavior is where this shift left operation, one of the
most primitive hardware instructions, which is well defined in every hardware in-
struction set, gets turned into some aberration far from the hardware reality of com-
puter systems. C was supposed to be a low level language close to the hardware, not

182 Operators, expressions, keywords, and behavior Chapter 10

the playground for Computer Science students to evolve it into a language that gets in
the way of the programmer whenever a group of people managed to write “undefined
behavior” is a standard document that the complier writer’s then use to their perverse
advantage to introduce bugs into your program under the guise of optimization. For
example:

int shift32(int a) { return a << 32; }

Causes a well known C11 compiler to return an arbitrary value when compiled with
optimization enabled, completely ignoring the shift operation, which can be deter-
mined at compile time that it would have produced the value 0, or if the underlying
instruction was issued on an Intel x86 CPU, it would have returned the value a, be-
cause on that computer system shift of a 32 bit sized int doesn’t do anything, the
value is left unchanged. Certainly having the hardware do what the computer system
does is better than having the compiler return a random value. The same code without
optimization causes the underlying hardware instruction to be compiled and what the
computer system does is the result of the shift.

The opportunities for undefined behavior with left shift are:

“E1 << E2”

“The integer promotions are performed on each of the operands. The type of
the result is that of the promoted left operand. If the value of the right op-
erand is negative or is greater than or equal to the width of the promoted
left operand, the behavior is undefined.”

“The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are
filled with zeros. If E1 has an unsigned type, the value of the result is
E1x2E2, reduced modulo one more than the maximum value representable
in the result type. If E1 has a signed type and nonnegative value, and
E1x2E2 is representable in the result type, then that is the resulting value;
otherwise, the behavior is undefined.” – C11 6.5.7 n1570.pdf:95

Under the same mantra of optimization compiler could prove an invariant based
theorem that for a specific E1 << E2 shift of an int E1x2E2 is not “representable in
the result type,” and allow itself to produce a random value making the code go
“faster” by omitting code generation for the shift. Of course that would be even more
nonsense, but it would seem that compiler writers would be eager to be consistent
with their undefined behavior useless optimization effort related to shift of a 32 bit
int by 32 bits, what is the performance benefit of that?

In the real hardware world the shift left instruction is the same exact instruction for
both int and unsigned int , and if it happens to be different in some ancient, no
longer relevant machine, then the compiler should just generate that instruction and
let it do what it does.

In the paper “Undefined Behavior: What Happened to My Code?” (Xi Wang Hao-

10.7 Undefined behavior and implementation dependent behavior 183

gang Chen Alvin Cheung Zhihao Jia# Nickolai Zeldovich M. Frans Kaashoek) the
authors review a variety of undefined behavior “optimizations” performed by compil-
ers that have caused the directions of the programmer to be ignored under the guise
of optimization. They explain the approach of 4 large projects (the Linux kernel, the
FreeBSD kernel, the PostgresSQL database, and the Apache web server) to problems
introduced into their code base and their approach to address them. The first three of
the projects chose to disable most of the optimizations that result from the undefined
behavior optimization features, only Apache chose to attempt to address these issues
as they are discovered, which seems counterintuitive because a web server has a
larger attack surface and vulnerability because web servers are meant to serve re-
quests from completely untrusted computer systems. The other 3 projects, the com-
piler writers would say, are no longer written in C because they depend on undefined
behavior being defined in certain ways not defined by the standard (signed integers
are implemented in two’s complement, they don’t raise overflow or underflow excep-
tions, they wrap around, etc., NULL pointer related optimizations are disabled, and
strict aliasing optimizations are also disabled).

There are quite a few other undefined behavior situations in the C11 specification,
they are all addressed by COOGL, the description of how they are addressed is in a
separate document.

10.8 Implementation-defined behavior and unspecified behavior

The definitions of unspecified behavior and implementation-defined behavior in
C11 follow:

“3.4.1 implementation-defined behavior”

“unspecified behavior where each implementation documents how the
choice is made”

“EXAMPLE An example of implementation-defined behavior is the propa-
gation of the high-order bit when a signed integer is shifted right.” – C11
3.4.1 n1570.pdf:3

“3.4.4 unspecified behavior”

“use of an unspecified value, or other behavior where this International
Standard provides two or more possibilities and imposes no further require-
ments on which is chosen in any instance”

“EXAMPLE An example of unspecified behavior is the order in which the
arguments to a function are evaluated.” – C11 3.4.1 n1570.pdf:4

Important unspecified behaviors and implementation-defined behaviors of the C
language inherited by COOGL, that are important to address to make COOGL a
more useful language are explained and specified in this section.

184 Operators, expressions, keywords, and behavior Chapter 10

This unspecified behavior could lead to data leaks if the compiler doesn’t actually
copy the pad fields, for example if it skips them when structures are assigned:

“When a value is stored in an object of structure or union type, including in
a member object, the bytes of the object representation that correspond to
any padding bytes take unspecified values.” – C11 6.2.6.1 n1570.pdf:44

To ensure that this does not occur when a structure has internal padding bytes, or
when bytes that contain bit fields have padding bits, the translated structure at the
C11 level has all of that storage accounted for by explicitly inserting declarations of
extra fields where the padding would have occurred. This prevents scenarios where a
programmer has allocated zeroed memory used it as a structure, and later assigns that
structure’s value to another structure, the target structure will not have padding bytes
with unspecified values. This is important in scenarios where the data in the structure
might be externalized and information might have leaked unbeknownst to the pro-
grammer through the padding bytes because of liberties the underlying compiler
might take in this situation, for example not copying every byte of a structure when a
structure is assigned to another structure.

Converting from an unsigned integer to a signed integer, the 3rd paragraph below:

“When a value with integer type is converted to another integer type other
than _Bool, if the value can be represented by the new type, it is un-
changed.”

“Otherwise, if the new type is unsigned, the value is converted by repeatedly
adding or subtracting one more than the maximum value that can be repre-
sented in the new type until the value is in the range of the new type.”

“Otherwise, the new type is signed and the value cannot be represented in
it; either the result is implementation-defined or an implementation-defined
signal is raised.” – C11 6.3.1.3 n1570.pdf:51

In COOGL the conversion does not raise an exception, instead the conversion re-
sults in the integer having the exact same representation, i.e. bit pattern, in the signed
integer value as it had in the unsigned integer value.

C11 gives liberty to the underlying system to handle right shifts of signed values in
implementation defined ways. Machines that don’t implement two’s complement and
that don’t support right shift with sign extension, i.e. arithmetic right shift, are no
longer relevant. In COOGL shift right of a signed value always causes sign exten-
sion.

“The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an
unsigned type or if E1 has a signed type and a nonnegative value, the value
of the result is the integral part of the quotient of E1 / 2E2. If E1 has a
signed type and a negative value, the resulting value is implementation-de-

10.8 Implementation-defined behavior and unspecified behavior 185

fined.” – C11 6.5.7 n1570.pdf:95

It is important to emphasize that there is a tremendous amount of lore and very use-
ful algorithms and programming techniques that simply can not be expressed if sign
extending shifts are not supported, see “Hacker's Delight” by Henry S. Warren, Jr.

Note that if you use shift right of a negative value to try to implement division by a
power of two you won’t get the same result that you would get with signed integer
division, rounding of the remainder will not be towards zero, divisions with a remain-
der will require an off by one adjustment in those cases. But if you are scaling coordi-
nates by a power of two, and you want the scaling to be uniform everywhere, instead
of leaning towards zero, then an arithmetic right shift is the correct way of doing it.

10.9 Loop optimization concern

About the only optimization that seems to matter about integer overflow relates to
walking arrays and their indexing with signed variables, the effects it can have in
loop unrolling loops. Also issues related to indexing with a 32 bit int on some 64 bit
platforms, i.e. overheads related to sign extension:

“Signed integer overflow: If arithmetic on an 'int' type (for example) over-
flows, the result is undefined. One example is that "INT_MAX+1" is not
guaranteed to be INT_MIN. This behavior enables certain classes of opti-
mizations that are important for some code. For example, knowing that
INT_MAX+1 is undefined allows optimizing "X+1 > X" to "true". Knowing
the multiplication "cannot" overflow (because doing so would be unde-
fined) allows optimizing "X*2/2" to "X". While these may seem trivial,
these sorts of things are commonly exposed by inlining and macro expan-
sion. A more important optimization that this allows is for "<=" loops like
this:”

“for (i = 0; i <= N; ++i) { ... }”

“In this loop, the compiler can assume that the loop will iterate exactly N+1
times if "i" is undefined on overflow, which allows a broad range of loop
optimizations to kick in. On the other hand, if the variable is defined to
wrap around on overflow, then the compiler must assume that the loop is
possibly infinite (which happens if N is INT_MAX) - which then disables
these important loop optimizations. This particularly affects 64-bit plat-
forms since so much code uses "int" as induction variables.”

“The cost to making signed integer overflow defined is that these sorts of
optimizations are simply lost (for example, a common symptom is a ton of
sign extensions inside of loops on 64-bit targets). Both Clang and GCC ac-
cept the "-fwrapv" flag which forces the compiler to treat signed integer
overflow as defined (other than divide of INT_MIN by -1).” – Chris Lattner

186 Operators, expressions, keywords, and behavior Chapter 10

To address Lattner’s concerns. The loop below, when compiled with GCC produces
identically unrolled optimized code with or without the -fwrapv compiler option,
CLANG doesn’t infer from the abort(), which makes the for unreachable, that n
must be smaller than INT_MAX. Without the if (n == INT_MAX) abort(); both
GCC and CLANG do not unroll this loop when -fwrapv is used.

#include <stdlib.h>
#include <limits.h>
void f(int n, double a[], double s) {
 if (n == INT_MAX) abort();
 for (int i = 0; i <= n; i++) a[i] *= s;
}

Note how you have to suspiciously setup the loop to test i <= n , if the range
worked on was i < n , both compilers produce identical code with and without -
fwrapv. Given that Lattner talks about a “ton of sign extensions” he must be refer-
ring to the address arithmetic and having to widen int variables to 64 bits to com-
pute array element addresses. Which implies that in his problematic loop, the body of
the loop must be working on an array. Having arrays that have more than 2 31 ele-
ments is going to become more and more common, walking within the inside of such
an array with wrap-around int indexes that go negative must be quite unusual, so
the assumption that these compilers ought to be making is that wrapping array index-
ing does not occur, and if a programmer wants that, a -fwrapping-array-indexes
compiler optimization disablement can be provided. Furthermore, the compiler could
warn when it sees i <= n instead of i < n in loops involving int indexes, and in-
dicate that it is enabling that optimization, and provide a warning for the loop in
question, the programmer might realize that it is actually a bug in his code, as array
indexing in C is zero based, not one based, and i < n might be what is needed.

When COOGL is compiled into C11 code, and the underlying C11 compiler re-
quires -fwrapv and related (or similar) options, because it is one of these undefined
behavior optimizing compilers, then the code translated into C11 code is always com-
piled with those options, and to address Lattner’s concern, warnings will be produced
when loops iterate with signed (32 or 64 bit) variables and have termination condi-
tions predicated on a <= test instead of a < test, or if walking backwards, if >= is
used instead of >. The programmer can then decide to claim via a require() con-
tract or an expect() assertion that indeed the ending value is not the largest value
(or smallest value) possible for the iterating variable’s type, e.g. INT_MAX or
LONG_MAX.

11 - Generic programming and object allocation

“A module is parameterized by a type parameter …
if the module is to do anything with objects of the
parameter type, certain operations must be provided
by any actual type. Information about required
operations is described in a where clause, which is
part of the heading of a parameterized module. For
example:
 set =
 cluster[t: type] is
 create, insert, elements
 where t has
 equal: proctype(t, t) returns(bool)”

-- Clu Reference Manual, October 1979

Generic programming allows general purpose code applicable to
unknown types to be written. The name of a type, built-in or user de-
fined, is a type object. Types as data items are no different than any
other native data item in the language, they can be used as variables,
members, and as arguments to functions or classes. Types as variables
are typed, they can only be assigned compatible types. The names of
fields of generic types can also be arguments to functions or classes.

Dynamic memory allocation and deallocation of objects and arrays
of objects is not built into the language. The lib.creatable inter-
face provides heap based dynamic object creation and destruction.

11.1 Type dot expression

Types are used in generic programming to specify the type that a generic type argu-
ment must be compatible with. For example, the generic argument to the class
stack, in §11.3, has to be compatible with the lang.value interface type.

A type dot expression, type_dot_expr, is an expression that refers to a type, it can
just be an identifier that refers to a type, or it can be an expression formed by a series
of identifiers separated by the dot operator. The first identifier can be preceded by the
dot-dot operator: .. to indicate that that identifier is to be searched for in the outer-
most scope instead of being searched for relative to the current scope.

188 Generic programming and object allocation Chapter 11

For example:

pub ..libc.FILE *fp = ..libc.stdin; // absolute type expression
pub class c {
 pub class libc { // hides global libc ...
 pub typedef int FILE; // purposely confusing!
 }
 pub ..libc.FILE *get_stdin() {
 return ..libc.stdin; // absolute type expression
 }
 pub libc.FILE integer; // relative type expression
}

11.2 Constructor invocation syntax with built-in types

The construction syntax for classes type(argument_list) variable is also ap-
plicable to built-in types, for example these declarations are equivalent:

decl int(2) i; // declaration of i equivalent to ...
int i = 2; // ... this declaration of i
int tab[3] = {7, 7, 7}; // declaration of tab equivalent to ...
decl int(7) tab[3]; // ... this declaration of tab

To keep the code readable, and because this construct matters only in the realm of
generic programming, this syntax is not generalized to pointer declarations:

char *cp = "abc"; // valid
decl char *("abc") cp; // invalid

This syntax is valid only when the type specification doesn't compound the base
type beyond array declarations, typedef can be used for pointers:

typedef char *char_ptr;
char *p = "abc"; // declaration of p equivalent to ...
decl char_ptr("abc") p; // ... this declaration of p

11.3 Type arguments, type variables, and type values

The syntax genre type_dot_expr ident is used to declare an argument, ident,
that refers to a type that is compatible with the type that type_dot_expr refers to.
This means that the type of ident must be the same type, or a subclass of the type,
or implement the interface, that type_dot_expr refers to. The declaration genre
void type declares type to be a universal type variable. All types are compatible
with it because all types descend from class void. The generic argument declara-
tion genre lang.value type, below, declares type, an argument that refers to a
type that implements value semantics, i.e. types that implement the lang.value in-
terface, this is required by swap() because it implements swapping through assign-
ment and also by initializing temp from another object of the same type, i.e. *a:

11.3 Type arguments, type variables, and type values 189

void swap(genre lang.value type, type *a, type *b) {
 type temp = *a;
 *a = *b;
 *b = temp;
}

A type value can have one of these forms:

 a type name (native or user defined);

 an expression that refers to a type, for example: list->type, or stk.type
where type is a type name;

 an expression that refers to a variable whose value is a type;

 a type specification that uses type declarators, as shown below.

This invocation of swap() passes int as the type argument:

void test() { int i = 1, j = 2; swap(int, &i, &j); }

Types that use type declarators to specify pointer or array types have to be specified
by prefixing them with class, for example, class char * as shown below.

Type arguments can be omitted, in which case they are deduced by the compiler:

void test() {
 char *c = "cat", *d = "dog";
 swap(char *, &c, &d); // error
 typedef char *char_ptr;
 swap(char_ptr, &c, &d); // workaround: needs typedef
 swap(class char *, &c, &d); // better: without a typedef
 swap(&c, &d); // NICER: type deduced §11.5
}

A generic version of the stack class is shown below:

class stack(genre lang.value type,
 size_t max, int *error) promise(empty()) {
 priv type entries[];
 entries.create(max);
 priv type *sp = entries.start;
 *error = !sp ? libc.ENOMEM : 0;
 return;

 pub void deinit() { entries.destroy(); }
 pub bool empty() { return sp == entries.start; }
 pub bool full() { return sp == entries.end; }
 pub void push(type v) require(!full()) { *sp++ = v; }
 pub type pop() require(!empty()) { return *--sp; }
 pub type top() require(!empty()) { return sp[-1]; }
}

The type argument specifies that the type must implement the lang.value inter-

190 Generic programming and object allocation Chapter 11

face, it must be a value type so that objects of its type can be assigned, passed by
value as arguments, and returned as function values.

 Note that when an expression refers to a variable whose value is a type the specific
type that it contains might only be determinable at run time, but can not vary during
the program’s execution, because type variables and type arguments are not value
like, they can not be assigned to or changed in any way after their initialization.

11.4 Restrictions on type arguments

Type arguments must be specified first in argument lists. This restriction allows
type arguments to be omitted, from left to right, and be deduced instead. Also point-
ers to specific instances of generic types can be declared by omitting the non type ar-
guments in an intuitive manner, i.e. by omitting the trailing arguments. For example:

class point(genre lang.value type, priv type x, priv type y) {}
void use() {
 decl point(int, 1, 2) ipoint;
 decl point(float, 1.23, 4.56) fpoint;
 decl point(12.34, 56.78) fpoint2; // type deduced §11.5
 decl point(int) *p = &ipoint; // valid: omits x and y
 decl point(int, 0, 0) *q = &ipoint; // error: extra args
}

The declaration of p as a pointer to a point(int) doesn't specify the x and y ar-
guments, which are not pertinent to p 's type. The declaration of q is invalid.

Objects of the point type are not value like, a stack of point can not be declared:

void example() {
 decl stack(int, 10, &error) istk; // int is a value type
 decl stack(int) *istkp = &istk
 decl stack(point(int), 10, &error) pstk;
 // error: point(int) is incompatible with lang.value
}

The point class can be enhanced so that objects of its type can be used as values:

class point(genre lang.value type, pub type x, pub type y) {
 pub is lang.value(point); // point is a value type
 pub void init(point raw *to) redef {
 x.init(&to->x), y.init(&to->y);
 }
 pub void reinit(point *from) redef {
 x = from->x, y = from->y;
 }
}

11.5 Type argument omission and deduction 191

11.5 Type argument omission and deduction

A type argument can have a default value, for example:

class bitmap(genre lang.whole type = ularge, pub size_t n)
 require(n > 0) {
 priv type data[(n + type.bits - 1) & ~(type.bits – 1)];
 for (type *p = data; p < data.end;) *p++ = 0;
 return;

 priv typedef tuple [size_t ix, type mask] ix_mask;
 pub bool get(size_t b) require (b < n) {
 ix_mask im = get_ix_mask(b);
 return data[im.ix] & im.mask;
 }
 pub void set(size_t b) require (b < n) {
 ix_mask im = get_ix_mask(b);
 data[im.ix] |= im.mask;
 }
 pub void clear(size_t b) require (b < n) {
 ix_mask im = get_ix_mask(b);
 data[im.ix] &= ~im.mask;
 }
 priv ix_mask get_ix_mask(size_t b) require(b < bits)
 return [b >> type.bits,
 cast(type) 1 << (b & (type.bits – 1))];
}

As shown earlier with swap() and point, type arguments can be omitted, from
left to right, when a function or class with type arguments is used. Omitting the first
type argument causes its type to be deduced based on the type of the first non-type
argument whose type is based on the omitted type argument. If there is a second type
argument, and it is omitted too, its type is deduced based on the type of the second
non-type argument whose type is based on the omitted second type argument. Simi-
larly for additional type arguments. For example:

class stuff(pub genre lang.value type1,
 pub genre lang.value type2,
 int intarg, type1 *t1ptr,
 float floatarg, type2 t2arg[]) {
 pub int intval = intarg;
 pub type1 *pointer = t1ptr;
 pub float floatval = floatarg;
 pub type2 *t2val[] = t2arg;
}

In the use of stuff below to declare s, s.type1 is double and s.type2 is char:

decl stuff(1, cast(double *) NIL, 3.141593, "hi") s;

192 Generic programming and object allocation Chapter 11

Of course that is a contrived example, a practical one:

max.type max(pub genre lang.number type, type a, type b)
 return a > b ? a : b;
int main() {
 int x = libc.rand(), y = libc.rand();
 on ("max("; x; ", "; y; ") = "; max(x, y); '\n') print();
}

See §Error: Reference source not found for more details about lang.number, the
ancestor class of all number types in the language.

11.6 Specialization of generic classes and functions

The bitmap generic class presented in §11.5 includes a data member, n, that holds
the number of bits in the bitmap, at run-time. The type of n was chosen to be
size_t, an appropriate type for sizes in most circumstances. A specialized version of
bitmap that allows the type of n to be chosen, for example to be a ubyte, because
the bitmaps are known to have at most 128 bits, follows:

class bitmap(genre lang.whole type = ularge,
 genre lang.whole size_type,
 pub size_type n) require(n > 0) {
 pub typedef bitmap bitmap_type;
 ... // rest of class unchanged
}

Note that this version of bitmap when used with various types leads to its special-
ization into incompatible types, for example a bitmap whose size_type is ubyte
is a different bitmap type than one whose size_type is size_t, note that the type
of size_type is deduced in both decl declarations:

void f(ubyte ubsz, size_t size) {
 decl bitmap(ubsz) ubm; // size_type is ubyte
 decl bitmap(size) sbm; // size_type is size_t
 decl ubm.bitmap_type *p = &ubm;
 p = &sbm; // error: incompatible types
}

A specialized bitmaplit that allows the type to be specialized with a genre lit ,
so that the number of bits is not actually stored as part of the bitmap but instead be-
comes part of the type at compile time:

class bitmaplit(genre lang.whole type = ularge,
 genre lit size_t n) require(n > 0) {
 priv inherit bitmap(size_t, n) inline bm;
 pub alias get = bm.get;
 pub alias set = bm.set;
 pub alias clear = bm.clear;
}

11.6 Specialization of generic classes and functions 193

Note that bitmaplit is implemented by privately inheriting from bitmap and inlin-
ing the implementation, which allows the compiler to realize that n is a compile time
constant and doesn't need to be stored as part of the underlying bitmap object, which
is not visible outside of bitmaplit. Thus a bitmaplit(256) uses 28 / 8 = 32 bytes:

void x() { decl bitmaplit(256) b; assert(sizeof(b) == 32); }

Specialized generic programming where different implementations are provided
and the most appropriate one is chosen is supported by the language. Specialized
templates in C++ and its SFINAE mechanism are too complex, error prone, and leads
to hard to read code code, the programmer can not usually figure out what code is ac -
tually being used, short of reading every header file that might have been included
and doing the work that the compiler does to choose the actual template that gener-
ates the code.

11.7 Type variables must be initialized, never assigned

Type variables and arguments always refer to a concrete type during their lifetime,
they are never invalid, the value is set during their initialization, e.g. at function invo-
cation time. The type value that they refer can not be be changed through assignment.
Type variables are implemented internally as pointers, when they are required to exist
at run time. Static type checking can be applied to multiple objects declared to be of
the same type without concern for the type in question changing based on program
control flow. If assignment to the type variable was allowed between multiple decla-
rations based on the type, static type checking could not be performed.

An alternative language design, that would be desired by the followers of the
school of language orthogonality, would require that type variables be allowed to be
changed at run time. The amount of complexity that this would add to the language is
very high. Such a design and complexity are mentioned here only to make explicit
that such a design and evolution is not desired, furthermore it goes completely
against the design goal of simplicity for the language.

Note that by allowing type arguments, which by declaring them with an accessibil-
ity modifier can be made into type members of a generic class, and by allowing for
the nature of the type arguments that is allowed to be specified, (for example that
they be value like, comparable, relationally comparable, hashable, etc), then all the
needs for type safe generic programming that produces incompatible type errors at
compile time are satisfied. This is much better than C++ link time errors produced af-
ter the files are silently compiled successfully because the type that a generic argu-
ment must be compatible with can not be specified.

11.8 Function names vs class names

Even though the notions of function and class are unified by the language, there are

194 Generic programming and object allocation Chapter 11

differences between them. These properties apply to class declarations:

 Introduces a new type.

 A class name can be used to specify other types, e.g. stack *.

 The class name is a type value, it is not a function pointer.

In contrast, a non-class function:

 Does not introduce a named type, it introduces an unnamed type.

 The function name is a function pointer, it is not a type value.

11.9 The argsof tuple type member

Classes and functions have a compiler generated tuple type public member,
argsof, it corresponds to the argument list of the class or function. The calling con-
vention for passing tuple values to a function is such that the values are passed indi -
vidually as if each was an argument. The calling function can receive them in a tuple,
or with arguments whose types correspond exactly to the type of the tuple’s values.
The argsof tuple type is important for dynamic object creation and destruction, i.e.
on the heap, as described in §11.10. An example use of argsof:

void f(int i, float f, char c) {
 on ("i = "; i; ", f = "; f; ", c = "; c; '\n') print();
}
void example() {
 decl f.argsof args = [1, 3.141593, 'x'];
 f(args);
}

11.10 The lib.creatable interface

Allocation and deallocation support in C does not require special language facili-
ties, other than the sizeof operator which is very convenient to prevent program-
ming errors from unmaintainable code that knows the size of a type. The C allocator
returns a value of type void *. In COOGL object creation is typed correctly, it does
not require an unsafe pointer cast or unsafe pointer assignment as is the case with C.
The additional language support in COOGL is the argsof tuple type member, see
§11.9, and the ability to specify the memory on which a constructor is invoked.

Classes that support the create() static member function and the destroy()
non-static member function, by providing the lib.creatable interface, can have
objects of its class created and destroyed under arbitrary program control. Otherwise
objects of the class type can not be created or destroyed at run-time under arbitrary
program control. Optional arguments, see §13.8, to lib.creatable() are not
shown here.

11.10 The lib.creatable interface 195

pub namespace lib {
 pub interface creatable(genre void type) {
 extend class type {
 pub !inherit static type *create(type.argsof args){
 type raw *r = lib.object.alloc(type);
 return type(args, r); // constructor invocation
 }
 }
 pub void destroy()
 require(lib.object.allocated(type, this)) redef {
 deinit(); // destructor invocation
 lib.object.free(type, this);
 }
 // array allocation support not shown here, see §13.8
 }
}

The implementation of create() and destroy() obtained by providing the
lib.creatable interface can be customized by redefining those member functions
to mediate between them and the additional required functionality. For create()
and destroy() to be used by clients, the provision of the interface must be accessi-
ble, the is declaration must be pub.

The outermost code of lib.creatable is shown above. The implementation pro-
vided with the compiler is part of the design and implementation of the language
safety, it is required to ensure COOGL's type safety, and central to its very memory
efficient object layout and very fast polymorphic member function dispatch. Note
how type.argsof, a tuple type equivalent to the argument list of the constructor of
type, is used to specify an identical argument list for the create() static member
function. Support for array allocation and deallocation is presented in §13.8.

Memory allocation support is added to a class by providing the lib.creatable
interface:

class ratio(pub int numerator, pub int denominator) {
 pub is lib.creatable(ratio);
}

An example use follows, the r pointer points to a heap allocated and constructed
object, unless the allocation fails, in which case the value of r is NIL:

void example() {
 ratio *r = ratio.create(3, 4);
 if (!r) return;
 on (r->numerator; " "; r->denominator; '\n') print();
 r->destroy();
 decl ratio(5, 11) rr;
 rr.destroy(); // causes run-time exception to be raised
}

196 Generic programming and object allocation Chapter 11

If destroy() is invoked on an object that is a member of another object, or if it
was not allocated by lib.object.alloc(), a run-time exception is raised by the
require precondition of destroy().

11.11 Public static member functions that can't be inherited

A class derived that inherits from another class base which provides the
lib.creatable interface does not have a derived.create() member function
that creates derived objects, nor does it have one that creates base objects. The
create() member function, added through an extend class by lib.creatable,
is declared to be publicly accessible but not inheritable, i.e. pub !inherit, which
causes create() not to be inherited by derived.

11.12 Literal arguments to generic classes

A literal argument to a generic argument, can be used to parameterize a generic
type, the literal value is a per class value, not a per object value, it can be used to di -
mension statically sized arrays within the generic class, see §Error: Reference source
not found for an example.

11.13 Field name argument declarations with fieldof

The names of fields of generic types can used as arguments to functions or classes.
A fieldof argument or member argument declaration is used to specify an argu-
ment that stands for a field (usually declared with a different name than the argument
name) of a generic type, the fieldof declaration also specifies the type that the field
should be compatible with.

For example in class list, below, its field argument stands for the name of a
field of the generic argument specified by type, the type of field is link, a static
member class of list.

class list(priv genre void type,
 priv fieldof type list.link field) {
 priv inherit link; // next and prev used by list head
 return;
 ...
 pub static class link {
 priv pub { list } link *next = NIL, *prev = NIL;
 return;
 ...
 }
}

Class entry can have its members in 3 different lists at the same time, its links

11.13 Field name argument declarations with fieldof 197

within those lists are link1, link2, and link3. These field names are used as argu-
ments to the class list when using it to access its nested static class link. The ar-
gument field when instantiated by link1 indicates that link1 is a field of entry
(the first argument of list, i.e. the type argument), furthermore its type has to be
link or a class that descends from it.

class entry(put byte *data) {
 pub list(entry, link1).link link1;
 pub list(entry, link2).link link2;
 pub list(entry, link3).link link3;
 pub is lib.creatable(entry);
}

A complete implementation of list is in §11.15.

11.14 Generic intrusive lists

Fine grained generic programming is troublesome in many languages. One of the
goals of the generic programming facility in COOGL was to be able to support
generic data structures, for example lists, hashes, trees, etc that are as efficient as
hand crafted data structures, specifically they should not impose memory overheads
that don't exist in hand crafted ones. Additionally, their coding should be straightfor-
ward, not the result of an accidentally discovered language within another language
as it is the case with template meta-programming in C++, which even with all of its
impenetrable obscure programming mechanism, doesn't allow for the most common
ways of implementing certain data structures which are easily programmed in C.

The best approximation of intrusive lists in C++ is provided by Boost but the com-
plexity compounding across C++ features leads to these problems:

“However, member hooks have some implementation limitations: If there is
a virtual inheritance relationship between the parent and the member hook,
then the distance between the parent and the hook is not a compile-time
fixed value so obtaining the address of the parent from the member hook is
not possible without reverse engineering compiler produced RTTI.”

“Apart from this, the non-standard pointer to member implementation for
classes with complex inheritance relationships in MSVC ABI compatible-
compilers is not supported by member hooks since it also depends on com-
piler-produced RTTI information.” -- www.boost.org

It is quite usual for an object to be linked into more than one linked list, such that
when found through one list it might need to be removed from another list. Data
structures of this nature are quite common in system software. An implementation
where the pointers are within the objects is usually desired because it has the smallest
overhead. These lists, with linkage within the objects themselves are called intrusive

198 Generic programming and object allocation Chapter 11

lists. When the lists themselves are unknown, it is just known that the object is in
some list, which is quite common, the usual programming idioms in C for #define
based reusable list manipulation macros are type unsafe. The challenge is then the
type safety of the generic code, and to do so with no overhead, i.e. functionally iden-
tical code but without the risk of unsafe memory accesses as a result of programming
error or concurrency. Various forms of generic intrusive lists are presented in this
chapter.

11.15 Generic doubly linked list: list

The list class is a generic list type, with member functions to insert an object as
its first or last element, and to remove the first or last element, if the list is not empty,
the removed element is returned, if any, otherwise NIL is returned. The list class
uses list.link for its links.

class list(priv genre void type,
 priv fieldof type list.link field) {
 priv inherit link;
 next = prev = this;
 pub bool empty() inline return this == next;
 pub static class link {
 priv pub { list } link *next = NIL, *prev = NIL;
 pub bool in_list() inline return next != NIL;
 prot void remove() require (in_list()) inline {
 link *n = next, *p = prev;
 n->prev = p, p->next = n;
 }
 prot void ins(link *p, link *n)
 require(!in_list()) inline {// insert between p and n
 prev = p, next = n, n->prev = p->next = this;
 }
 }
 pub type *insert_first(type *ent) inline
 return ent->field.ins(this, this->next), ent;
 pub type *insert_last(type *ent) inline
 return ent->field.ins(this->prev, this), ent;
 priv type *rem(link *e) inline return empty() ? NIL :
 (e->remove(), field_to_obj(type, link, field, e));
 pub type *remove_first() inline return rem(next);
 pub type *remove_last() inline return rem(prev);
}

 Classes whose objects want to be in a list declare their links with list.link, as
shown further below. This form of intrusive list has prev and next pointers to
form a doubly linked list. To make insertion and removal as fast as possible, at the
start or at the end of the list, the list head itself has the same previous and next point-

11.15 Generic doubly linked list: list 199

ers, an empty list is just the list pointing to itself, thus insertion and removal have no
special cases. The previous pointer of the first element points to the list head, and the
next pointer of the last list element points to the list head. Thus the list is circular. No
tests need to be performed when inserting or removing a list element, furthermore,
the list removal code doesn't need to know (i.e. have the address of) the list that the
entity is being removed from, this is the most common and most efficient doubly
linked list used in system software, particularly if adding an entry at the beginning
and at the end of the list needs to be performed in constant time. The fundamentally
unsafe aspect of this kind of list (in C and C++) is that the list head could end up be-
ing manipulated as if it were an object of the wrong type, i.e. as it if were a list ele -
ment. See §1L.2 for field_to_obj().

11.16 Use of list

An example of list that has objects on 3 different lists at the same time follows:

class entry(pub byte *data) {
 pub list(entry, link1).link link1;
 pub list(entry, link2).link link2;
 pub list(entry, link3).link link3;
 pub is lib.creatable(entry);
}

There are 3 pub members of entry based on the list.link type. Their types are
different because they refer to different member names.

List declaration and initialization follows. The types of list1, list2, and list3
are all different because they are a function of the member names link1, link2, and
link3 respectively.

decl list(entry, link1) list1;
decl list(entry, link2) list2;
decl list(entry, link3) list3;

List manipulation:

int main() {
 entry *a = entry.create("a");
 entry *b = entry.create("b");
 entry *c = entry.create("c");
 entry *e;
 list1.insert_first(a); // list1: {a}
 list1.insert_first(b); // list1: {b, a}
 list1.insert_first(c); // list1: {c, b, a}
 e = list1.remove_last(); // list1: {c, b}
 b->link1.remove(); // list1: {c}
}

Test that the types of the lists are different:

200 Generic programming and object allocation Chapter 11

test() {
 decl list(entry, link1) *pl1 = &list1;
 decl list(entry, link2) *pl2 = &list2;
 pl1 = pl2; // error: incompatible pointer types
}

12 - More about types and smart pointers

“The machines on which we first used BCPL and then B
were word-addressed, and these languages' single data
type, the `cell,' comfortably equated with the hardware
machine word. The advent of the PDP-11 exposed
several inadequacies of B's semantic model. First, its
character-handling mechanisms, inherited with few
changes from BCPL, were clumsy: using library
procedures to spread packed strings into individual
cells and then repack, or to access and replace
individual characters, began to feel awkward, even
silly, on a byte-oriented machine.”

-- Dennis Ritchie

All types descend from class void. User defined types don't de-
scend directly from it, they descend indirectly through one of these
intermediate classes: lang.classes, lang.array, lang.number
and class void * . The type hierarchy exists to aid native type ex-
tension, generic programming, and the treatment of all variables, in-
cluding pointers, arrays, and array descriptors, as objects. The ability
to treat native types as objects allows generic programming to use na-
tive types as type arguments. The treatment of pointers as objects al-
lows for the management of pointers and their lifecycle, supporting
programming idioms that sometimes referred to as smart pointers.

12.1 Integer types

The hardware and compiler dependent integer types of the target language, i.e. the
C integer types, obey the C size restrictions: sizeof(char) ≤ sizeof(short) ≤
sizeof(int) ≤ sizeof(long) ≤ sizeof(large).

The language also has a native boolean type, bool, and its literal values: true and
false. Various standard integer typedef definitions are also provided: byte a
signed 8 bit integer, large the largest supported integer type, and index for vari-
ables capable of indexing the largest possible arrays that can be addressed, its size is
the same as the size of pointers. The integer types are: byte, short, int, large,
and index; and the corresponding unsigned types: ubyte, ushort, uint, ularge,
and uindex.

202 More about types and smart pointers Chapter 12

The compiler includes options for multiple COOGL compilation modes on systems
that support multiple C compilation modes, for example 32 and 64 bit modes. The
COOGL compiler's expression evaluation is semantically identical to the native C
compiler in each supported compilation mode.

12.2 Indexing types

Historically, in all mainstream computer systems int is a 32 bit sized type. At the
same time, systems with pointers that are 64 bit wide are also mainstream, legacy
systems and deeply embedded systems remain with 32 bit wide pointers. Most sys-
tems, even handheld computers, e.g. tablets and smart phones, have physical memo-
ries larger than 1GB, at the time of this writing they have between 2GB and 8GB,
and there doesn’t seem to be a reason why their physical memory won’t continue to
grow, particularly because digital media, pictures and movies, continue to have
higher resolutions and quality (e.g. higher resolutions, higher frames per second,
slow motion movie capture modes, etc). At the other extreme, large computer sys-
tems with physical memories larger than a TB, i.e. 1024 x GB, are common, even
mid-size computer servers are have physical memories in the TB order too.

A consequence of all of this, is that arrays whose numbers of elements are larger
than 231-1 elements might become more and more common. Indexing such arrays
with a 32 bit signed variable of type int will become problematic over time. The
natural progression would be for C to eventually have its int type be 64 bit wide,
but there is too much legacy software whose binary interfaces require int to be 32
bit wide, it is very unlikely that this will change in the foreseeable future.

Additionally, if int were 64 bits wide, there would not be a native type for 32 bit
words or 16 bit words, because short could not serve both roles. Some ALGOL68
based aberration similar to long long could be devised, for example, short could
be 32 bits and short short could be 16 bits wide.

The types index and uindex serve the purpose of having array indexing types that
won’t run into trouble for arrays that can not be indexed correctly with variables of
type int. Because most array indexing is done with local variables, using index or
uindex, does not have run-time costs associated with them.

Out of bounds indexing of arrays and array descriptors causes a run time exception,
see §14.33. Could also have compile time options to forbid arrays larger that 2^31-1
for software that doesn't require such large arrays, hardware integer overflow excep-
tions is valuable.

Size restrictions: sizeof(int) ≤ sizeof(index) ≤ sizeof(large) and behave
exactly the same as their C counterparts, the same relationship holds for their un-
signed counterparts.

12.3 Floating point, complex, and imaginary types 203

12.3 Floating point, complex, and imaginary types

The hardware and compiler dependent floating point types of the language, i.e. the
C floating point types, they behave exactly as their C counterparts, they follow these
restrictions:

sizeof(float) <= sizeof(double)
sizeof(imaginary) == sizeof(imaginary_float)
sizeof(imaginary) == sizeof(float)
sizeof(imaginary_float) <= sizeof(imaginary_double)
sizeof(imaginary_double) == sizeof(double)
sizeof(complex) == sizeof(complex_float)
sizeof(complex_float) <= sizeof(complex_double)
sizeof(complex) == 2 * sizeof(float)
sizeof(complex_double) == 2 * sizeof(double)

12.4 Enums

The space and layout rules for variables of enum type, when used in a struct dec-
laration, strictly follow the rules of the native C compiler. An integer type, a floating
type, or a pointer type can be associated with an enum declaration. An enumeration
declared with enum class causes the enumeration identifiers to be accessible only
through the enumeration type name, the identifiers are not added to the scope where
they are made, instead they are scoped by the enum type being declared:

enum pet { CAT, DOG, HORSE };
pet p = CAT; // type of pet dictated by C compiler
enum ularge page {
 SIZE = 4096,
 OFFSET = SIZE - 1,
 MASK = ~OFFSET,
};
page pg = SIZE; // integer type: ularge
enum class double math { pi = 3.1415926535897932384626433 };
double pi_x_2 = math.pi * 2;
enum class byte kind {
 EXPLICIT = 0,
 USERDEF = 1,
 NATIVE = 2,
 COMPOUND = 3
};
pub kind k = kind.NATIVE; // integer type: byte
pub kind u = USERDEF; // error: USERDEF is undefined

The initialization can take advantage of the member lookup operator, see §10.2:

pub kind(^USERDEF) u;

Within a struct declaration enum typed fields cannot be based on enums whose

204 More about types and smart pointers Chapter 12

integer type is explicitly specified, this is a feature not available to the struct bridge
to the native C compiler.

An enum used to name a set of known values, among a larger set of values, can be
specified by using ... at the end of its name = value list, for example:

enum ularge page {
 SIZE = 4096,
 OFFSET = SIZE - 1,
 MASK = ~OFFSET,
 ... // other values are valid
};
page pg = 0; // integer type: ularge

Absence of ... implies that other values are not valid, potential assignment of a
value outside the valid value set produces a compilation error. The compilation error
can be disabled with a cast:

void example() {
 kind k = 17; // error: invalid value
 kind k = kind.USERDEF; // ok
 k = rand(); // error: invalid value
 k = cast(kind) rand(); // tell compiler it is ok
}

COOGL debuggers are encouraged to interpret as bit masks enum declarations that
include ... and whose values are disjoint in their underlying bit representations. For
example:

enum class mode {
 r = 4,
 w = 2,
 x = 1,
 ... // other values are valid
}
mode rw = mode.r | mode.w;
mode rwx = rw | mode.x;

Or:

decl mode(^r | ^w) rw;
decl mode(^r | ^w | ^x) rwx;

In a COOGL aware debugger:

(db) print rwx
mode.r | mode.w | mode.x
(db) print cast(int) rwx
7
(db)

12.5 Bit fields 205

12.5 Bit fields

Bit fields are a C language feature used to specify one or more fields that use a
specified number of bits and where multiple fields can share the same underlying
fundamental units of memory supported by the computer system (bytes, words, etc).
For example to specify the bits in a 64 bit IEEE double:

struct ieee64 { uint sign:1; uint exponent:11; fraction:52; };

Modern computer systems do not support loading or storing into bit fields directly,
from or to memory, the memory unit that contains the bit field first has to be loaded,
the required bits have to be extracted from the register that holds the value to actually
be able to interpret the value appropriately. To store a value into a bit field the con-
taining storage word has to be fetched, the bits merged into their correct place, and
the word stored back into memory. Usually the surrounding bits contain bits of other
bit fields and must be preserved. Thus bit fields cause additional computations more
expensive than a simple load or store instruction of a fundamental memory word of
the underlying computer system.

The base type of a bitfield must be an integer type, or an enumerated type whose
base type is an integer type. Nameless bitfields can be declared to specify unused
bits. The address of a bit field can not be taken. The rules for bit fields strictly follow
the rules of the native C compiler, and might require them to be specified in a differ-
ent order:

struct ieee64 { fraction:52; uint exponent:11; uint sign:1; };

A bit field specified with zero bits causes the remaining bits of the underlying base
types to be skipped, if there are any, as shown in this program:

union bitfields {
 struct {
 ubyte field1:1, :0; // skip ubyte's leftover 7 bits
 ubyte field2:2, :0; // skip ubyte's leftover 6 bits
 ushort field3:3, :0; // skip ushort's leftover 13 bits
 uint field4:4, :0; // skip uint's leftover 28 bits
 ulong field5:5, :0; // skip ulong's leftover 59 bits
 ulong field6:6;
 };
 ulong words[3];
};
bitfields b = { .f1=1,.f2=3,.f3=7,.f4=0xF,.f5=0x1F,.f6=0x3f };
int main() {
 on (b.word[0]; b.word[1]; b.word[2]) printx();
}

Its output is:

0000000f00070301000000000000001f000000000000003f

206 More about types and smart pointers Chapter 12

COOGL extends typedef declarations to allow integral types to be declared with a
specified number of bits which are convenient for various purposes, for example
when specifying variables whose values are used as shift counts to ensure that shift
counts are within valid ranges, 0-31 and 0-63, for 32 and 64 bit types, helpful to en-
sure that shifts in COOGL don't lead to the undefined behavior disease that is infect-
ing modern C compilers while also ensuring that the shifts are as efficient as the un-
derlying C shift operations. This is achieved by ensuring that the values of shift
amounts that are precomputed and used repeatedly are always valid without having to
mask them to ensure defined behavior. Example declarations:

typedef uint uint5: 5; // sizeof(uint5) == sizeof(uint)
typedef uint uint6: 6; // sizeof(uint6) == sizeof(uint)
typedef uchar uchar5: 5; // sizeof(uchar5) == sizeof(uchar)
typedef uchar uchar6: 6; // sizeof(uchar6) == sizeof(uchar)

Variables whose type is a bit field specified with a typedef declaration always
consume a whole memory unit of its specified base type, fully, multiple such vari-
ables declared next to each other in a class occupy their own dedicated memory
units, thus their bits don't interfere with each other, furthermore the pad bits are guar-
anteed to be zero, so the cost of fetching their values is the same as fetching the un-
derlying memory unit, plus an additional sign bit propagation cost if the bit field is
signed, which are very unusual. The cost of storing into them clearing the high bits to
ensure the pad bits remain zero, it is a simple sore, not a fetch-mask-store operation.

To prevent undefined behavior in COOGL with respect to shift counts, if the com-
piler can not prove that the shift count results in a valid range, a compilation error oc-
curs. The programmer can provide sufficient proof through require(), promise(),
or assert() to establish the domain of various arguments, functions, and expres-
sions, to help the compiler prove that the shift count is valid. Worst case the program-
mer can reduce the shift count to the correct range with a bit-and operation.

12.6 Unicode characters

C89 introduced the syntax L"wide" for a character string literal to mean an array
of wchar_t initialized to the characters between the quotes, and zero terminated, i.e.
the same as the traditional C "string" literal, which means the same thing but for
char being the underlying character type. The actual size of wchar_t is not dictated
by C89. On AIX it is 16 bits on 32 bit compilation mode and it is 32 bits on 64 bit
compilation mode. On Solaris it is 32 bits irrespective of compilation mode. COOGL
introduces a new integer type, unic, for a Unicode character. The unic type is a 32
bit unsigned type (it is the same as C11’s char32_t which is also supported, its ex-
actly the same). The string and character prefix notation for Unicode characters is
similar to L'x' and L"x", but it uses uppercase U instead:

12.6 Unicode characters 207

unic u = U'x'; // 32 bit Unicode character literal
unic up[] = U"32 bit Unicode literal";

12.7 Unicode 16 bit characters

C11 also introduced char16_t 16 bit unsigned character to represent the 16 bit
subset of the Unicode character set. Its literals use lowercase u:

char16_t u = u'x'; // 16 bit Unicode character literal
unic up[] = u"16 bit Unicode literal";

12.8 Character and string literal

C multi-character character literals are not supported, for example:

void invalid() {
 int c = 'abcd'; // error: multi-character literal
}

Multi line string literals, with or without the L, u, and U prefixes are supported:

void use() {
 char *p = "this is a long literal, split into multiple "
 "lines, the compiler concatenates them\n";
 p.print();
 unic *up = U"hello " // U must be only at the start,
 "wide world\n"; // U can not be here.
 up.print();
}

There is minimal support in the run time lang library for string literals used in the
construction of the str string type, see §XXX.

12.9 Incompatible and global types

Use of traditional number types to represent values of different kinds, for example
age, weight, height, force, speed, etc, can lead to subtle errors not caught by the com-
piler when variables of these inherently incompatible types are mixed incorrectly. For
example, a function with 3 float arguments: age, weight, and height could be
invoked mistakenly with the arguments out of order.

A typenew declaration allows a new number type to be defined that is incompati-
ble with the base type used to declare it, usually the base type is a number type. No
default conversions are allowed from or to a variable of such a type. For example:

typenew float age_t;
typenew float weight_t;
typenew float height_t;

208 More about types and smart pointers Chapter 12

// error: incompatible type arithmetic: a += w
void func(age_t a, weight_t w, height_t h) { a += w; }
void use() {
 age_t a = cast(age_t) 23;
 weight_t w = cast(weight_t) 180;
 height_t h = cast(height_t) 6;
 a = 24; // error: incompatible types
 ++a; // ok
 func(a, w, h); // ok
 func(w, h, a); // error: incompatible types in
} // the three arguments

The typenew syntax is a subset of the typedef syntax, it allows for all kinds of
declarations with the exception of function pointers, additionally only one type can
be declared at a time.

Types can be declared globally, irrespective of the location of their declaration.
Global types can not be hidden by other declarations in non global scopes. Global
type declarations are used to declare types that are used pervasively, for example:
int, char, float, etc. The syntax for a typeglob declaration is identical to the
syntax for a typenew declaration.

12.10 Types and literal dimensions

To reduce programming errors related to incorrectly used specifications typenew
and typeglob declarations can include a dimension specification that causes them to
be unique incompatible types and also allows for literals to be specified of those di-
mensions, or related to those dimensions, or computed in a way that ensures that the
result of the computation is of the correct dimension. A dimension identifier is de-
clared within the curly braces after the base type, in the following example m is a di-
mension specifier for meters and min is a dimension specifier for minutes:

typeglob float {m} meter_t;
typeglob float {min} minutes_t;

The dimension identifier exists in a unique scope of dimension specifiers and its
name doesn't collide with other kinds of identifiers. The dimension identifier is
global, if declared in a typeglob declaration, or local to its scope, if declared with a
typenew declaration. Dimension identifiers can not be hidden by other dimension
specifiers declared in subordinate scopes. A dimension specifier can be specified as a
dimension expression based on other dimension identifiers, or literals, and formed
with multiplication, division, and parenthesized sub-expressions. For example:

typeglob float {km = 1000`meter} km_t;
typeglob float {hr = 60`min} hour_t;
typeglob float {kph = 1`km / 1`hr} kph_t;

To specify a literal with a specific dimension, the literal is followed by a back quote

12.10 Types and literal dimensions 209

and then by the dimension specifier. For example 60`min above is a literal that rep-
resents 60 minutes and is of the type minutes_t. Note that syntactically the back
quote is an operator that can only be used with literals, thus there can be space prior
and after it, for clarity it is always used without spaces.

The compiler understands the relationships between dimension specifiers that have
been defined as a function of other dimension specifiers, and implicitly uses that in-
formation to scale compatible units, for example to scale hours to minutes, or vice-
versa. For example:

minutes_t hr_to_min(hours_t h) { return h * 60`min / 1`hr; }
minutes_t minutes_to_arrive(speed_t s, km_t d) {
 return d / s; // compiler scales to minutes: (d/s)*60
 // return s / d; // error: 1/hr incompatible with min
 // return hr_to_min(d / s); // ok, but conversion not needed
}

Dimensionally incompatible expressions cause a compilation error.

12.11 class void

As mentioned in §5.1 all types inherit, usually indirectly, from class void. All
types, other than class void, descend from these four types:

 lang.classes – ancestor to all classes defined by a class declaration;

 lang.number – ancestor to character, integer, floating point and enum types;

 class void * – ancestor to all pointer types;

 lang.arraylike – base class of lang.array and lang.arraydesc;

 These classes descend directly from class void . What these intermediate classes
are useful for is explained in the following sections. These intermediate classes when
extended enhance their descendants. These descend from lang.arraylike:

 lang.arraydesc – base class of all array descriptors;

 lang.array – base class of all static and dynamically allocated arrays;

12.12 User defined classes descend from lang.classes

All classes defined by a class declaration that don't inherit explicitly from other
classes inherit implicitly from the lang.classes class. Classes defined by a class
declaration that inherit explicitly from another class inherit lang.classes indirectly,
i.e. from its base class, lang.classes doesn't implement the lang.value interface,
which results in the non-copying default behavior of classes. This default behavior is
different from the corresponding assignment, argument passing, and function value
returning C copying behaviors of struct and union, which are the same in C and

210 More about types and smart pointers Chapter 12

COOGL.

The rationale for user defined classes not having raw memory copy implementa-
tions for assignment, value passing, and value returning, is that many classes don't
need it, and providing them by default would lead to raw memory copies that might
be incorrect for them. If needed, the class designer can implement the copying behav-
ior by implementing the lang.value interface.

12.13 Base class of all arrays: lang.array

The class lang.array is the base class of:

 lang.carray – ancestor to all compile time sized array types;

 lang.dynarray – ancestor to all dynamic array types;

12.14 Base class of all compile time sized arrays: lang.carray

The base class for all compile time sized arrays, also known as C arrays, is lang.-
carray. These arrays can not be initialized from another array, nor assigned from
one, nor passed by value as arguments or returned as the value of a function. Arrays
that are fields within structures that are assigned to each other, or passed by value, or
returned by value, cause the implied array copying required by those operations.

Arrays within structures in COOGL can only contain the subset of types compatible
with C, i.e. not user defined classes, this design decision completely separates struc-
tures and the layout control that they give programmers and classes, whose layout is
under the control of the compiler and whose dynamic allocation and object oriented
dispatch mechanisms are not the programmer's concern. Keeping structures and
classes separate simplifies the language.

12.15 Base class of all dynamically sized arrays: lang.dynarray

Dynamically allocated arrays, see §13, have the number of elements within them
determined at run time, not at compile time. The base class for all dynamically allo-
cated arrays is lang.dynarray.

12.16 Construction and destruction of lang.carray and lang.dynarray

Default construction for statically and dynamically sized arrays is allowed only if
default construction is allowed by its array element type. Arrays whose element type
is initializable, i.e. implements the initializable interface can have their elements
initialized at array declaration time through the traditional C array initialization syn-
tax:

12.16 Construction and destruction of lang.carray and lang.dynarray 211

void example(size_t n, type a, type b, type c) require(n >= 3){
 type c[5] = {a, b, c}; // type must be lang.defaultable
 decl type(a) d[n]; // n elements initialized with a
 type e[2] = {a, b, c}; // error: too many initializers
 type f[n] = {a, b, c}; // error without require above
}

If the number of elements in the array is larger than the number of values present in
the value list, then the additional values in the array are initialized by the default con-
structor, which the base type of the array must implement, i.e. type must be
lang.defaultable directly or indirectly, usually through lang.value. If the num-
ber of elements in the initializer list of a statically sized array is larger than the num-
ber of elements in the initializer list a compilation error occurs. If the array is a dy-
namic array and it is initialized with an array initializer, for example f[n] above, a
compilation error occurs if the compiler can not prove that the number of elements is
greater or equals to the number of elements in the initializer, the proof can be pro-
vided by the programmer through a require() as shown above. If the number of el-
ements can be larger than the number of elements specified in the initializer and the
type is not lang.defaultable then a compilation error also occurs.

Destruction is synthesized for arrays just as it is for classes, unless deinit() is in-
voked explicitly on it, for example:

class building {
 pub apartment apt[10];
 pub void deinit() { apt.deinit(); }
}

12.17 lang.arraydesc and lang.vecdesc array descriptors

Multi dimensional array descriptors descend from the lang.arraydesc class, uni-
dimensional array descriptors descend from lang.vecdesc, both are generic classes:

namespace lang {
 pub class struct arraydesc(pub genre void type,
 size_t n) require (n >= 2) {
 pub type *start = NIL;
 pub type *end = NIL;
 pub size_t max[n];
 }
 pub class struct vecdesc(pub genre void type) {
 pub type *start = NIL;
 pub size_t max[1];
 }
}

The implementation of unidimensional array descriptors as a specialized type that
only uses two fields, instead of 3, is to allow global array descriptors to be updated

212 More about types and smart pointers Chapter 12

atomically faster than multidimensional array descriptors, because most hardware
platforms support atomic two-word memory updates.

12.18 Number type interface hierarchy: lang.number

Computer representation of numbers is approximate. COOGL numeric types de-
scend from various interfaces that represent various aspects of their number nature.
These interfaces are not implemented through COOGL code, they are special inter-
faces known by the language and implemented natively by the compiler. They exist
to allow numeric types to be enhanced through extend additions to them, and to
unify native C types and interface concepts.

The C behavior that allows fundamental types to be initialized, assigned, passed by
value and returned as the value of a function is obtained by their implementation of
the lang.number interface which implements the lang.value interface, compiler
generated code implements the init(), deinit() and reinit() member func-
tions.

This hierarchy of interfaces, with lang.number, at its top level, and with classes at
the bottom, allows various characteristics of numbers to be required by generic
classes for their genre arguments.

The second level in this interface hierarchy has:

 lang.sign - capable of representing negative values;

 lang.nosign - not capable of representing negative values;

 lang.integral - capable of only representing whole numbers.

The third level in the hierarchy has:

 lang.whole - only capable of storing zero and positive whole numbers;

 lang.integer - capable of storing positive and negative whole numbers;

 lang.real - stores numbers in floating point representation;

 lang.cmplx - stores complex numbers in floating point representation;

 lang.imgnry - stores imaginary numbers in floating point representation;

The fourth and last level in this hierarchy has five sub-trees of classes, each one
containing the COOGL fundamental numeric types:

 ubyte, ushort, uint and ularge;

 byte, short, int and large;

 float, and double;

 complex, and complex_double;

12.18 Number type interface hierarchy: lang.number 213

 imaginary, and imaginary_double;

All of the interfaces in the top two levels of the hierarchy are defined within the
lang name space. Classes defined in the last level are in the global name space.

A partial declaration showing the interfaces and implementation relationships and a
few member functions:

namespace lang {
 // root of COOGL numeric interface hierarchy
 // adds arithmetic operators: + - * /
 // adds relational operators: ! == != < <= > >=
 pub interface number { pub is lang.value(number); }

 // 2nd level
 pub interface sign { pub is number; }
 pub interface nosign { pub is number; }

 // adds bitwise operators: ~ & ^ |
 // adds checked arithmetic operators: ?+ ?- ?* ?/ ?%
 // adds arithmetic operator: %
 pub interface integral { pub is number; }

 // 3rd level
 pub interface whole { pub is integral; pub is nosign; }
 pub interface integer { pub is integral; pub is sign; }
 pub interface real { pub is number; pub is sign; }
 pub interface cmplx { pub is number; pub is sign; }
 pub interface imgnry { pub is number; pub is sign; }
}

The 4th level of the hierarchy is outside of the class lang 's name space:

pub class ubyte { pub is lang.whole; }
pub class ushort { pub is lang.whole; }
pub class uint { pub is lang.whole; }
pub class ularge { pub is lang.whole; }
pub class byte { pub is lang.integer; }
pub class short { pub is lang.integer; }
pub class int { pub is lang.integer; }
pub class large { pub is lang.integer; }
pub class float { pub is lang.real; }
pub class double { pub is lang.real; }
pub class cplx { pub is lang.cmplx; }
pub class cplxd { pub is lang.cmplx; }
pub class imag { pub is lang.imgnry; }
pub class imagd { pub is lang.imgnry; }

The fact that the fundamental types belong to an interface hierarchy has no run time
implications in memory use or performance. The lang.number type hierarchy exists

214 More about types and smart pointers Chapter 12

to make them no different than user implemented classes, so that they can be used as
part of generic programming.

Built in operators such as addition and bitwise-and are introduced in the class hier-
archy to allow a generic class that is only applicable to certain number types to be
implementable. For example a generic class that only applies to number types that
support bitwise operators, for example the bitmap class from §11.6 which allows for
the specification of the underlying integer type used to store the bits in the set re-
quires that the generic type descend from lang.whole.

12.19 Pointers descend from class void *

All pointers in COOGL descend directly, or indirectly, from class void *. which
implements class lang.value as if it was declared:

class void * {
 pub is lang.value(genre void *);
}

A pointer is an object, its members are accessed with the . (dot) operator just like
any other object member would be accessed given an expression with an object
value. Access to the members of an object that a pointer points to is via the pointer
member access operator, i.e. ->. For example:

void ex(stack *s) {
 s.print(); // Print the pointer to the stack object.
 s->print(); // Print the stack object.
 (*s).print(); // Print the stack object.
 on (s, *s) print(); // Print the pointer and the object.
}

When pointers are treated as objects, their member functions, could be confused by
the programmer with member functions of the object that the pointer points to, partic-
ularly if both have members with the same name and signature. The wrong member
could be called by mistake when -> is used instead of . (dot) or vice versa. Because
of this pointers to objects usually are not extended with a print() member function
to ensure that the object is printed and not the pointer value, which is usually not
what is desired.

12.20 Smart pointers and their priv member: ptr

A smart pointer is a pointer that executes code at pointer construction, assignment,
value passing, value returning, and destruction time. Smart pointers are implemented
by deriving from pointers. Complete control is provided through the constructor, and
these member functions init(), init_default(), deinit(), init_deinit(),
reinit(), and reinit_deinit(). By redefining them, appropriate control is pro-

12.20 Smart pointers and their priv member: ptr 215

vided for the lifetime of pointers. Smart pointer programming idioms, for example,
where reference counting or locking occur at pointer construction time, and reference
releasing or unlocking occur at pointer destruction time are easily supported. Control
of pointer value use, i.e. whenever data is fetched based on it, is too expensive.

In the following example a simple reference count based garbage collected class
stk is shown, it tracks all the pointers to its stack objects and forces its objects to be
allocated from the heap by making its constructor prot. When the last pointer refer-
ence to a stk object is destroyed, the object is destroyed and the memory released.
The stk class inherits its implementation from the stack class from §4.2.

class stk(size_t *n, int *errp) prot pub {stk *} {
 priv pub {stk *} int refs = 0;
 pub inherit stack(n, errp);
 priv is lib.creatable(stk) allocator;
 return;
 pub static stk *create(size_t *n, int *errp) {
 return allocator.create(n, errp);
 }
 priv pub {stk *} void destroy() { allocator.destroy(); }
}

Objects of stk type are created with create(), disposal of stk objects is done
through their destroy() member which is only publicly accessible to the class of
pointers to stk, i.e. the type stk *, a smart pointer in this case. An example use:

void use() {
 int err;
 stk *sp = stk.create(20, &err);
 sp->push(1);
 sp->push(2);
 sp->pop();
 sp->pop();
}

A smart pointer class is a class declaration that continues the declaration of a class
of pointers, it is not a class extension through extend class , it is a continuation of
the class declaration through continue class, see §7.2. All pointer classes have a
prot member, ptr, that can be used to access and change the pointer value without
causing init(), reinit(), etc. to be invoked. Note that the declaration of a smart
pointer class causes all declarations of pointers of that class to be smart pointer decla-
rations. The smart pointer class can declare pointers to the class that are not smart
pointers by declaring them as raw pointers, as shown below in the equal() member
function of class stk *.

The code of stk * follows, the type of this, within its members is stk **this:

216 More about types and smart pointers Chapter 12

continue class stk * {
 pub is nilable(class stk *); // See §Error:
Reference source not found.
 pub is equalable(class stk *); // See §Error:
Reference source not found.
 priv static int conserr;
 priv static stk(1, &conserr) nil;
 priv static stk *nilptr = &nil; // nil.refs is 1
 priv static void init_default(type raw **to) redef {
 to->ptr = &nil.stack;
 ++nil.refs;
 }
 pub void init(stk **to) redef { to->ptr = ptr; hold(); }
 pub void deinit() redef { release(); }
 pub void init_deinit(stk **to) redef { to->ptr = ptr; }
 // the reference from this is to's now
 pub void reinit(stk **to) redef {
 hold(); // order matters when this == to
 to->release();
 to->ptr = ptr;
 }
 pub void reinit_deinit(stk **to) redef {
 to->release();
 to->ptr = ptr; // the reference from this is to's now
 }
 priv void hold() { ++(*this)->refs; }
 priv void release() {
 if (--(*this)->refs == 0) {
 assert(!isnil());
 (*this)->destroy();
 }
 }
 pub bool is_nil() redef { return this == &nil; }
 pub void nil_it() redef { *this = nilptr; } //init(&nilptr)
 pub bool equal(stk *raw that) redef {
 return ptr == that->ptr; // raw, non-smart pointer
 } // chosen for performance reasons, not correctness
}

The stk * smart pointer class member functions, is_nil() and nil_it(), test if
the pointer is nil and to set it to nil. The notion of what nil means for stk * is fully
defined by the class. In the example above, it does not correspond to the NIL value,
but to a dummy static object, nilstk, that makes the treatment of nil stk * objects
less of a special case, for example both hold() and release() can freely increment
and decrement refs without worrying about the pointer being an actual NIL value.

The value of stk.allocator.create(), of stk *s type, causes during its con-

12.20 Smart pointers and their priv member: ptr 217

struction, the reference count of the newly created stk object to be 1. The returned
value is then used by invoking the member function init_deinit() on it when it is
returned as the value of stk.create(), and again through init_deinit() when it is as-
signed to sp in the use() example above. The original reference count now counts
as sp 's reference count. The more complicated and expensive sequences of invoca-
tions of init() followed by deinit() are avoided. Finally, when use() returns,
sp 's deinit() releases the last reference, causing the stk object to be destroyed,
i.e. it is deinitialized and its memory is released.

12.21 Control during pointer dereference XXX

This requirement is addressed usually by using a handle instead of a pointer, which
allows a smart pointer to be constructed from the handle, and causes locks to be ac-
quired, or objects to be held, etc. Destruction of the smart pointer causes the unlock,
or object reference to be released, etc.

12.22 Explicitly declared classes and smart pointer restrictions

The language allows objects from an explicitly declared class, including a smart
pointer class, to be used in certain expressions, depending on which member func-
tions are defined:

 Use as a function argument or return value, if init() is defined.

 Use as a value that is used in the initialization of an object of the same type, if
init() is defined.

 Use as a value that is assigned to another object of the same type, if reinit()
is defined.

These operations are always valid:

 Obtain their address with the address-of operator, i.e. &.

 Invoke member functions on it.

All other uses are invalid, including:

 Use as a value in an explicit comparison or relational expression, i.e. ==, !=, <,
<=, >, or >=.

 Use as a value in a conditional expression context, where it would need to be de-
termined if its value is NIL or not, i.e. when used as the value tested in an if,
while, for, or loop statement or by the &&, ||, ! or ?: operators.

 Use as a value in arithmetic, pointer arithmetic, or bitwise expressions, i.e. ++,
--, +, -, *, /, %, ~, &, |, <<, or >> ; or their related assignment-operation ex-
pressions: +=, -=, *=, /=, %=, &=, |=, <<=, or >>= ; or their corresponding

218 More about types and smart pointers Chapter 12

checked operators: ?+, ?-, ?*, ?/, or ?% ; or their corresponding assignment
checked operators: ?+=, ?-=, ?*=, ?/=, or ?%=.

These restrictions were designed into the language to completely encapsulate and
prevent misuse of smart pointers. Use of the pointer indirection operators: * and ->
are, of course, allowed with smart pointers. The ability to redefine the other operators
doesn't seem to carry its weight in a language that aims to be simple, that ability is
not present as it would introduce operator overloading and its complexity.

Examples of invalid expressions are:

void push_stk(stk *src, stk *dest)
 require(dest != NIL) { // error: smart pointer compared
 if (!src) return; // error: smart pointer NIL test
 ++src, --src; // error: arithmetic on object
 // avoid infinite loop:
 assert(src != dest); // error: smart pointer compared
 while (!src->empty()) {
 assert(!dest->full());
 dest->push(src->pop());
 }
}

Idiomatically is_nil(), nil_it(), and equal() are provided by smart pointers
by implementing the equalable and nilable interfaces:

namespace lib {
 pub interface nilable(genre void type) {
 pub void nil_it() defer; // make it NIL
 pub bool is_nil() defer; // is it NIL?
 }
 pub inteface equalable(genre void type) {
 pub bool equal(type *raw that) defer; // this == that?
 }
}

The push_stk() function can be written as:

void push_stk(stk *src, stk *dest) require(!dest.is_nil()) {
 if (src.is_nil()) return;
 assert(!src.equal(dest)); // avoid infinite loop:
 while (!src->empty()) {
 assert(!dest->full());
 dest->push(src->pop());
 }
}

13 - Variable length and dynamically allocated arrays

In spite of this advice, C99 adopted the scheme:
“The rules for both the GCC and MacDonald schemes
are difficult to use and comprehend, and are difficult to
formalize even to the level of the current ANSI-
standard; in particular, the type calculus for variable-
sized arrays is murky for both. In the existing ANSI-C
language, the type and value of an object p suffice to
determine the evaluation of operations on it. In
particular, if p is a pointer, the code generated for
expressions like p[i] and p[i][j] depend only on its
type, because any necessary array bounds are part of
the type of p. In the MacDonald and GCC extensions,
the values of non-constant array bounds are not tied
firmly to its type.”

-- Dennis Ritchie

COOGL supports arrays whose dimensions are determined at run
time, array dimensions are members of the array. COOGL support is
different from the variable length array support of C99, because it is
too complex, and its use is error prone.

13.1 Variable length arrays

Variable length arrays were added to C in C99, the second official C language stan-
dard and third since the de-facto K&R C standard. Variable length array support is,
by far, the most complex extension made to C as part of the C99 standardization
process.

The problem that variable length arrays addressed in C99 was the lack of support in
C89 for multidimensional arrays whose dimensions are only known at run-time.
Given that C has been used mostly for systems programming, this limitation caused
little or no trouble, but it is one of the principal reasons that prevented the use of C
for numeric programs which were, and sometimes still are, written in FORTRAN in-
stead of C.

220 Variable length and dynamically allocated arrays Chapter 13

13.2 v[] declaration syntax in C

In C the meaning of the type v[] declaration syntax has changed with C's evolu-
tion, the meaning depends on the context of the declaration.

A global declaration of the form type v[]:

/* Global declaration, it is an external declaration of v
 a uni-dimensional array of unknown size. */
int v[]; /* Valid in K&R-C/C89/C99/C11 */

An argument declaration of the form type v[], is equivalent to an argument dec-
laration of the form type *v:

/* Argument declaration, equivalent to: void f(int *v) {...} */
void f(int v[]) {...} /* Valid in K&R-C/C89/C99/C11 */

The declaration of the last member of a structure, of the form type v[]:

/* Declaration of v[] as the last structure member.
 Invalid in K&R-C/C89.
 Valid in C99/C11, it is a flexible array. */
struct s1 { int b; int v[]; }

To reduce complexity and for language safety reasons COOGL does not support
C99/C11 flexible arrays, nor does it support, zero sized array members as the last
member of a structure.

A structure member declaration, that is not the last member, of the form type v[]:

/* Declaration of a[] not as the last structure member: */
struct s { int v[]; int b; } /* Invalid in: K&R-C/C89/C99/C11*/

A local variable of the form type v[]:

/* Local variable declaration: */
void function() { int v[]; } /* Invalid in: K&R-C/C89/C99/C11*/

The various contexts in which a declaration of the form type v[] can appear in C
code, and their validity, are summarized in the table below:

Is type v[] Declaration Valid? K&R-C
C89

C99
C11

Context Example

global
argument

last member
not last member

local

int v[];
void f(int v[]) { ... }
struct s { int i; int v[]; }
struct s { int v[]; int i; }
void f() { int v[]; ... }

yes
yes
no
no
no

yes
yes
yes
no
no

13.3 type v[][] declarations are always invalid in C

Irrespective of context, array declarations with two or more dimensions with un-

13.3 type v[][] declarations are always invalid in C 221

specified sizes are invalid in C. For example:

int a2d[][]; /* all of these declarations are invalid in C */
int a3d[][][];
int a4d[][][3][4];
int a5d[][2][][3][4];

13.4 Variable length arrays in COOGL

 C99 stretches C compile time casts into run time casts that include array dimen-
sioning cast expressions evaluated at run time, COOGL does not follow that baroque
design. instead it provides support for variable length arrays in a simpler way. Vari-
able length array declarations in COOGL are a kind of entity that is different from the
traditional C statically dimensioned arrays. Nonetheless, statically dimensioned ar-
rays can be used as arguments to functions that expect variable length arrays.

In COOGL the number of elements in each array dimension can be obtained from
the array object. The statically dimensioned array member max[K] provides the num-
ber of elements in each of the K dimensions of the array.

Variable length array matrix multiplication in COOGL:

void multiply(float a[][], float b[][], float r[][]) {
 // r[I][J] = a[I][K] * b[K][J]
 index I = a.max[0], K = a.max[1], J = b.max[1];
 expect(r.max[0] == I && r.max[1] == J &&
 a.max[0] == I && a.max[1] == K &&
 b.max[0] == K && b.max[1] == J);
 for (index i = 0; i < I; ++i)
 for (index j = 0; j < J; ++j) {
 float t = 0;
 for (index k = 0; k < K; ++k)
 t += a[i][k] * b[k][j];
 r[i][j] = t;
 }
}
void use(index n, index m) {
 float data[n][m], trans[m][n], result[n][n];
 get_data_and_trans(data, trans);
 multiply(data, trans, result);
 print_result(result);
}

Local array variables declared with run-time expressions as their dimensions are
variable length arrays. Variables declared with array declarators without dimension-
ing expressions are array descriptors. For example the a[][], b[][], and r[][] are
array descriptor arguments of multiply(). Local variable length array variables
within use() are: data[n][m], trans[m][n], and result[n][n].

222 Variable length and dynamically allocated arrays Chapter 13

Arrays of array descriptors and array descriptors of arrays are not supported, even
though alluring from a language orthogonality perspective, they have little value and
don't merit the complexity that they would add to the language. The declarations of
a[n][m][], b[n][][], and c[][n][m] are all invalid:

void f(index n, index m) {
 float a[n][m][]; // error: array of array descriptors
 float b[n][][]; // error: array of array descriptors
 float c[][n][m]; // error: array descriptor of arrays
}

In C the [] declarator is most commonly used in argument declarations, the other
two cases mentioned above in §13.2 are not as common. Because in C the []
declarator when used in an argument declaration is a synonym of the * pointer
declarator, there is no language level semantic difference between them, though it is
sometimes used as a visual cue to the programmer that the pointer in question is actu-
ally the address of the first element in a unidimensional array. For example, these two
C declarations of vector in sum() are equivalent in C:

float sum(int n, float vector[]) { ... }
float sum(int n, float *vector) { ... }

The declaration of m[][] is an invalid argument declaration in C:

/* error: array type has incomplete element type */
int f(int m[][]) { ... }

In C, the number of elements can only be omitted from the first array declarator, for
example:

int f(int m[][20]) { ... }

Which is equivalent to:

int f(int (*m)[20]) { ... }

In COOGL, arguments declared with [] are array descriptor arguments, arguments
declared with * are a pointer to a single object, not a pointer to an element within an
array.

To provide C source code compatibility and some run-time calling convention com-
patibility, a function that takes arguments declared with a single empty [] passes a
pointer to the first element of the array in that argument. An extra hidden argument, is
passed in addition to the function's arguments specified in its signature with the array
descriptor's value of max[0], see §2S.6.

In the declarations of multiply() 's arguments, above: a, b, and r, are array de-
scriptors, they are objects, not pointers to objects, the references to the dimensions,
for example a.max[0] are thus in the form object.member.

When native C arrays, or variable length arrays, are passed to multiply(), as oc-
curs in use() above, it is the compiler's job to create array descriptors and pass those

13.4 Variable length arrays in COOGL 223

by value. The memory for the underlying array elements is not contained within the
array descriptors, thus even though the array descriptors are passed by value the net
effect is that the underlying elements of the array that was the input argument is what
is referenced or affected by the function.

A source of common bugs is removed by having the array dimensions be part of the
array descriptors instead of passing them explicitly as additional arguments, as occurs
in C99. Given that the relationship between the dimensions of the arrays is not know-
able by the compiler, the expect() in multiply() validates that the array argu-
ments are valid with respect to each other.

The number of entries in an array or in an array descriptor is total, i.e. the result
of multiplying: max[0] * max[0] * ... * max[N-1]. For example:

void add(float a[][], float b[][], float r[][]) {
 // r[I][J] = a[I][J] + b[I][J]
 index I = r.max[0], J = r.max[1];
 expect(a.max[0] == I && a.max[1] == J &&
 b.max[0] == I && b.max[1] == J);
 float *ap = a.start; // same as: ap = &a[0][0];
 float *bp = b.start;
 float *rp = r.start;
 float *endrp = rp + r.total; // example of of total
 // float *endrp = r.end; // this is the same
 while (rp < endrp) *rp++ = *ap++ + *bp++;
}

13.5 Idiomatic error setting by constructor and arrays of objects

Class stackx inherits from stack, its constructor only sets *errnop if an error
actually occurred, otherwise it is left unchanged. This allows users of stackx to cre-
ate multiple stacks and only check the accumulated construction error.

class stackx(size_t max, int *error) {
 int e;
 pub inherit stack(max, &e);
 if (e) *error = e;
}
void use() {
 int error = 0;
 decl stackx(10, &error) stk2d[50][50];
 if (error) return;
 for (int i = 0; i < stk2d.max[0]; i++)
 for (int j = 0; j < stk2d.max[1]; j++)
 stk2d[i][j].push(i + j);
}

The idiomatic setting of *error only when errors occur allows for the checking of

224 Variable length and dynamically allocated arrays Chapter 13

construction errors for the whole array to be done more easily.

13.6 Restrictions on array descriptors and variable length arrays

C99 extends K&R and C89 casts, sizeof, and array declarations with run time be-
haviors, to support variable length arrays. The COOGL extension is simpler, the C89
core is left unchanged in these areas. In C99 casts can be used to mutate memory into
an array whose dimensions are only known at run time, the use of casts for this is
needlessly obscure, that syntax is not supported in COOGL, the reinterpretation of
memory as arrays of various dimensions is done through array descriptors, see §13.7.

To make the use of array descriptors as simple as possible and prevent program-
ming errors, these restrictions exist on them:

 Use of sizeof on an array descriptor or on a variable length array is invalid,
sizeof(a) produces a compile time error to prevent confusion between the
size of the array descriptor and the size of the underlying array itself.

 The address of an array descriptor, or of a variable length array, cannot be
taken, they are strictly value objects. To pass them as arguments to a function
an array descriptor argument receives a copy of the array descriptor.

 The dimensions of a variable length array are set at construction time, the ar-
ray dimensions can not be changed.

The variable length arrays and array descriptors in COOGL are close to Dennis
Ritchie's proposal for a variable length array extension to C. Ritchie's proposal was
not adopted for C99, even though Ritchie explained the problems and complexity in
GCC's and MacDonald's proposals, they were the base for what was eventually
adopted by C99.

13.7 Array memory reinterpretation

The declaration of a variable length array causes the allocation and construction of
the underlying memory for the array elements. Array descriptors allow for the under-
lying memory to be associated with it at a later time. The underlying array entries of
an array can be reinterpreted by an array descriptor, for example to refer to fewer ele-
ments, or to have a different number of dimensions. In the example below the b[2]
[3][5][7] array descriptor refers to the memory of a[10][21].

Note the last two array descriptor arguments of lib.array.make(), the last one is
generic based on the first argument. Passing a.start there causes it to be received
as a unidimensional array descriptor thus its max[0] can be used to ensure that the
array descriptor that is requested does not give access to memory outside the array.

13.7 Array memory reinterpretation 225

void use() {
 int a[10][21];
 int b[][][][] = lib.array.make(int, {2,3,5,7}, a.start);
}

The syntax {2,3,5,7} argument to lib.array.make, above, is an array initial-
izer passed as an argument and received in an array descriptor argument, the array el-
ement’s type must be compatible with the type of the array elements of the corre-
sponding argument. In C a cast would have been required, because in C the array ex-
pression can occur in subexpressions thus its type can not be determined in general,
from the context of where it occurs. This divergence from C and non-silent incompat-
ibility might be addressed in the future, but there is very little use for it in practice.

13.8 Dynamic creation and destruction of arrays

Support for allocating the underlying memory for an array on the heap, when an ar-
ray needs to be allocated dynamically, even if the array doesn't require construction
or destruction, is provided by lib.creatable, through create() and destroy()
member functions added as an extension to the array descriptor of the specified type.

An example of the use of create() and destroy() on array descriptors:

float create_and_init_matrix(size_t n, size_t m)[][] {
 float a[][], b[][], r[][];
 if (a.create({n,m}) && b.create({m,n}) && r.create({n,n}))
 work(a, b, r);
 a.destroy(), b.destroy();
 return r;
}

the {n,m} array is the dims[] array descriptor argument to create(), see below.

The invocation of destroy() is valid even if create() failed, or if it was never
invoked, destroy() must be invoked explicitly, the destruction of a and b does not
invoke destroy(), because the underlying memory for the array might still be refer-
enced by other array descriptors, as is the case with r, the array data it references is
returned as the value of the function by returning a copy of the r array descriptor.

Invoking the create() member function is invalid, and raises an exception, if the
array descriptor already refers to some memory. The type.argsof tuple type, the ar-
gument list of the constructor of type, is used to declare the argument list of cre-
ate(), a non-static member functions added to the array descriptors for type by the
lib.creatable interface.

When a type is extended within some scope, or namespace, the type extension is al-
ways global, not scoped. Thus a generic interface such as lib.creatable can ex-
tend related types, array descriptors in this case, appropriately. The unsafe_cast()
operator and uninit(), used below, are described in §14.21 and §14.23.

226 Variable length and dynamically allocated arrays Chapter 13

pub namespace lib {
 pub interface creatable(pub genre void type,
 pub lit uint extra = 1,
 pub lit bool uninit_extra = false)
 require(extra <= 2) {
 // rest of lib.creatable is in §11.10
 extend class lang.arraydesc(genre void type) {
 pub bool create(size_t dims[],
 decl type.argsof args)
 require(!start &&
 dims.max[0] > 0) {
 size_t total = 1;
 bool overflow = false;
 size_t *d = dims;
 do {
 size_t sz = *d++;
 expect(sz > 0);
 overflow |= total ?*= sz;
 } while (d < dims.end);
 expect(!overflow);
 lib.object.array_alloc(type, this, extra,
 total, dims);
 if (!start) return false;
 type raw *p = unsafe_cast(type raw *) start;
 type raw *prior = p - 1;
 type raw *after = unsafe_cast(type raw *) end;
 for (; p < after; ++p) type(args, p);
 if (!extra) return true;
 if (uninit_extra) {
 if (extra == 2) type.uninit(args, prior);
 type.uninit(args, after);
 } else {
 if (extra == 2) type(args, prior);
 type(args, after);
 }
 return true;
 }
 pub void destroy() redef {
 if (!start) return;
 for (type *p = start; p < end; ++p)p->deinit();
 lib.object.array.free(this);
 }
 }
 }
}

13.9 Array descriptors and polymorphism 227

13.9 Array descriptors and polymorphism

Array descriptors, in general, are not polymorphic, the types of the underlying ob-
jects are known, with the relaxation that if the objects have the same exact size, then
polymorphism is allowed. The types of all the elements in the array are the same, but
they can be of a type that descends from the type of the base element of the array de-
scriptor, for example, an array of objects of a type can be passed as an argument and
received by an array descriptor whose type is an ancestor of the array's type. The re-
striction on the size is required because indexing of array descriptors, or walking
them with pointers, is based on the size of the underlying elements of the array, they
must be known at compile time, not at run-time. Even though this restriction could
possibly be relaxed, it doesn't seem to merit the language complexity of doing so.

228 Variable length and dynamically allocated arrays Chapter 13

[This page left blank to work around issue in LibreOffice that is causing an empty
blank page to be created in the next chapter in between its pages]

14 - Safe programming

“The first principle was security: The principle that
every syntactically incorrect program should be
rejected by the compiler and that every syntactically
correct program should give a result or an error
message that was predictable and comprehensible in
terms of the source language program itself. Thus no
core dumps should ever be necessary. It was logically
impossible for any source language program to cause
the computer to run wild, either at compile time or at
run time. A consequence of this principle is that every
occurrence of every subscript of every subscripted
variable was on every occasion checked at run time
against both the upper and the lower declared bounds
of the array. Many years later we asked our customers
whether they wished us to provide an option to switch
off these checks in the interests of efficiency on
production runs. Unanimously, they urged us not to--
they already knew how frequently subscript errors
occur on production runs where failure to detect them
could be disastrous. I note with fear and horror that
even in 1980, language designers and users have not
learned this lesson. In any respectable branch of
engineering, failure to observe such elementary pre-
cautions would have long been against the law.”

-- C.A.R. Hoare

Memory safety ensures that incorrect memory accesses do not oc-
cur. Most C and C++ programs have bugs that cause incorrect mem-
ory accesses. COOGL programs do not contain invalid memory ac-
cesses, the language prevents them by design.

14.1 Safe programming

Memory safety ensures that invalid memory accesses do not occur, but without a
definition this is no more than a loose concept. This chapter is organized in a bottoms
up manner, first low level concepts and mechanisms are explained, incrementally

230 Safe programming Chapter 14

building up to an explanation at the end of the chapter about COOGL safe program-
ing and a precise definition of invalid memory access. Preventing invalid memory ac-
cesses prevents a whole class of security weaknesses that are frequently exploited.

C shines in its ability to manipulate memory in any way that the programmer thinks
is appropriate, irrespective of whether the memory accesses make sense or are com-
pletely wild. The success of C as the systems programming language of choice, over
other programming languages (ALGOL60, ALGOL68, PL/1, Pascal, Ada, Modula II,
etc.), can be partially attributed to its ability to allow programmers to do whatever
they want, without the language getting in the way.

The most difficult design aspect of COOGL was to preserve the ability of C to ma-
nipulate memory, while ensuring that the memory manipulation is safe. This need
drove the design choices of its approach to memory safety.

14.2 Modern computer system hardware

Modern computer systems organize memory as a flat relatively clean address space,
with the units of memory addressing being the 8 bit byte, all of them implement inte-
gers as two's complement arithmetic. Long gone are the days of computer systems
with one’s complement arithmetic; with only word addressable memory; with 12, 16,
18, or 24 bit addresses and words, and 6, 7, or 9 bit characters. Gone also are the days
of non-flat, segmented, and possibly capability based, addressing schemes (the IBM
iSeries system being the only surviving system with a hardware supported capability
memory system). Simplicity won over baroqueness, and only backwards compatible
leftovers of segment based addressing remain in the x86/64 system computer archi-
tecture, they are mostly ignored, or only used by a tiny amount of system software.

 COOGL is a language for modern systems, some of the restrictions in the C lan-
guage definition that attempted to make accommodations for these defunct computer
architectures are not required to be present in COOGL, which is an evolution of C,
not an accumulation of additional features on top of it.

Hardware supported memory segments for secure sharing of large amounts of data,
or to implement protected subsystems, within clean flat address spaces, for example
as provided by the POWER architectures, has been pushed under the flat address
space and into the realm of the operating system kernel for their management, where
they belong, instead of in the hands of every programmer and every programming
language and its compiler, as was done in the ancient segmented architectures.

Modern computer system architectures place data type placement restrictions on the
various data types supported by them, or at least make strong performance recom-
mendation about it. Usually native data type entities must be located in memory in
addresses that are a multiple of their size, this address alignment requirement allows
the data item to be accessed as efficiently as possible. For example, 64 bit floating

14.2 Modern computer system hardware 231

point numbers stored in addresses that are multiples of 8 (eight 8-bit bytes = 64 bits),
or 32 bit integers stored at addresses that are multiples of 4. Hardware designed with
these data placement restrictions is simpler to implement than hardware that operates
without them. For example, access to a 32 bit integer that crosses a cache line bound-
ary and a virtual memory page boundary is much more complicated than an aligned
32 bit integer access, which would never cross those boundaries. Most modern com-
puter architectures raise an alignment exception when an unaligned access is per-
formed. Certain legacy architectures don't cause alignment exceptions, but their un-
aligned accesses can be slower, sometimes much slower, than an aligned access. Un-
aligned data item accesses are not prevented by COOGL, if the access results in a
hardware exception, the exception is delivered to the program, see §14.33.

Input and output of characters, integers, and floating point data, in binary form, is
required by applications. Whether the data being read is actually well formed for
those data types, is a concern for the application, not for the COOGL programming
language because such improperly formed data can not lead to invalid memory ac-
cesses. For example, an application that expects that the characters that it reads be
ASCII characters, valid UTF8 strings, or that its floating point values are valid, can
choose to validate them prior to their use, or assume that they are valid and simply al-
low the program to misbehave if made to operate on an invalid data file.

COOGL does not assume that the computer system includes a Memory Manage-
ment Unit (MMU) to translate between a virtual address space and a physical address
space. If such an MMU exists, it usually does, then some specific implementation ap-
proaches to COOGL safe programming take make use of it, either through the mem-
ory mapping interfaces provided by modern operating systems, or by directly making
use of the MMU in its run time language support, for example in an operating system
kernel, a hypervisor, firmware, or some other low level software that runs without the
support of an operating system. Systems without an MMU, or with a a very primitive
address validation scheme (for example a few bounds and/or mapping registers) use
other implementation approaches to achieve COOGL safe programming.

14.3 Safe programming approach

A way to think about safe programming languages is that, when a problem occurs
with the program, the problem can always be fully investigated and understood at the
programming language level. There is never a need to examine the state at the ma-
chine level, for example, the programmer never has to examine a corrupted run time
stack, computer register values, instruction sequences, and the machine instructions
that the program was translated into. For example, to understand the nature of a run-
away program that ended up crashing after executing some arbitrary data as if it were
instructions, as occurs in C and C++. The programmer only debugs logic errors that
are fully understandable at the programming language level, not at the machine level.

232 Safe programming Chapter 14

Most safe programming languages include automatic memory management, i.e.
garbage collection, as a means to ensure that an object’s memory not be reused if the
underlying memory where the object is stored could still be referenced through a
pointer that is still accessible by the program; and conversely that memory that is no
longer accessible can be eventually reused for other purposes. Some safe program-
ming languages contain substantial run-time systems: virtual machines, just-in-time
code generators, language interpreters, and large libraries, written in unsafe lan-
guages, problems in those bodies of code, can not be debugged as logic errors at the
language level. The larger the run-time code written with an unsafe programming
language the less safe the language is as a whole.

The approach to safe memory management used by COOGL does not mandate
garbage collection, instead memory management remains in the control of the pro-
grammer, but in a safe way. General purpose or custom garbage collection can be im-
plemented by an application if they choose to do so. By providing minimal mecha-
nisms in the language, the programmer can choose between traditional explicit mem-
ory management, general purpose garbage collectors, or allocators specialized for the
application that offer garbage collection like behavior, without the costs of general
purpose garbage collection.

There is little value in a new language that evolves C, but that in its evolution
causes C's rich memory manipulation abilities to be removed, or to become so crip-
pled so as to become unusable as an evolutionary path for C code. COOGL's ap-
proach to safe programming walks a careful design balance of preserving the value
and efficiency of C's memory manipulation while ensuring that the memory manipu-
lation is safe and efficient. This chapter explains how that is done.

It is important to emphasize that garbage collection is not a panacea for program-
ming, it prevents certain errors, but leads to other kinds of errors. For example, if the
programmer is not careful enough to ensure that data, when not longer needed, is not
referenced through accessible pointers, then the memory never is reused, which
slowly but surely leads to the program’s memory needs to grown continuously, even-
tually leading to the program thrashing the underlying virtual memory system, or fail-
ing in other ways when memory allocations start to fail unexpectedly. Systems that
depend on garbage collection tend to require a much larger amount of memory than
systems that don’t require garbage collection, requiring 1.5 to 2 times as much is not
unusual.

Finally, it is also important to realize that one size fits all solutions are limiting and
when implemented by the language itself, rob the programmer from the possibility of
implementing alternative approaches to safety that might be more appropriate,
smarter, performant, safer, than the approach chosen by a language, including the ap-
proach chosen by COOGL. Thus only a small amount of mechanism is implemented
and defined by COOGL. Through the use of preclass inheritance (see §14.30) and

14.3 Safe programming approach 233

pointer life cycle control (i.e. smart pointers), alternative approaches can be imple-
mented without having to modify the compiler or change the language definition.

14.4 Bad memory accesses in C

In C it is easy to reference memory that should not be accessed.

Run time stack smashing in C:

void wrong() { char x[1]; x[200] = 'x'; }

More stack smashing:

void store_1_at_index_100(int *p) { p[100] = 1; }
void wrong() { int v = 1; store_1_at_index_100(&v); }

Abridged version of classical malloc() and free() problem in C:

void stomp() { char *p = malloc(10); free(p); *p = 'x'; }

Malformed string causing unrelated memory to be affected in C:

char s[] = {"hi"};
char d[3];
void stomp() {
 s[2] = 'x';
 strcpy(d, s);
}

Pointer smashing through union in C:

void smash() {
 char c;
 union { char *p; int i; } u;
 u.p = &c;
 u.i = 17; /* smash the u.p pointer */
 u.p = 'x'; / use smashed pointer */
}

All of these programs are incorrect, they are abridged versions that present the
essence of programming problems found in many large C programs.

A more complex variation of stack smashing in C:

char *set(char *p) { *p = ' '; return p; }
char *bad() { char c; return set(&c); }
void store(char *p) { *p = 'x'; }
int main() { char *p = bad(); store(p); }

The address of the local variable c is only valid while bad() is active, when
bad() returns, the address of c is returned, i.e. p in main() points to a variable, c,
whose function, bad(), is no longer active in the run time stack. When the value of
p is passed to store() it could easily point to something that should not be altered,
for example the return address of store() within the function call run time stack.

234 Safe programming Chapter 14

C compilers are incapable of reporting an error for this class of code, particularly if
the functions are separately compiled, all of it is valid C code, programmers are sup-
posed to know what they are doing. For example, if the programmer is doing some
intelligence agency's biding, similar code might be written as a hidden security hole
to exploit later as a backdoor to take over the system.

14.5 Plain and non-plain data and types

Variables of the base types: character, floating point, and integer types (with the ex-
ception of index and uindex) are plain data. Pointers, array descriptors, variable
length arrays, and index variables (of index or uindex types) are not plain data.
Structures, unions, and traditional C arrays that only contain plain data are also plain
data. Plain data are entities that only contain, directly, or indirectly, other entities that
are also plain data. For example, traditional C arrays of plain data, and structures and
unions whose members are all plain data, are plain data. The definition of plain data
is recursive, allowing for traditional C arrays of structures with traditional C array
members, and so on, that are plain data to be plain data. The definition is also intu-
itive, simply meaning that there are no pointers, no indexes, no array descriptors, and
no variable length arrays anywhere within an object that is plain data. The data de-
scribed by an array descriptor or contained in a variable length array can be plain
data, and manipulated as such, the data, the array elements, remain plain data, even
though the array descriptor and variable length array are not plain data. A comple-
mentary concept, non-plain data, refers to any data that is not plain data. Two related
definitions are plain data types and non-plain data types; they are the types of objects
that are plain data and objects that are non-plain data, respectively.

Data of a type declared by the programmer, or the language, in a class declaration
is never plain data, irrespective of whether or not it contains pointers, indexes, array
descriptors, or variable length arrays. Even though built in types, int, float, etc.
can be thought of as being of a class type, they are not actually declared in a class
declaration, they are plain data, the fact that they can be extended through extend
class does not affect their treatment as plain data.

These are non-plain data types:

typedef byte *byteptr_t;
struct bytebuf_t { size_t size; byteptr_t mem; };
struct range_t { index start; index end; };
class point { pub float x, y; }

These are non-plain data:

14.5 Plain and non-plain data and types 235

byteptr_t bp;
bytebuf_t bb;
range r;
point p;
int *ip;

These are examples of plain data types:

struct dirent_t { // UNIX v6 directory entry
 ushort inum;
 char name[14];
};

236 Safe programming Chapter 14

lit size_t DATABUF_SIZE = 512;
struct databuf_t {
 char data[DATABUF_SIZE];
};
struct dirbuf_t { // a databuf full of directory entries
 dirent_t de[sizeof(databuf_t) / sizeof(dirent_t)];
};

These are plain data:

dirent_t de;
dirbuf_t db;

A class can not have the address of its data members, whether they are of a plain
data or not, to be used in such a way that their addresses, directly or indirectly in
other functions, would end up being used with the cast() or the try_cast() oper-
ators. Any such use causes a compilation error, see §14.12.

A consequence of not allowing any of the memory within a class to be manipu-
lated in ways that other plain data can be manipulated is that this forces a complete
separation between class and struct, and the compiler can be allowed to perform
more aggressive alias analysis and optimizations for memory accesses that relate to a
class than those that relate to a struct, at least for the plain data parts of a
struct. The compiler can be as aggressive as it is for classes with the non-plain data
members of a struct.

14.6 Insight for safe, C style, memory manipulation in COOGL

The rich memory manipulation of C allows simple and efficient organization and
placement of data in memory in whatever way that is required, without the language
getting in the way of doing so. Usually the data placement has been defined else -
where and the programmer is not at liberty of choosing a different organization for it.
For example, data to communicate with other computer systems or devices, such as
data associated with network and storage systems, network communication protocols,
distributed file systems, distributed transaction coordinators, file formats, database
engines, file system metadata, volume manager metadata, etc.

Externally imposed memory layouts share the common characteristic that they are
meaningful outside of the computer system, or at least across unrelated processes.
Pointers, array descriptors, and variable length arrays (organized in a programming
language mandated way) are not included in such layouts because they would be
meaningless in them. The externally defined memory layouts can all be thought of as
being plain data. Even if the plain data contained various variable length components
to it, they often do, the actual description of such data, its size, its location, would be
part of some external specification, described with other plain data for example off-
sets within the data, explicit or computed, not with pointers or a language specific

14.6 Insight for safe, C style, memory manipulation in COOGL 237

representation of variable length arrays nor with array descriptors. This is the key in-
sight on which safe programming in COOGL is based: C's rich memory manipu-
lation is needed, almost exclusively, when detailed control of externally defined
memory layouts is required, and those only contain plain data.

Other circumstances under which C's memory manipulation is used, are much less
important, and don't occur as often, for example to implement memory allocators.
This use is supported by COOGL through unsafe code, but are not required to imple-
ment most programs.

Some other infrequent uses that require C's rich pointer manipulation include being
able to determine from a pointer within a memory area the base of the memory area,
for example from a pointer to a field within a structure to compute a pointer to the
structure (supported in a safe way in COOGL by field_to_obj(), see §1L.2); or
from a pointer to a structure to find another structure that has been placed immedi-
ately prior to it; or from a pointer to an object within an area to find control informa-
tion placed near it, for example by clearing a number of low bits within the pointer to
compute the pointer to the control information. Most of these uses are uncommon
enough that they don't need to be supported by safe code.

Indexing with plain data is unsafe, the plain data could be addressable from else-
where, type based alias resolution could lead the compiler to assume that the index
has not changed by intervening stores and cause the index to be refetched after it has
been validated and cause an unchecked out of bounds array reference. Thus index
and uindex are not plain data. Indexing with plain data is only allowed when the
compiler can prove that the specific data item has never had its address taken, for ex-
ample when indexing with a locally declared int variable.

The types index and uindex are non-plain data types, their size depends on the
underlying system (for example 32 vs 64 bit memory addresses), externally imposed
layouts should never include system specific types. Indexes are used to index into ar-
rays and to perform pointer arithmetic. Because they are not plain data, they are safe
from being affected in unexpected ways by code creating external memory layouts
through COOGL's rich memory manipulation means. If the external memory layout
is to be used only within the same system, for example through some shared memory,
then the ssize_t and size_t types can be used, they are plain data, instead of in-
dex and uindex.

14.7 Unions can't contain indexes, pointers, or array descriptors

COOGL unions are not allowed to contain members of type index or uindex,
pointers, or array descriptors, directly or indirectly. Thus all COOGL unions are plain
data, this is a restriction compared to C. COOGL is an evolution of C, not a superset.

238 Safe programming Chapter 14

14.8 Global memory can't refer to memory on the run-time stack

Global memory are variables declared globally, or anywhere with static, or mem-
ory allocated dynamically from the heap. Run-time stack allocated memory is the
memory that contains locally declared variables (non-static ones), function argu-
ments, or memory that was allocated with alloca().

The term refer in this section means that it points to memory (i.e. it is the address of
the memory), or that it is an array descriptor value that can be used to access memory
(i.e. it refers to elements within an array). The term address range is used in this sec-
tion to mean an individual address value that refers to a single data item, or an array
descriptor value that refers to multiple contiguous data items.

Global memory can not refer to memory allocated on the run-time stack, this is
guaranteed by the language, attempting to cause global memory to refer to run-time
stack memory causes a compilation error. The requirements listed in this section are
imposed by the language, and enforced by the compiler, they aid in the implementa-
tion of this property.

An address range that refers to data within run-time stack allocated memory, can
not be used other than to:

 Access the underlying memory.

 Store the address range into a variable that resides on the run-time stack. The
destination variable must be declared after the variable whose data the ad-
dress range refers to, this ensures that the lifetime of the variable is shorter
than the lifetime of the data it refers to. The destination variable must meet
the restrictions on variables that refer to data on the run-time stack, described
below.

 Pass it as a non-member argument to a function, but only if the argument meets
the restrictions on variables that refer to data on the run-time stack.

 Call a member function on an object that the address range refers to, but only if
uses of this in the member function meet the restrictions on variables and ad-
dresses that refer to data on the run-time stack.

When an address range that refers to data within run-time stack allocated memory
is used for any other purpose than those listed above, a compilation error occurs.
When used to call a function or a member function that doesn't meet the requirements
enumerated above, it causes a compilation error in the calling location, not in the
called function's code itself.

 The function and member functions mentioned above, have their names adjusted
with compiler generated information that indicates that the function meets the restric-
tions, and for which of their arguments it meets them.

14.8 Global memory can't refer to memory on the run-time stack 239

A function argument or a this object pointer, whose value refers to memory on the
run-time stack, or an expression whose value was derived from the argument's value,
including through the use of local variables that refer to that memory, can be returned
as a value by the function in a safe way, see §14.9 for details about this.

Run-time stack allocated variables, function arguments, and this pointers that at
any time might refer to data on the run-time stack can only be used to:

 Access the memory that they refer to.

 Use their value in pointer tests and comparisons.

 Pass their value to other functions or call member functions on them, but
only if the corresponding arguments or this pointers meet the restrictions in
this list, because they will refer to run-time stack allocated memory.

 Obtain an address range that refers to memory within the memory that they
refer to. The address range is subject to the restrictions listed above on ad-
dress ranges that refer to run-time stack allocated memory. The address range
can be assigned to a run-time stack allocated variable which must meet the
restrictions enumerated on this list. If a local variable was the source of the
address range used to derive the assigned address range, and the source vari-
able could be referring into run-time stack allocated memory allocated by the
same function, then the variable into which the derived address range is as-
signed must have been declared after the location where the run-time stack
allocated memory was allocated, this ensures its lifetime ends prior to the
lifetime of the run-time stack allocated memory.

These restrictions imply that:

 The value of run-time stack allocated variables, function arguments, and this
pointers, that could possibly refer to run-time stack allocated memory, can not
be stored in the members of local variables that are structures, class objects, or
arrays, or into any global memory.

 An address range that refers to run-time stack allocated memory can not be used
used as an argument to a function, or to call a member function on it, if the invo-
cation of the function or member function, could lead to an address range that
refers to the stack allocated memory to be stored in the members of local vari-
ables that are structures, class objects, or arrays, or into any global memory.

 Address ranges that refer to run-time stack allocated memory only exist as
non-member arguments to functions, run-time stack allocated variables
within functions, or the value of this within functions, and their lifetimes
end prior to the lifetime of all the run-time stack allocated memory that they
might have ever referred to.

Traditionally, in C, the address of local variables are used as arguments to functions

240 Safe programming Chapter 14

as a means to return values through them. The ability to do this is preserved in
COOGL to allow CLEAN code to be shared between C programs and COOGL pro-
grams. For example, when a large body of code is being incrementally migrated from
C to COOGL. In COOGL it is idiomatic for functions that return multiple values to
return them through a tuple.

The address of a memory buffer into which I/O should be performed, or into which
some data should be built, is usually passed as an argument to a function that does the
work, passing an array descriptor that refers to a non-static local buffer variable
for these purposes doesn't have a better alternative solution, if it were not allowed,
this kind of memory buffers would end up being global memory allocated from the
heap, an alternative would be to allow each run-time stack to control a dedicated
stack organized heap from which to allocate these memory buffers. A dedicated stack
organized heap, associated with each run-time stack, implemented outside of the lan-
guage, could be used as a discipline that forces such buffers to be isolated from the
run-time stacks, helping secure the run-time stack from security attacks, particularly
when the code uses pre-existing libraries written in unsafe languages, such as C and
C++. A compiler option is provided to produce a warning if addresses within run-
time stack allocated memory are ever passed as an argument to a C function, this
helps find any data that might end up being used insecurely in a library written in an
insecure language.

14.9 Returning addresses of run-time stack allocated memory

Address ranges that refer to memory allocated on the run time stack can not be re-
turned by the function that allocated the memory. Attempting to do so causes a com-
pilation error, irrespective of whether intermediate functions are used to attempt to do
so. This prevents a function from referring to memory allocated on the run-time stack
that has been deallocated when the function that allocated it returned. The language
guarantees this property for every program.

For example, bad() attempts to cause the address of c to be returned by it through
its invocation of set(), causing a compilation error:

char *set(char *p) { *p = ' '; return p; }
char *bad(char c) { return set(&c); } // error: returns address
 // of local: c

This is the case even if bad() and set() reside in separate source code files, and
even if they are compiled separately into two different module binaries meant to be
loaded dynamically at run-time under program control. The compiler generated infor-
mation for set() includes information that indicates that the value returned by the
function refers to memory within the memory that its first argument refers to. This in-
formation is propagated at compile time to bad()’s invocation of set() which re-
sults in a compilation error because the return statement attempts to return the ad-

14.9 Returning addresses of run-time stack allocated memory 241

dress of c.

Assume the following version of set(), which doesn’t lead to the problem, is
compiled into its own module that can be loaded dynamically at run-time:

char buf[] = {"hello"};
char *set(char *p) { *p = ' '; return buf; }

The following version of bad() is compiled, by itself, into a separate dynamically
loadable module, with the compile time information about the version of set() that
returns buf.

char *bad(char c) { return set(&c); } // no error produced
 // at compile time

After compiling the dynamically loadable binary that contains bad(), the code of
set() is recompiled with this code which could lead to invalid memory accesses:

char *set(char *p) { *p = ' '; return p; }

A program dynamically loads this version of set() and then attempts to dynami-
cally load the version of bad() which has not been recompiled, this causes an error
and the dynamic loading of the binary fails because the symbol for set() required
by bad() is incompatible with the symbol for set() that is currently in the program.

Another example, the strchr() C library function, is invoked frequently with a lo-
cal C string as its argument. The function wrong(), below, by itself doesn't reveal
that it attempts, through strchr(), to cause an address within its local variable
buf[6] to be returned, which is invalid and causes a compilation error. The relation-
ship between the str[] argument and the value returned by strchr() is determined
by the compiler when strchr() is compiled. The relationship between buf[] and
the value returned by strchr(), is used by the compiler when compiling wrong(),
the compiler knows that it might possibly be returning an address within a local vari-
able, so a compilation error is produced.

char *strchr(char str[], int c) promise(retval == NULL ||
 str.start <= retval &&
 retval <= str.end) {
 char v;
 char *s = str;
 char *send = str.end;
 for (; s < send; ++s) {
 if ((v = *s) == c)
 return s; // address of c in s, even if c == 0
 if (!v) break;
 }
 return NULL; // return NULL otherwise
}

242 Safe programming Chapter 14

char *wrong() {
 char buf[6] = {"hello"};
 char *p = strchr(buf, 'e');
 return p; // error: address of buf[] could be returned
}

Note that the promise() specification that is part of strchr() is not required for
the compiler to be able to determine the relationship between str[] and the value
returned by strchr().

14.10 Run-time stack allocated memory and execution contexts

The address of run-time stack allocated memory can not be communicated, by any
means, to other execution contexts, for example: concurrently executing code in an-
other thread, coroutines, exception handlers, interrupt handlers, signal handlers, etc.
Operating system environments that allow processes with per execution context pri-
vate run-time stack’s that are only addressable by the execution context that owns the
stack are supported by COOGL programs. See §15.9 for more about execution con-
texts.

14.11 Run-time stack growth is checked

The COOGL run-time stack growth is checked against overflow through red-zones
(MMU page frames that are inaccessible). When the stack frame increment size could
skip the size of the red zone, compiler generated code, or alloca() code, ensures
that the red zone is not skipped by accessing the underlying memory incrementally in
the direction of stack growth.

14.12 Casts and safety: cast() and try_cast()

A cast() is allowed from the address of some plain data to a pointer to a plain
data type only if the cast does not result in a pointer that could access memory out-
side of the memory that the source address refers to. If the type of the memory that
the target pointer refers to is larger than the memory that the source address refers to,
then the use of cast() causes a compilation error, try_cast() should be used in-
stead.

A try_cast(type *, mem, value) addr is like a cast(type *) addr that
tests if the memory at addr (which must be within the plain data memory described
by the mem array descriptor) when interpreted as a pointer to type (which must be a
plain data type) is fully contained within the memory described by mem, if it is, the
value of the try_cast() is the value addr with type pointer to type, if not, the
value is value, whose type must be, or be compatible with, pointer to type. Usually
value is NIL (see §14.16) or NULL, it can also be the address of some other data,

14.12 Casts and safety: cast() and try_cast() 243

usually a dummy data variable of the same type. The result of a try_cast() can be
checked explicitly, or just used to access the substitute dummy data, or if it is NIL to
cause an exception (see §14.33) to be raised without testing the value explicitly, for
example:

void example() {
 short s, *sp = &s, sa[10];
 int *ip = cast(int *)sp; // error: source object is smaller
 sp = &sa[0];
 ip = try_cast(int *, sa[], NIL) sp; assert(ip != NIL);
 sp = &sa[9];
 ip = try_cast(int *, sa[], NIL) sp; assert(ip == NIL);
}

The code generated for try_cast() is optimized to assume that it will succeed.
When multiple try_cast() are used in a function, it is very common for the same
array descriptor within which the memory should be contained to be the same in all
of them, array descriptors are used as values they are never aliased. This allows the
contained within tests for that are performed in a series of try_cast() to be opti-
mized easily, for example, assuming these structures used to form some kind of mes-
sage where the header and footer are mandatory but the prefix, body, and
postfix are all optional, presumably with the header indicating what parts are
present:

struct header { uint h1, h2, h3; };
struct prefix { uint pre1, pre2; };
struct body { uint b1, b2; };
struct postfix { uint post1, post2; };
struct footer { uint f1; };

In the code below it is expected that data[] has enough space within it:

244 Safe programming Chapter 14

void make_message(uint data[], header *h, prefix *pre,
 body *b, postfix *post, footer *f) {
 uchar *ptr = cast(uchar *) data;
 *try_cast(header *, data, NIL) ptr = *h;
 ptr += sizeof(header);
 if (pre) {
 *try_cast(prefix *, data, NIL) ptr = *pre;
 ptr += sizeof(prefix);
 }
 if (b) {
 *try_cast(body *, data, NIL) ptr = *b;
 ptr += sizeof(body);
 }
 if (post) {
 *try_cast(postfix *, data, NIL) ptr = *post;
 ptr += sizeof(postfix);
 }
 *try_cast(footer *, data, NIL) ptr = *f;
}

In the worst case scenario all the optional parts are present, the compiler can see
that if any of the try_cast() fails it will cause a store into memory with address
NIL. The optimized generated C code would reduce the 5 try_cast() to one < test:

14.12 Casts and safety: cast() and try_cast() 245

void make_message(uint data[], header *h, prefix *pre,
 body *b, postfix *post, footer *f) {
 size_t size = sizeof(header) + sizeof(footer);
 if (pre) size += sizeof(prefix);
 if (b) size += sizeof(body);
 if (post) size += sizeof(postfix);
 lang__COND_STORE(data.max[0] < size, NIL, 0); // one < test

 // lang__COND_STORE() is a compiler and hardware barrier,
 // stores below only issued if no exception was raised

 uchar *ptr = (uchar *) data;
 *(header *) ptr = *h;
 ptr += sizeof(header);
 if (pre) {
 *(prefix *) ptr = *pre;
 ptr += sizeof(prefix);
 }
 if (b) {
 *(body *) ptr = *b;
 ptr += sizeof(body);
 }
 if (post) {
 *(postfix *) ptr = *post;
 ptr += sizeof(postfix);
 }
 *(footer *) ptr = *f;
}

The generated code could alternatively have a very precise translation of
make_message() in make_message_slow() which causes the unavoidable NIL
dereference in the exact location that the program dictates (including compiler and
hardware barriers), for example to facilitate debugging under a debug support compi-
lation flag:

 if (data.max[0] < size)
 return make_message_slow(data, h, pre, b, post, f);

The underlying C compiler is allowed to reorder memory accesses, as long as the
execution by the thread perceives the execution as if it were in program order, and
unless specific memory ordering is enforced through memory and compiler barriers.
All the structure assignments in make_message() are to disjoint memory, reordering
them by the compiler, or by the hardware is allowed from the perspective of other
processors (e.g. because of hardware store buffers and cache coherency protocol in-
duced delays together with the data straddling cache lines). Those stores can only oc-
cur after lang__COND_STORE() has not raised an exception.

246 Safe programming Chapter 14

14.13 Restrictions on class members whose type is a plain data type

Data members of a user or language defined class, where the data members’ type
are plain data types are not allowed to be used as plain data, their addresses can not
be used in a cast() or a try_cast() operation. Their address can not be passed as
an argument to a function, this ensures that in the function the data that the pointer
refers to is not treated as plain data. This further helps segregate high level code that
can be heavily optimized by the compiler because the plain data within user or lan-
guage defined classes can not have pointers to it other than pointers of their correct
type. Furthermore it forces the programmer not to get needlessly clever with under-
handed manipulation of data members in a way that is not expected by the compiler.

 A plain data member within a user or language defined class could have a member
function defined on it, for example an int with a scan() function, this means that a
this pointer within the member function points to the plain data item within the ob-
ject, which leads to another language restriction: plain data types when manipulated
as objects, i.e. when they are the entity that this points to, can not have their address
used for any purpose other than to affect the whole data item through its type. The
address can not be passed as an argument to a function, stored in a local or global
variable, etc. This restriction guarantees that long lived pointers to the member won’t
exist once the member function invocation returns, it also guarantees that no loads or
stores of the data are performed through types different than its own type, for exam-
ple an int data member is never accessed through its underlying bytes individually.

14.14 Implicit pointer conversions without casts

Implicit pointer conversions, without casts, between pointers are allowed if the
source type and the target type are both pointers to objects, and if the type of the ob-
ject that the target pointer refers to is an ancestor class of the type of the object that
the source pointer refers to. For example:

class base { pub int v; }
class derived { pub inherit base; pub int info; }
void example() {
 derived d;
 base *bp = &d; // implicit conversion, cast not required
}

Similarly, a pointer to an object that provides an interface can be assigned to a
pointer to the interface, without a cast; and a pointer to an interface that provides an-
other interface (directly or indirectly) can be assigned to a pointer to the other inter-
face, also without a cast. For example, using the classes from, §6.5, to obtain the
rdwr interface through which sequential read or writes can be performed on the
file, a pointer to file can just be assigned to a pointer to rdwr. Furthermore a
pointer to an object that implements an interface directly or indirectly can be assigned

14.14 Implicit pointer conversions without casts 247

to a pointer to the interface, for example:

void nfs_pointer_example(nfs_file *nfp) {
 nfs_node *nnp = nfp; // object to ancestor class
 file *fp = nfp; // object to provided interface
 rdwrat *rwatp = nfp; // object to indirect interface
 rwatp = fp; // interface to provided interface
 rdwr *rwp = fp; // interface to indirect interface
 rwp = nfp; // object to indirect interface
 nfs_pointer_is_cast_example(nfp, nnp, fp, rwatp, rwp);
}

14.15 Pointer to base cast to pointer to derived: is_cast()

An is_cast(type *, value) ptr , from ptr a pointer to an object (where the
ptr’s type is a pointer to an ancestor class of the actual object that it points to, or is a
pointer type to an interface that the actual object implements), can be converted to a
pointer to its actual type, or to some type in the inheritance chain or interface imple-
mentation chain of the object’s actual type. If the is_cast() can be performed, be-
cause it is of the appropriate type, or implements the appropriate interface, then the
value of the is_cast() is the value of ptr with type pointer to type. If the
is_cast() can not be performed, then the value of the is_cast() is value, which
must be NIL, a trapping address, or the address of a valid data item whose type is
type. For example, when this function is called from nfs_pointer_example(),
above with the arguments specified there:

nfs_pointer_is_cast_example(nfs_file *nfp, nfs_node *nnp,
 file *fp, rdwrat *rwatp, rdwr *rwp){
 nfp = is_cast(nfs_file *, NIL) nnp; assert(nfp);
 nfp = is_cast(nfs_file *, NIL) fp; assert(nfp);
 rwatp = is_cast(rdwrat *, NIL) rwp; assert(rwatp);
 nfp = is_cast(nfs_file *, NIL) rwp; assert(nfp);
 nnp = is_cast(nfs_node *, NIL) rwp; assert(nnp);
 fp = is_cast(file *, NIL) rwatp; assert(fp);

 // this fails, the rwp did not come from a nfs_dir object
 nfs_dir *ndp = is_cast(nfs_dir *, NIL) rwp; assert(!ndp);
}

Other than is_cast() no other casts are allowed from the address of a non-plain
data item. No other assignments between pointers are allowed, with or without casts,
other than those described in this and the previous sections.

14.16 Trapping addresses, NIL, NULL, and uptr_cast()

Conversion from a non-pointer value, implicit or through a cast, to a pointer value

248 Safe programming Chapter 14

is not allowed unless the source non-pointer value is:

 The value zero, usually through the NULL literal, which can be assigned to a
pointer or used as a pointer argument, with or without a cast. Use of NULL or
zero as a pointer value is strongly discouraged and deprecated, see §14.18.

 The NIL value, is the preferred invalid pointer value, NIL can be assigned to a
pointer, or used as a pointer argument, without a cast.

 A trapping pointer value, of the unsigned integer type uptr, in this range:

[uptr.trap.BASE, uptr.trap.BASE + uptr.trap.COUNT),

can be converted to a pointer, using the uptr_cast() operator:

uptr_cast(type *, val) uptrval

If uptrval is trapping pointer value, the result is a pointer with that value. Oth-
erwise, the result of the operation is val, typically chosen to be NIL, sometimes
NULL or a valid pointer to type, or some other trapping pointer value literal.

Use of NULL or zero as a pointer value is deprecated, NIL should be used instead,
unless code needs to interface with C or C++ code which requires the use of NULL,
Using NIL instead of NULL isolates the language from non-standard behavior when
NULL pointers are dereferenced in different platforms, from unsafe aspects of using
NULL, and from the undefined behavior compiler optimization campaign (see §1.7)
which negatively impacts on the reliability of C profgrams, by allowing C compilers
to turn any NULL pointer dereferencing into something potentially much worst than
what would have traditionally occurred in earlier versions of the C language and its
compilers.

A trapping address is either: NIL, a trapping pointer value, or an address within the
range of addresses referred to by a pointer whose value is: NIL, a trapping pointer
value, or a trapping address. Given a pointer whose value is a trapping address, the
address of: a field of a struct, a non-static member of a class, or of an array el-
ement within a traditional C array, are all trapping addresses. Note that similarly
computed addresses based on a NULL pointer are not trapping addresses.

Fetching, storing, or executing, any memory, of any type, through a pointer whose
value is a trapping address causes a run-time exception to occur, the exception is de-
livered to the execution context that caused it. The raising and delivery of the excep-
tion is not undefined behavior, it is defined behavior, see §14.33. A range of trapping
pointer values is provided to allow pointers to contain invalid values that are guaran-
teed to cause an exception if used to access memory through them, or through other
pointers whose values are trapping addresses computed from them, while allowing
the programmer to store information in pointers when not being used as pointers, for
example multiple invalid values with various meanings, or indexes into auxiliary in-
formation kept elsewhere.

14.16 Trapping addresses, NIL, NULL, and uptr_cast() 249

Trapping addresses exist as a safety net, catching the program, trapping it, reliably
and dependably, when it misbehaves, i.e. when it dereferences a pointer whose value
is a trapping address. The program does not continue to run subsequent code as if it
had not misbehaved. The programmer can depend on the raising of an exception (see
§14.33) to build software that is more reliable than if the behavior was undefined.

Note that a pointer set to a trapping pointer value is not related in any way to an ar-
ray descriptor within which the pointer can be subject to pointer arithmetic. Perform-
ing operations such as p += n won’t cause the pointer to refer to some unknown
memory, the expression simply won’t compile. Pointer arithmetic is only allowed if
the compiler knows the array descriptor within which the objects that the pointer can
point to are, and the compiler ensures at compile time that pointer arithmetic won’t
cause the pointer to have values other than the values allowed by the range of values
described by the array descriptor, i.e. [start-1, end].

The size of memory that an object can occupy is limited by the compiler, the range
of trapping addresses is much larger than the range of trapping pointer values shown
above. This guarantees that referencing every field of the largest supported object
based on a trapping address always causes an exception (see §14.33). Furthermore
there are also trapping addresses around NIL, whether there is a single range of trap-
ping addresses or two disjoint ones, one around the trapping pointer values and an-
other one around NIL, is not defined by the language.

Pointers to traditional arrays of objects, i.e. where the number of elements is known
at compile time, and where the size of an array with that number of elements plus one
(so that &array[N] is also covered by trapping addresses) is larger than the maxi-
mum object size, can not be set to trapping pointer values, attempting to do so causes
a compile time error.

All empty array descriptors are initialized so that their start and end members
have the value NIL, this ensures that any attempt to dereference them will cause an
exception (see §14.33). The range of trapping addresses around NIL, is such that for
a NIL pointer p, the expression (p-1)->field is guaranteed to cause an exception,
this ensures that for any empty array descriptor the start-1 expression refers only
to trapping addresses.

The language guarantees that the trapping pointer value range supports:

 Storing 16 bit unsigned values in a 32 bit system, and 32 bit unsigned values in
a 64 bit system.

 The values of a ushort on a 32 bit system, and the values of an uint on a 64
bit system, can be stored and retrieved efficiently as trapping values.

 The type uptr.uval is ushort on 32 bit systems and uint on 32 bit systems.

 The range of uptr values supported is: [uptr.MINUVAL, uptr.MAXUVAL].

250 Safe programming Chapter 14

 The value NIL is different than all the possible uptr values that result from us-
ing uptr.uval_set(), see below.

Most 64 bit processor architectures, allow processors that implement the architec-
ture not to implement the whole 64 bit virtual address space, resulting in some very
large contiguous address ranges that are invalid, addresses within such an invalid
range are chosen for each architecture to implement the trapping addresses. On a sys-
tem where every address is valid, wrappers around the memory mapping operating
system interfaces might be required to ensure that a set of addresses can be reliably
reserved to implement the semantics of the trapping pointer values by preventing the
program from mapping memory into those addresses. It is not unusual for the operat-
ing system itself to restrict the range of valid addresses supported by it, in which case
operating system specific invalid addresses can be used for the trapping pointer val-
ues.

14.17 Trapping pointer value interface and implementation

Common code file:

extend class uptr { // uptr.cog
 pub lit uptr BITS = sizeof(uptr) * 8;
 enum class uptr trap {
 ONE = 1;
 SHIFT = BITS / 2 + 1; // 33(64b) or 17(32b)
 COUNT = ONE << SHIFT; // 8G(64b) or 128K(32b)
 HALF = COUNT / 2; // 4G(64b) or 64K(32b)
 MNU = BASE | HALF; // 0x3FF10000(32b)
 MXU = MNU + HALF - 1; // 0x3FF1FFFF(32b)
 MINUVAL = cast(uval) MNU; // 0
 MAXUVAL = cast(uval) MXU; // 65535(64b)
 BASE = uptr.TRAP_BASE;
 }
 pub uval get_uval() return cast(uval) *this;
 pub void set_uval(uval v) { *this = MNU + cast(uptr) v; }
}

A platform dependent file used on some 32 bit systems:

extend class uptr { // uptr-32.cog
 typedef ushort uval;
 pub lit uptr TRAP_BASE = 0x3FF00000u;
} // ----++++

A platform dependent file used on 64 bit systems:

extend class uptr { // uptr-64.cog
 typedef uint uval;
 pub lit uptr TRAP_BASE = 0x3FffFFf000000000uLL;
} // ----++++----++++

14.18 Use of NULL and zero as pointers is deprecated 251

14.18 Use of NULL and zero as pointers is deprecated

Use of NULL and number zero as pointer values is deprecated in COOGL, they are
allowed as a transition mechanism, the compiler option --NULL flag is required for
their use. Support for them is particularly important to allow the use of C interfaces
which might require or return NULL values. If the --NULL flag is not specified, test-
ing a pointer, explicitly for being equals or not equals to zero, or equals or not equals,
to NULL, causes a compilation error. For example, if --NULL is not used, the follow-
ing functions all cause compilation errors:

bool is_a_0(int *a) { return a == 0 ? true : false; }
bool is_b_ne_0(int *b) { return b != 0 ? true : false; }
bool is_c_NULL(int *c) { return c == NULL ? true : false; }
bool is_d_NULL(int *d) { return d != NULL ? false : true; }

It is not allowed to implicitly test a pointer to variable of a type that is not a user de-
fined or a language defined class in a conditional context or to convert it to a bool,
if the --NULL flag is used, e.g. all of these would cause compilation errors:

bool is_a(int *a) { return a ? true : false; }
bool is_not_b(int *b) { return !b ? true : false; }
bool is_c(int *c) { return c; }
bool is_not_d(int *d) { return !d; }

The fundamental reason for deprecating NULL and zero as pointer values is that, in
some platforms, a NULL pointer value could be used to fetch memory at or near ad-
dress zero. If p is NULL, p->table[ix] might be readable if ix is large enough,
even if it is a valid index for table[], even if p->table[0] is not readable. On
some platforms it might even be possible to store into memory at or near address
zero.

A NULL pointer dereference, because of a programming error, becomes a potential
security hole. Even if fetching data at address zero, or near it, can not be exploited as
a security hole, the fact that it doesn't cause an exception, but silently allows the pro-
gram to continue to run, means that the program will most likely misbehave, possibly
in a subtle way, for example by computing incorrect results and performing incorrect
actions, possibly crashing subsequently, or much later, none of which can be tolerated
in a safe programming language. Note that any such incorrect behavior could not be
reasoned about from the programming language perspective, the programmer would
have to understand, at the machine level what happened, what memory was accessed
incorrectly, what values were found there, and what happened subsequently, for ex-
ample if a chain of incorrect values was found and led to one of them to be consid-
ered a function pointer and the program ended jumping to an arbitrary location and
crashing immediately or later after executing some arbitrary code..

The layout of a running program's address space is under the control of the operat-
ing system, it is not reasonable to require operating system changes to implement the

252 Safe programming Chapter 14

best possible run-time environment for the language, at least not int the foreseeable
future. Some operating systems even allow for memory to be mapped at virtual ad-
dress zero, through mmap(), or through shmat() (e.g. MacOS X).

In consequence, programs compiled with --NULL should be considered unsafe.
Even if they were safe in some systems, they might no longer be safe after operating
system components have changed, or their behaviors have changed, for example
through: tunable options, system behavior control mechanisms, address space ran-
domization variations, etc.

14.19 Addresses of members based on NULL or trapping addresses

If a pointer's value is NULL or a trapping address (NIL is a trapping address), then
computing the address of any field of the object is well defined, its a valid operation.
Some programmers read the C standard and believe that computing the address of a
field based on a NULL pointer is undefined behavior in C, there is merit to their read-
ing of the standard but that interpretation goes against the spirit of C, but is the inter-
pretation most likely to be defended by the compiler writers who have taken over the
future of the C language, who have hijacked the language from its users. This is not
undefined behavior in COOGL.

For example, offset_of_next() and offset_of_prev() are valid, the second is
valid only if compiled with --NULL, both result in the computation of a constant
value at compile time, they are both equally efficient:

size_t offset_of_next() return cast(size_t) (cast(uptr)
 &(cast(node *)NIL)->next - NIL);
size_t offset_of_prev() return cast(size_t)
 &(cast(node *) 0)->prev;

14.20 Use of NULL with objects of a class type is invalid

Because NULL, and the value 0, are deprecated pointer values, which are only sup-
ported as a bridge to legacy C code, there is no benefit in allowing pointers to objects
of user or language defined classes to have those values. Assigning or comparing,
NULL or 0, to a pointer to an object of a class type is invalid, even when compiled
with the --NULL flag.

A pointer to an object of a user or language defined class can be converted to a
bool value by assigning it to a bool variable; or by evaluating the pointer with the
!, &&, or || operators; or by testing it in the control expression of control flow state -
ments (if, for, while, and do-while); or in the controlling expression of the ?:
operator. If the pointer is NIL, the result is false. The result is true otherwise.
Note that because these pointers can never have the value NULL, that value is not
considered when they are tested.

14.20 Use of NULL with objects of a class type is invalid 253

Traditional C-like code can be written that tests pointers to objects of a user or sys-
tem defined class type, for example to determine the end of a list, without worrying
whether to use NIL or NULL, because only NIL can be used with them. In this code
the first two for statements are valid, the third one causes a compilation error:

class node {
 pub node *next;
}
void walk(node *list) {
 for (node *p = list; p; p = p->next) work(p);
 for (node *p = list; p != NIL; p = p->next) work(p);
 for (node *p = list;
 p != NULL; // error: node * compared to NULL
 p = p->next) work(p);
}

Use of NULL with pointers to the native data types, structures, unions, or pointers to
them (recursively) is allowed, but only when --NULL is used. NIL can always be
used with any of these.

If --NULL and --NULL-implicit are used, then testing implicitly in conditional
expressions, or converting to bool, pointers to objects whose type is not a user or
language defined class is allowed, but if the value NIL is ever used with one of these
types anywhere in the program, then testing pointer values of that type in a condi-
tional context or causing them to be converted to bool causes a compilation error,
they have to be explicitly compared against NULL, zero, or NIL instead. The goal is
to provide an orderly way to transition away from NULL, because its use is unsafe,
and replace its role with NIL, incrementally, particularly when migrating and reengi-
neering a very large code base from C into COOGL.

14.21 The unsafe_cast() operator and disabling unsafe features

The unsafe_cast(type) operator behaves exactly as the underlying C language
cast operator, its use requires the --unsafe_cast compiler option to be used. Use of
this option and --NULL and --NULL-implicit are the only way that a COOGL pro-
gram can be unsafe. The use of these options can be disabled in the compiler by vari-
ous means to ensure that they are not used mistakenly, see XXX.

14.22 Deconstructed values and uninitialized variables

When an object is destroyed, all of the entities that form it take their deconstructed
values. Pointers take the NIL value, array descriptors are reshaped as empty array de-
scriptors (with start and end set to NIL, and the values in max[] are set to zero),
entities of any other type are set to zero. All of this is done transparently by the lan-
guage. When an object is first allocated, prior to construction, those are their values.

254 Safe programming Chapter 14

As a transparent performance optimization, the compiler will not pre-initialize a
field of an object on the run-time stack to its deconstructed value, instead the com-
piler will ensure that the field be initialized by the constructor prior to there ever be-
ing a possibility of it being accessed during its construction or its initialization, di-
rectly or by other functions invoked at that time. The compiler will report an error if
some of the members of an object are not initialized by the constructor or by the
init() or init_deinit() member functions. Because an object on the run-time
stack can not have pointers to it at its destruction time its fields are not set to their de-
constructed values.

Plain data variables on the stack are not pre-initialized by the compiler, use of
uninitialized plain data variables causes a compilation error with the exception of ar-
rays, they are commonly used for reading information into them, requiring them to be
pre-initialized would be wasteful. Use of non-plain data variables on the stack that
have not been initialized or assigned prior to their use causes a compilation error.

Global or static uninitialized plain data variables are all set to zero. Global or static
uninitialized array descriptors are pre-initialized as described above.

Global or static pointers, arrays of pointers, and pointer fields within structures,
must be initialized explicitly, pointers must be set to NIL or NULL, explicitly, accord-
ing to the convention for them, see §14.18. Arrays of pointers don't require every ele-
ment to be initialized, but at least the first element of the array must be initialized, ev-
ery range of non explicitly initialized values must be preceded by an initialized value,
which must be either NIL or NULL, that value is used for the non explicitly initialized
values that follow it. For example, a large global array of pointers can have all of its
entries initialized to NIL by initializing its first element to NIL:

struct node { node *next; node **prevpp; id_t id; val_t val; };
lit size_t NHASH = 1024;
node *hash[NHASH] = {NIL}; // every array entry is NIL

14.23 The uninit() member function

A class can implement the static member function:

pub static void uninit(type raw *to) { ... }

If it is not implemented, then the compiler generates the code for uninit() which
uninitializes the objects non-static members described in §14.22. A programmer
might choose different uninitialized values, for example a float might be set to a
SNaN (signaling not a number) value, which are more convenient to detect program-
ming errors.

14.24 Permanent association of heap virtual addresses and types 255

14.24 Permanent association of heap virtual addresses and types

The language provides an implementation of dynamically allocated memory in the
lang.creatable interface its design and implementation are key to the language
safety, polymorphic member function invocation implementation, and the zero per-
object memory overhead polymorphism support.

When an object, or an array of objects, is allocated through lang.creatable, the
addresses that they occupy, once the memory is freed, can only be reused to allocate
objects or arrays of the same type. This implies that any pointers to the memory of
these objects, even after the objects are freed, can never be used to refer to memory
of other objects of a different type, they can only refer to the deconstructed memory
of the objects of the type that they refer to.

The permanent association of virtual addresses and types does not mean that the un-
derlying physical memory is permanently dedicated to objects of a given type. The
underlying pages of memory, if they only contain free objects, can be unmapped by
the allocator thus allowing the operating system, or the allocator itself, to remap them
elsewhere (if the operating system supports such remapping) for use by objects of an-
other type. This rebalancing of the underlying physical memory might be important
for certain software that might create many objects of a specific type, then release
them all, and later allocate many objects of another type.

Most operating systems don't provide support for physical page remapping for
anonymous memory (i.e. memory that doesn't have a long lived home location, mem-
ory mapped files are not anonymous memory) only page un-mapping, the addresses
associated with the unmapped page subsequently become inaccessible and any at-
tempt to fetch or store from them results in an exception. To prevent the underlying
virtual addresses to be reused for a different purpose, for example through the
mmap() UNIX system call, which could lead to a security compromise of the running
program, if it can be caused to follow pointers to the free objects that previously oc-
cupied those addresses, the memory mapping interfaces are wrapped by library code
that ensurers that the contiguous address range managed by the allocator can never be
reused, or manipulated in any way, by any code other than the allocator itself.

The addresses of a page within the heap that have been unmapped, and that the al-
locator subsequently wants to reuse, by memory mapping a page of anonymous
memory into it, would be immediately accessible and zero filed. Until the pointers
and array descriptors for the object carcasses that previously lived there are set to
NIL the underlying dead objects will have, briefly, a different set of uninitialized val-
ues. Particularly pointers would have zero, i.e. C's NULL value, in them. Because of
the undefined behavior associated with NULL by modern C compilers incorrect code
might be able to cause arbitrary values to be interpreted as object pointers, defeating
the language safety.

256 Safe programming Chapter 14

On such platforms, unless other mechanisms are provided such as
userfaultfd(2) on Linux, the allocator managed memory needs to be backed by
one or more persistent files that are created as needed and deleted while their file de-
scriptor is kept open, to ensure that when the program exits the storage space that the
files use is released. Because those pages can be remapped at will at other addresses,
they can be given their proper values prior to remapping them at the dead object ad -
dresses. The ability to create holes within these backing files is important, and it is
present in most modern systems, to cause underlying file backing storage and physi-
cal memory used to cache it to be released all the way back to the operating system
itself. The file descriptor for these persistent files must also be guarded through sys-
tem call wrappers to ensure that they are never used to affect the program’s memory,
for example by writing into them. An alternative implementation on these systems is
to never release memory from the heap back to the operating system for it to reuse,
once associated with objects. On these systems the allocator could use memory advi-
sories to indicate that it won't use the memory, hopefully causing the pages to more
quickly become candidates to be paged out and reused than other memory.

14.25 Array walking through pointer ranges is always valid

The array descriptor start and end values are always well defined, furthermore,
the address start-1 is also well defined, thus code that walks arrays forwards and
backwards does not suffer from strange address space warps or theoretical segment
underflows from stone-age segment based addressing hardware architectures, simply
because those architectures no longer exist or are no longer relevant.

tuple [int *first = NIL,
 int *last = NIL] find_first_last(int ad[], int val) {
 for (int *p = ad.start; p < ad.end; ++p)
 if (*p == val) {
 first = p;
 break;
 }
 for (int *p = ad.end; --p >= ad.start;)
 if (*p == val) {
 last = p;
 break;
 }
 return;
}

Note that the first for loop exit condition requires that p >= ad.end for the loop
to terminate, it will terminate when p == ad.end . The second for loop requires
that p < ad.start to terminate, it will terminate when p == ad.start-1 , which
requires that it be a well defined address value that is arithmetically prior to ad.s-
tart, even though the undefined behavior C compiler optimization religion might

14.25 Array walking through pointer ranges is always valid 257

want to call that undefined, it is defined in COOGL. The compilation of COOGL
code into C code guarantees that this is done in a way that the underlying C compiler
undefined behavior can not arise and cause the compiled code to be incorrect.

A related aspect to these pointers that are off by one, before and after, a valid array
of objects is that once these pointers are constructed, they could be used to refer, in
principle, to memory that belongs to other objects, in an attempt to subvert the safety
of the language, but it can not be subverted this way as explained in §14.27.

14.26 Invalid pointer value computation

The values ad.end+n and ad.start-1-n, where n > 0 , are invalid, the compiler
does not allow them to be computed, any attempt to do so causes a compile time er -
ror, if the compiler can not determine at compile time whether those values are com-
puted at run time, then the compilation fails. For example, this code causes a compi-
lation error:

int *find_first_start_at_n(int ad[], int val, size_t n) {
 for (int *p = ad.start + n; p < ad.end; ++p)
 if (*p == val) return p;
 return NIL;
}

A require(n <= ad.max[0]) contract can be used to place requirements on the
calling code, which would allow the code to compile, but in this case defensive pro-
gramming is better:

int *find_first_start_at_n(int ad[], int val, size_t n) {
 if (n >= ad.max[0]) return NIL;
 for (int *p = ad.start + n; p < ad.end; ++p)
 if (*p == val) return p;
 return NIL;
}

14.27 Use of objects at start-1 and at end

The pointer values computed from an array descriptor: start-1 and end are valid
pointer values. Dereferencing pointers with those values is usually incorrect, but does
not lead to undefined behavior, nor to invalid memory accesses. The language guar-
antees that a valid properly constructed object exists at the address, or the memory
for a deconstructed object of that type is located there. Making use of those objects is
incorrect, unless the programmer knows that those objects are properly constructed
objects. For example, because it is actually operating on an array descriptor, that by
program design, the programmer has chosen to always be surrounded by valid ob-
jects, e.g. if the code was designed that way. Note that this kind of programming is
not unusual at all, having valid or degenerate sentinel values around an array or oper-

258 Safe programming Chapter 14

ating on a subarray of another array is quite common in practice.

The rationale for this language design choice is:

 Array descriptors are frequently created to refer to a subset of objects within
a larger array, having valid surrounding objects is a common case.

 Once pointers with the values start-1 and end are computed, extra code
would need to be generated to ensure that they are not dereferenced.

 The lang.creatable allocator allocates all memory for arrays from a given
type in such a way that it guarantees this invariant, the array is surrounded by
a deconstructed object of the same type, by default. The programmer can
choose for each type: to have the object be constructed (in which case it must
implement init_default()); or that there be two objects between arrays
instead of one (both constructed or not); or that there be no objects at all be-
tween arrays, but that it be guaranteed that there is always an object prior and
after every array. See §13.8.

 Arrays with more than just a few elements are common, arrays with few ele-
ments are uncommon. The cost of the an extra object for individually allo-
cated arrays is one per array, by default only one additional deconstructed
object is required per array.

Contiguous arrays share the deconstructed object in between them, at end for the
first array and at start-1 for the second. An additional deconstructed object, at the
start of every address range from which arrays are allocated, is provided by the allo-
cator, to establish the invariant for the first array allocated in the range.

Arrays with few elements are uncommon, but even if they were common for some
application, to the point that the memory consumed by the extra unconstructed ob-
jects required in between individually allocated arrays becomes a performance bur-
den (maybe because the objects themselves are extremely large, or because a tremen-
dous number of tiny arrays is created), the programmer can work around the memory
waste in various ways, as described above; or by reorganizing the objects into a small
part that refers through a pointer to a larger part which is allocated at object construc-
tion time, thus the cost for the optional part would not be required for the uncon-
structed objects between arrays.

Note that when start-1 or end refer to deconstructed memory, their dereferenc-
ing is no different than the dereferencing of a pointer to dynamically allocated mem-
ory that has been freed. Both refer to deconstructed memory, access to deconstructed
memory does not lead to invalid memory accesses. It is just a well defined program-
ming error, it is not undefined behavior, it is an error in the logic of the program, no
different than any other logic error in the program.

In the array: int m[10][20]; there is only one additional int element prior to the

14.27 Use of objects at start-1 and at end 259

array, and another one after it. There aren't two 20 element dummy arrays, one prior
to &m[0], and another at &m[10]. If there had to be dummy arrays to cover the worst
case scenario, then the b[][] array descriptor below, which reinterprets the memory
of a[100] into a two dimensional array, b[2][50], would require that there be a
dummy 50 int array prior to &b[0] and another one at &b[2], this would mean that
for any array the memory that would have to be allocated would be 2 times the mem-
ory specified by the program, which is unreasonable. Worst case, with c[][] the re-
quired memory would be 3 times the requested memory.

void f() {
 int a[100];
 int b[][] = lib.array.make({2, 50}, a.start); // b[2][50]
 int c[][] = lib.array.make({1, 100}, a.start); // c[1][100]
}

To ensure that the required memory overhead is just one additional element per ar-
ray, the array descriptor associated with arrays of arrays, for example for the array
int a[10][20], can be used to walk the array multi-dimensionally through indexes,
using a.max[0] and a.max[1], or uni-dimensionally with pointers that refer to the
underlying base elements of the array (the int elements in this case) using a.start
and a.end. Use of an array typedef, as shown below, doesn't make a difference.

typedef int array_of_20_int[20];
array_of_20_int a[10]; // same as: int a[10][20];
void f() {
 int *start = a.start, *end = a.end; // valid
 assert(end - start == 200);
 array_of_20_int *s = a.start; // error: incompatible types
 array_of_20_int *e = a.end; // error: incompatible types
}

Compatibility with C mandates that arrays within structures and unions don't have
extra elements around them. Pointers prior to or after arrays within structures or
unions produced by walking these arrays are unsafe and need extra code to ensure
that they are not used. Within the typical loop that walks such an array the compiler
knows that the pointers are valid. After exiting the loop the pointer might be within
the array or immediately after, or before if the array is being walked backwards. The
code generated by the compiler ensures that the pointer is not used to reference data
unless it is within the array, an exception (see §14.33) is raised otherwise.

Arrays of constant size within a class object do have additional elements surround-
ing them, but only when required, the compiler determines if array descriptors are
ever based on the array and if start-1 or end are ever computed, it only allocates
the extra element after the array, if end is computed, and the one before, if start-1
is computed. For very small arrays the compiler has options that force it instead to
produce code to ensure that data at start-1 and end are never referenced. This can
also be accomplished by declaring the class as a class struct.

260 Safe programming Chapter 14

14.28 Out of bounds indexing causes an exception

 Every bound is checked individually. Bounds checks are optimized by the compiler
when the whole array, or sequential parts of the array are walked iteratively, fre-
quently resulting in no bounds checking code at all. These optimizations are facili-
tated by the fact that the bounds are either known at compile time, or if they are only
known at run-time, the array walking must be done through a local copy of the array
descriptor which usually doesn't change inside the loop. For example, the bounds
checks for the evaluation of v[i][j] are optimized away in:

double sum(double m[][]) {
 double total = 0;
 for (index i = 0; i < m.max[0]; i++)
 for (index j = 0; j < m.max[1]; j++) total += v[i][j];
 return total;
}

14.29 Invalid memory access definition

Memory that is readable or writeable and that contains non-plain data, constructed
or deconstructed, can not be accessed as if they were of a type different than its type,
other than through a pointer to an ancestor type. All other memory accesses to non-
plain data are invalid memory accesses, the language and its run-time support code
(i.e. dynamic memory allocation support and the management of run-time stacks),
make invalid memory accesses impossible.

 Access to plain data as if its type were of a different plain data type is not an in-
valid memory access, this is a feature of the language to allow for carefully laid out
memory to be crafted to support external data representation requirements.

Access to dynamically allocated non-plain data memory that has been freed is not
an invalid memory access, it is a valid memory access of the deconstructed memory
of a previously existing object of the same type. Access to an object immediately
prior to, or immediately after, an array is not an invalid memory access, it is a valid
memory access of either: a constructed object, or the deconstructed memory of an ob-
ject, of the same type as the type of the objects in the array. Dereferencing a NIL
pointer, or a pointer whose value is a trapping address, is not an invalid memory ac-
cess, it is a well defined memory access that always causes a run-time exception (see
§14.33) to be raised.

Use of an uninitialized pointer is not allowed, it causes a compile time error. Use of
a variable that has not been initialized is not allowed, it causes a compile time error.

If a program has any code compiled with --NULL it implies that pointers with the
value NULL might exist within it, such programs might be caused to perform invalid
memory accesses, those programs are not safe, unless the code in question is care-

14.29 Invalid memory access definition 261

fully localized and proven to not cause directly or indirectly invalid memory ac-
cesses. Typical code that might be compiled with --NULL are wrappers for C library
functions so that they can be provided as COOGL functions, the wrappers would
map NIL to NULL and NULL to NIL appropriately so that they can be used by
COOGL code. Code that uses properly written wrappers is safe and can be guaran-
teed not to perform invalid memory accesses unless the underlying C code itself per-
forms them.

14.30 Prefix classes: preclass

XXX

14.31 Extending the language safety model

XXX

14.32 Dynamically unloaded modules and safety

A module that is unload while a program is executing can cause a program to mis-
behave if it references code or data at the addresses where they previously resided. If
another module is loaded in those same addresses, then pointers to data of the previ-
ous type could now refer to data of a different type in the new modulo which is un-
safe. To simplify the language, at this time, unloading a module is an unsafe opera-
tion, the program that supports such unloading has to ensure that data or code refer-
ences to the addresses that belonged to the modulo do not occur after it is unloaded.
Ensuring that the code and data in question is not accessed is no different than the
garbage collection problem, in general, in that potentially all of the memory in the
program and elsewhere (thread contexts, CPU registers, etc), would have to be exam-
ined. Code references might be the current program counter of a running or blocked
thread, the program counter value in an execution context or in a longjmp like jump
buffer, return addresses in the run-time stack, function pointers, code addresses in
general purpose registers in running or blocked threads, etc. Data references could be
anywhere in global data or in run-time stacks, there could also be data references in
the registers of running or blocked threads, longjmp like buffers, etc.

Depending on the design of the program in question, ensuring that a module can be
safely unloaded might be a property easier to verify. There are many designs, particu-
larly in operating system kernels, that make the safe unloading of modules a more
tractable problem.

The simplest solution is to simply not support the run-time unloading of modules.

262 Safe programming Chapter 14

14.33 Hardware and software exceptions and exception handlers

When an exception occurs the program is terminated, unless the exception is caught
by an exception handler. An exception handler executes in the execution context that
caused it, see §15.9 and §14.33 for details about execution contexts and exception
handlers.

 Exceptions detected by hardware, i.e. without additional instructions in the instruc-
tion stream to detect them, include: division by zero, illegal instructions, trap instruc-
tion, memory access to a trapping address, invalid memory access, and unaligned
memory accesses. Exceptions detected by software, usually through additional in-
structions compiled into the instruction stream, include: out of bounds array indexing,
assertion failure, expect() or promise() failure, and excessive run time stack
memory use.

For performance reasons, software exceptions are sometimes raised through hard-
ware means (for example through a trap instruction or by performing load from a
trapping address) to minimize run-time overheads when the exception is not raised,
for example overheads related to calling conventions and register usage. If the han-
dler of a software exception handler returns, the underlying software or hardware
mechanism that was used to raise it will cause the exception to be caused again, and
the exception handler will be invoked again, without reevaluating the condition that
caused the exception.

15 - Concurrent programming

“Weakly-ordered processor architectures provide a
relaxed view of the memory subsystem, where
different processors may have different views of shared
storage. One of the motivations for having weak
storage ordering is to allow storage subsystem
optimizations, which enable better scaling of the
memory nest design. It is important to ensure that
modern programming models do not artificially
constrain the scalability of these system, which would
ultimately undermine their success.”

-- R. Silvera, M. Wong, P. McKenney, B. Blainey

15.1 Concurrent programming

Sequential programming, where only a single flow of control exists within a pro-
gram when it executes is the common programming model for traditional computer
systems and programming languages. Execution of programs in a computer system
was eventually formalized into the concept of a process, and operating systems
evolved to support the concurrent execution of unrelated processes, with little or no
sharing of resources between them, usually limited in their interactions on the opera-
tions they performed on shared resources, for example files provided by the operating
system. As operating systems evolved, additional facilities were introduced to allow
independent processes to communicate with each other, through services provided by
the operating system, for example through message passing, pipes, record locks for
files, isolated areas of shared memory, and synchronizers to allow coordination of
their work on the shared memory. These facilities are referred informally as inter-
process communication, or IPC. Communication between processes possibly located
on different computer systems with a procedure-like interface, remote procedure call,
RPC emerged as a high level mechanism for clients and servers to communicate, and
for servers to provide services on behalf of the client processes. Communication be-
tween processes, within a system, or across computer systems required the notions of
identity, trust, and many aspects that can be described broadly as distributed security.
Higher level facilities such as distributed transactional systems, durable queues, dis-
tributed database operations, etc. continued to evolve as applications and their ser-
vices transcended the boundaries of individual computer systems to gain scalability
and availability.

264 Concurrent programming Chapter 15

All of the above are facilities that allow concurrent programming. From the per-
spective of programming language design these facilities are provided by the operat-
ing system or the distributed applications themselves and it would be a mistake to
support them natively through built-in syntax and mechanisms by a traditional pro-
gramming language. The programming language has to end somewhere, and this
kind of facilities are meant to be implemented through libraries, server processes, etc.

A parallel thread of computer evolution, pun-intended, was that computer systems
evolved from single CPU systems to multi-CPU systems, where the CPUs could all
execute concurrently and share a common memory between all of them. One way to
program such computer systems is simply by supporting sequential processes that ex-
ploit the parallelism by communicating, i.e. communicating sequential processes,
which is no different than what occurs on single CPU systems. This indeed is the
simplest way to program such systems and is appropriate for most programs that
don’t need to scale because of their computational requirements beyond the process-
ing capability of a single CPU. Even if multiple CPUs could benefit an application, it
can sometimes be structured as independent processes, maybe with some shared
memory, or none at all, and partition the work in a multi-process way. Nonetheless,
sometimes, applications can benefit by having multiple threads of execution within a
single process. The benefit might be structural in that the problem being solved is
best implemented with multiple concurrent threads of execution, or the benefit might
be purely a performance benefit if the application can make effective use of more
than one CPU for computational intensive operations.

Certain large programs, database servers, transaction monitors, operating system
kernels, designed to operate on these multi-CPU shared memory systems, usually re-
ferred to as symmetric multi-processor (SMP) systems. The term SMP is dated, the
term processor is often used to refer to the physical VLSI chip that implements one or
more physical CPUs, the term CPU is sometimes also confused with the VLSI chip
and thus the term multi-core has emerged to refer to a VLSI chip that contains multi-
ple CPUs, or cores. A computer system might contain one or more VLSI chips, each
with one or more cores in it. Because of the level of integration in modern systems
most-multi chip systems have 4 or more physical cores in each one of them. Some-
times a single core can have multiple register sets within it, which are known as logi-
cal cores, or hardware threads, each hardware thread having all the architected gen-
eral purpose, floating point, vector registers, program counter, condition registers,
and special registers in each register set. A single core that implements multiple hard-
ware threads can dispatch and execute instructions for each hardware thread in a
finely interleaved way. When one a hardware thread stalls (usually because its wait-
ing for loads from memory to complete, or stores to be be moved from write buffers
and into the cache, so that a stalled store can be placed into a write buffer), other
hardware threads can have more hardware resources dedicated to their instruction ex-
ecution. The fundamental weakness of hardware threads is that unless the workloads

15.1 Concurrent programming 265

have a good amount of cache affinity and the cache hierarchy is very large and highly
associative, the interference of the hardware threads and their competition for cache
resources can cause significant slow downs, thus hardware threads might include
hardware scheduling priorities, and their dynamic enablement and disablement, usu-
ally under the control of the operating system but sometimes directly by programs di-
rectly.

Multi-threaded processes where all the threads share all (or most) of the memory
within their address space require that the programming languages used to write them
don’t get in the way of their concurrent execution, they require that the code gener-
ated by the compiler doesn’t assume that there is only a single thread of execution.
This is the only are that merits support from a systems programming language such
as C, C++, or COOGL.

15.2 Language design considerations

Built-in support for high level concurrent programming constructs in a program-
ming language has been shown to be inflexible and problematic in languages such as
Ada, Java, C#, and Go. It usually interoperates poorly, or not at all, with concurrent
programming interfaces and the internal synchronization of libraries provided by the
operating system.

Operating system provided interfaces are language independent, they support con-
currency control within a process through threads and synchronizers, and across mul-
tiple processes, sometimes with the same, but usually different synchronizers.

The fundamental balancing act between language provided concurrency mecha-
nisms and operating system provided ones is the design tension of: what belongs
where? Languages are meant to transcend and be independent of the operating sys-
tems where they are supported. Operating systems are meant to be language indepen-
dent, successful ones support many languages.

Given that the computer system hardware, at its lowest levels, is controlled by the
operating system, the lowest levels of concurrent execution support must be exposed
by it. The operating system is inextricably involved in system wide concurrent execu-
tion across one or more threads of execution, per process, and across all processes
within the system, it is the operating system's job to manage the scheduling of threads
of execution to the system's CPUs, and their blocking when they have to wait (typi-
cally for input or output operations to complete). This classical operating system con-
struction doesn't mean that alternative ones or more refined ones are not possible.
The operating system could expose concurrency control in a very low level form, for
example virtual CPUs, together with some means of controlling their scheduling for
execution onto physical CPUs, low level virtual CPU context management, cross vir-
tual CPU notifications (interrupt like), and notification delivery management.

266 Concurrent programming Chapter 15

There are many concurrent programming mechanisms, among them: multiple con-
currently executing processes with or without shared memory, multiple threads
within a single process, co-routines (fibers), continuations, monitors, locks (spin
locks, blocking locks, and adaptive locks), condition variables, events, shared/exclu-
sive locks, semaphores, synchronous or asynchronous message passing, message se-
lection through rendezvous, interprocess procedure calls (IPC), remote procedure
calls (RPC), asynchronous procedure calls (APC), typed or untyped messages, send-
ing and receiving of capabilities, lock free programming, read copy update (RCU)
techniques. Interacting with many of these mechanisms are other concerns, such as
exceptions, timers, asynchronous I/O, blocking I/O, abnormal interruption of opera-
tions, security, serving requests on behalf of various requestors, tying work together
such that it occurs atomically or not at all, operations across multiple systems, data
integrity, availability, scalability, fault-tolerance, etc.

The computer system processor itself, without operating system intervention, usu-
ally provides low level computer instructions (load-linked / store-conditional, com-
pare exchange, test-and-set, or some other form of atomic read-write operation) that
allow for the implementation of a single load-modify-store operation on a small data
item to occur atomically from the perspective of concurrent execution contexts, usu-
ally only on system word sized data, sometimes on smaller data, and sometimes on
data that is a very small multiple of the system word size, usually with alignment
constraints such that the data has to be at an address that is a multiple of its size. New
computer architecture enhancements provide hardware transactional memory sup-
port, which allows for one or more loads and stores to a few small data items to occur
atomically, i.e. with their side effects observable only all at once, or none at all, if the
operation failed.

There is a language design tension between concurrency support provided by the
operating system and built-in concurrent programming support through a builtin lan-
guage feature. When concurrency support is expressed syntactically as a series of
builtin mechanisms, the language designer seems to believe that the programs exist in
isolation completely separated and unaware of the operating system on which the
programs run, even if concurrency between multiple processes are supported by the
language, it is unreasonable to expect that every piece of software in the system is
going to be written in the same language. For example a database and transactional
support system might need to be used and the concurrency control and interfacing
with it might require a completely different set of concurrency control mechanisms;
or operating system features might require certain synchronizers to be used. This lan-
guage design tension has been traditionally resolved in the direction of the language
being as minimal as possible so that programs written in it can be as native as possi-
ble in whatever operating system supports them, which is what C has traditionally
done. Other languages, Ada, Java, C#, etc take the opposite approach and are some-
times found lacking when having to interact with other software written in other lan-

15.2 Language design considerations 267

guages or when accessing native operating system facilities.

15.3 Allowing concurrency support through libraries

Even if there is no concurrent programming support built into the language, and all
the support is provided through libraries, it is important that the language itself
doesn't preclude those libraries from being written, the compiler should not generate
code that depends on there being only a single thread of execution control. For exam-
ple, the compiler should follow the load and store instructions that the programmer
specified and should not create fictitious memory accesses that were not specified by
the programmer. If a data item is accessed once, the compiler should not access the
data item a second time and assume that the value will be the same as it was before,
doing so assumes that no other entity could be changing the memory concurrently.
For example:

uint fx;
void f() {
 switch (fx) {
 case 0: f0(); break;
 case 1: f1(); break;
 case 2: f2(); break;
 case 3: f3(); break;
 case 4: f4(); break;
 case 5: f5(); break;
 case 6: f6(); break;
 case 7: f7(); break;
}

The value of fx must be fetched once into a register or a local temporary on the
stack and used for the two implied computations, one to see if it is less or equals than
7 and another to compute the branch target (or to fetch a branch address from a table
with 8 branch targets, or in this case 8 functions pointers). If the value of fx was
fetched twice, once to determine if it is less or equals than 7, and a second time to de-
termine where to jump to, the value could have changed and cause the program to
misbehave immediately, or worst, in subtle ways (possibly corrupting data), without
any guarantee of an exception being raised immediately or at all, possibly continuing
to run with corrupted data for an extended period of time.

Another example, this code:

class wsbx {
 pub uint w;
 pub ushort s;
 pub ubyte b;
 pub ubyte x;
}

268 Concurrent programming Chapter 15

pub void set_low_wsb(wsbx *d) {
 d->w |= 3;
 d->s |= 2;
 d->b |= 1;
}

Could be compiled, incorrectly, into this C code:

pub void set_low_wsb(wsbx *d) {
 ularge u = *(ularge *) d;
 u |= 0x300020100uLL;
 *(ularge *) d = u;
}

This is incorrect because the ubyte x is being read and its value written back, this
could cause a concurrent store into x to be lost, i.e. as if it never happened.

A very important circumstance when the compiler can not prove that data is not af-
fected, are function invocations, it can not assume that the data is not affected by
them. For example, it can not keep data values in registers that are preserved across
the function invocation, if the function changes the data, the values in registers would
be incorrect. Function invocations, at least invocations of function whose code the
compiler knows nothing about, are a boundary where the compiler has to put any
data that it has changed and has kept in registers into their proper location, it must
also stop using any data values cached in registers. For example:

large total;
void large doit(int vec[]) {
 total = 0;
 for (int *p = vec.start; p < vec.end;)
 total += *p++;
 work(); // compiler knows nothing about what work() does
 return total / vec.max[0];
}

The variable total doesn't need to be affected on each iteration of the for loop,
the code can be safely compiled into:

large total;
void doit(int vec[]) {
 large tot = 0; // ok to compile into this
 for (int *p = vec.start; p < vec.end;)
 tot += *p++; // ok to compile into this
 total = tot; // ok to compile into this
 work(); // could change total
 // return tot / vec.max[0]; // can not compile into this
 return total / vec.max[0];
}

Functions that the compiler knows nothing about are the proper places to imple-

15.3 Allowing concurrency support through libraries 269

ment concurrency control operations. For example, lock(&p->lk) and unlock(&p-
>lk) functions that implement a mutual exclusion lock. After the compiler has been
forced to synchronize its caching of memory values in registers with the flow of exe-
cution, prior to the function invocation, other actions required by the hardware for
properly accessing shared memory under a lock can be performed by the function.
For example, memory barriers that prevent memory accesses to be moved by the
hardware to occur prior to the lock being acquired, and other barriers to ensure that
memory affected under the protection of the lock has been flushed into the hardware
coherency domain (e.g. incoherent write buffers have been flushed into the cache co-
herent memory domain) prior to the lock being unlocked.

The fact that the C programming language easily allowed concurrent execution and
its compilers didn't get carried away generating code that would make concurrency
support impossible is a testament to the fact that C has always supported concurrent
execution, even if compiler writers choose to denigrate the C language and claim that
it could have never supported concurrent execution until C11 and its memory model.
They write those statements into documents on computer systems running highly
concurrent operating systems kernels written in C, directly descendant from UNIX in
code or spirit (MacOS X, Linux, Solaris, AIX, BSD, Irix, etc), or Windows systems,
whose kernel is also written in C. C was written to reimplement the UNIX kernel
from assembly into a portable language, it was a multiprocess kernel from the begin-
ning, those processes, while executing in the kernel, behaved like a concurrent pro-
gram, each with its kernel stack, no different than a multi-threaded program. C has
never gotten in the way of concurrency support implemented by functions unknown
to the compiler, only recently, with C11, have the compiler writers confused them-
selves enough to the point that they even forget the history of C. If newer versions of
compilers get in the way of concurrency support implemented at function call bound-
aries, it is because the compiler writers have been sacrificing classical C at the altar
of mostly useless optimizations to make benchmarks a bit better, they have forgotten
of the users of C and the enormous code bases written in C, some of which stop
working mysteriously when compiled by newer versions of compilers, and can only
be kept working only when lots of misguided optimizations made by the compilers
are turned off. The hijacking of C, and the spirit of C, by compiler writers is an addi-
tional motivation for the COOGL programming language, to have a better language
for the users of C to move their code bases to.

15.4 Concurrency support in libraries is optional

Concurrency support by the language libraries is optional, there is value in very ef-
ficient support of single threaded programs. The libraries it uses should not contain
needless synchronization that would only be required by multi-threaded programs,
for example internal locking and unlocking of heap management data structures

270 Concurrent programming Chapter 15

when heap memory is allocated or released. The language provided libraries, when
used for single-threaded programs contain none of that synchronization overhead.
See §6.

15.5 Weakly ordered concurrent memory accesses

Weakly ordered memory, as opposed to strongly ordered memory, is present in most
modern hardware architectures (ARMv8, IBM POWER, etc), it relaxes the program
observable memory model under concurrent execution in a multi-processor system.
For example processor 1 might perform two stores first into a and after that into b:
through processor1_stores():

int a1 = 0, b2 = 0;
void processor1_stores() { a1 = 1; f(); b2 = 2; }
int processor2_fetches() { return a1 + b2; }

Processor 2 fetches both variables through processor2_fetches(), adds the val-
ues of both variables, it can return: 0, 1, 2, or 3 depending on the timing of the con -
current execution of both functions and the underlying hardware operation, different
concurrent executions might return different results. Note that for processor 2's func-
tion invocation to return 2 it must be that these were the values fetched: a1 == 0 and
b2 == 2 , a counterintuitive result that would not occur on older computer architec-
tures which provide strongly ordered memory systems (such as IBM zSeries and In-
tel/AMD x86). The invocation of function f(), a function unknown to the compiler,
is there between the assignments to a1 and b2, to ensure that the compiler performs
the stores in the specified order.

A circumstance under which processor 2 might see the store to b2 and not the store
into a1 is when each one of those variables is in a different cache line, the cache that
contains b2 is already held in an exclusive state by the cache of processor 1, while
the cache line that contains a1 is held in exclusive state by the cache of a different
processor. The store into a1 is held by processor 1 in a write queue while the cache
line is acquired in exclusive mode by the processor, the store into b2 occurs almost
without delay into its cache line. While processor 1 has not yet acquired the cache
line that contains a1, processor 2 sees a1 's old value, 0, and then proceeds to fetch
the new value of b2.

This is how weakly ordered memory works, some compiler writers call this a data
race and decide that it is undefined behavior and that the compiler can do whatever it
wants, not what it was asked to do. The hardware has well defined behavior, any of
the values 0, 1, 2, or 3 can be returned, there is nothing undefined about it, the author
has never seen a computer system whose memory works in a way that results in the
equivalent of C’s undefined behavior. There is high value in a systems programming
language that accepts every possible hardware behavior, and doesn't use some of that
behavior as an opportunity to call it undefined behavior, and then uses that as an ex-

15.5 Weakly ordered concurrent memory accesses 271

cuse for the compiler writers to cause behaviors that the hardware could not have
caused by itself. A computer system execution mode with completely defined behav-
ior, for example user mode, can not just be turned into an execution model with unde-
fined behavior as a sacrifice to the altar of ungrounded compiler optimizations. A
high level language should not have behaviors that are harder to understand than the
behaviors of the underlying computer architecture supported by it. It is supposed to
be higher level than the machine itself, its behavior can not be orders of magnitude
more complex or confusing than the hardware behavior itself.

Weakly ordered memory improves performance and only needs additional special
consideration in the presence of concurrent data accesses to provide a programming
paradigm that is easy to reason about. Memory barriers and flushing of store buffers
in the implementation of synchronizers and some other concurrent programming
mechanisms is all that is usually required. For example if message passing between
concurrent threads is supported, and the messages can contain pointers to shared
memory, for example memory where the sender placed some data, that the receiver is
going to use when it receives the pointer, then the sender must ensure that no data re-
mains in its hardware write buffers before the message is sent. This is usually accom-
plished as a side effect of the use of synchronizers to implement the message passing.
If the message passing is implemented with some lock free data structures that don’t
use synchronizers, then the functions that queue and dequeue the data would have to
explicitly have the appropriate memory synchronization instructions.

15.6 Concurrency support in C

Programming language compiler code generation optimizations can interfere with
concurrency support, for example compiler optimizations that result from caching
values in registers, or fetching or storing data in an order different than the order
specified by the programmer. An area that interferes with the optimization of C code
is that any store into memory could affect most memory, or at least any memory
whose address could be determined by other code. The generated code might waste a
few cycles refetching data values after functions are invoked, i.e. after they return to
the caller, because those values might have been changed as a result of the function
invocation, this level of under optimization allows concurrency support in C to be
implemented in libraries without any concurrency support in the language itself.

Lock free optimization algorithms have been developed that allow for concurrency
with less interlock than the interlock that occurs in most traditional concurrent code
in existence today. New processor architecture revisions and hardware implementa-
tions incorporate hardware transactional memory (HTM), which is the only new sig-
nificant development in hardware support for concurrent programming. In essence it
allows for all memory accesses performed by a small amount of code to be per-
formed atomically with respect to any other execution, for example, the remove

272 Concurrent programming Chapter 15

function if invoked as a hardware transaction, the element p is removed from a dou-
bly linked list without the partial steps of the removal being seeing by any other code,
including other concurrent insertions or deletions into the list.

void remove(node *p) {
 p->prev->next = p->prev;
 p->next->prev = p->next;
}

15.7 Language design dilemma

A language design dilemma arises, should the language designer make all these
choices and bolt his ideas into the language, or should he just provide the tools for
many concurrency and synchronization models to be easily implemented? From
threads bound to kernel threads, to pure user mode threads, to hybrid N:M thread
models, to activations, to work item oriented pure asynchronous execution models
that only have a stack and state while running but immediately loose their stack when
blocked and later resume from formalized state, etc. From lock free programming, to
message based, to traditional concurrent programming (with locks, shared exclusive
locks, condition variables, etc).

Certainly various operating system aspects also need to be addressed, for example,
interactions with operating system supported exception handling mechanisms, such
as signals in UNIX. Input output completion mechanisms and their indications via
various callbacks for various operating system APIs.

Various ways to manage stacks, thread contexts, cooperative blocking and resum-
ing, preemption, etc. might be supported fully or partially by the operating system
through APIs such as the UNIX setcontext(), getcontext(), makecontext(),
siglongjmp(), sigalstack(), sigmask(), etc. An additional aspect related to all
of this is that for a safe language such as COOGL, further considerations are required
to ensure that these, and other, operating system interfaces are not used to defeat the
safety of the language, for example by allowing contexts and longjmp buffers to be
affected to affect program execution so that values that are in the restored CPU regis-
ters end up with pointers that refer to memory that is not supposed to be accessed
through pointers of the wrong type. COOGL’s library doesn’t expose unsafe inter-
faces instead it exposes similar interfaces that are safe and are not subject to tamper-
ing by a malicious programmer attempting to introduce a backdoor into the code
through through the underlying C interfaces.

The answer to the dilemma is that the language can not force any specific synchro-
nization model, paradigm, or set of interfaces, it just has to not get in the way of their
support through libraries. A minimal base synchronization library has to be provided
to allow other libraries provided with the language to be correct in the presence of
concurrency.

15.8 Concurrent programming building blocks 273

15.8 Concurrent programming building blocks

The language design consideration for concurrent programming support aspects
was to allow for the underlying hardware facilities to be able to be used efficiently
from COOGL code without the aid of assembly language.

Some of those hardware dependent facilities are:

 Underlying hardware synchronization primitives should be exposed in their raw
form, or as close as possible to their raw form. This includes compare and swap
operations, test and set, load linked and store conditional, atomic operations, etc.

 Underlying hardware memory barriers and other instructions related to the
memory model of the computer system should be exposed.

 Underlying hardware mechanisms that support hardware transactional memory
(IBM POWER, IBM zSeries, Intel TSX-NI, etc), database memory (ancient
IBM RS/6000 POWER1 systems) if it were to re-emerge, capability based
memory (IBM iSeries) if it ever becomes open, all should be exposed.

 Memory protection systems that allow for programs to isolate parts of them-
selves from each other should be exposed (IBM POWER).

 Intrinsic compiler functions that allow for thread context to be obtained, manip-
ulated, or created without resorting to assembly language.

 Hardware aids required to deal with hardware stacks and their register windows
such that user level threads can be implemented, for example by forcing the
drainage of registers to the memory stack, etc.

 Hardware aids that allow for the support of thread local storage, either through
registers or special per-CPU memory mapped pages, or through stack pointer
rounding and fetching of per thread memory.

 Low level interfaces to exception dispatching mechanisms, such as dispatching
to functions when various errors occur, for example divide by zero, or when in-
valid memory, or memory that is paged out and the page results in an I/O error.

Given that the number of CPU architecture diversity continues to shrink, to have
these hardware mechanisms exposed by the compiler for each architecture, as appro-
priate, is not an unreasonable requirement to provide this level of deep architecture
support.

Given these primitives, higher level primitives, such as stack creation, context bind-
ing to a stack, stack on demand growth, stack disposal, stack passing, discontinuous
stacks, etc. should also be exposed by the compiler through its libraries, preferably in
a platform independent interface.

Given the global compiler nature of COOGL, alias analysis can be performed
deeply and the resulting C code can have the results of those optimizations expressed

274 Concurrent programming Chapter 15

as C local stack variables thus avoiding the needless re-fetching that C would other-
wise do across every function call, when it is safe to do so.

15.9 Execution contexts

An execution context represents a unit of independent execution, for example an
operating system kernel implemented thread, a user mode implemented thread, a
coroutine, a hardware interrupt handler, a hardware exception handler, a kernel orga-
nized execution of an exception handler to handle an exception that originated in user
mode, callouts to user mode coordinated by a kernel to allow user mode like interrupt
handlers to deal with asynchronous events such as asynchronous input output com-
pletion handlers, or user mode interrupt handlers for device drivers implemented in
user mode, etc.

An execution context has associated with it a run-time stack where local non-static
variables are stored for the execution of a function, and the functions called by it, di-
rectly or indirectly. In some environments an execution context could have more than
one run-time stack associated with it. For example an operating system environment
where an alternative run-time stack can be used to handle exceptions caused by a
thread during its execution, both stacks belonging to the same execution context, for
example a thread.

The rationale for leaving the concept of an execution context purposely vague, is to
ensure that the language is not attempting to dictate operating system concepts, doing
so could make supporting the language difficult if the language were to to define the
same concepts in ways that would make their support compatibility difficult.

15.10 Threads, mutexes and condition variables

The counterpart to having concurrency support built into the language is providing
it through a library, possibly different libraries that implement various standards or
concurrent programming models. If concurrency support is not provided, one way or
the other, then other libraries can not be written in a way that would make their use
correct, when concurrency is present. COOGL provides a thread and synchronizer li-
brary that is a subset of the most common operating system provided interfaces and
can be easily mapped into them. The goal is completeness and simplicity, instead of a
very rich and complex API. It is based on threads, mutexes, and condition variables
which are available in every mainstream operating system. They are the common
subset between POSIX threads and Windows. C11 <threads.h> is also based on the
same synchronizers.

15.11 Weaknesses and complexity in C11 <threads.h> 275

15.11 Weaknesses and complexity in C11 <threads.h>

In some areas C11 <threads.h> is under specified, and has some design flaws, for
example acquiring a mutex should not ever return an error, allowing for error returns
provides flexibility in the wrong place, concurrent programming is delicate enough,
requiring every lock acquisition to have the possibility of failure and in consequence
error handling to deal with it is unreasonable. Incorrect use of a mutex should not
produce an error, for example acquiring a non-recursive mutex that the thread already
holds should cause the thread to self-deadlock, or an exception to be raised.

 Another area of underspecification or incorrect specification is that their descrip-
tion of mtx_t and cnd_t indicate that they hold an identifier for a mutex and a con-
dition variable, respectively, as if they were values that could be copied around, as-
signed, used as arguments, or returned as the value of functions, as if they contained
handles, similar to a file descriptor, to the synchronizers that are actually elsewhere.
This extra level of indirection is not needed.

Lastly C11 mtx_t is a type that can not make up its mind, so it has four flavors re-
flecting its indecision: recursive or not, supportive of mtx_timdlock() or not, even
mtx_init() is poorly specified, it uses 3 flags to specify the 4 possible flavors of a
mtx_t when two would have sufficed, having both mtx_plain and mtx_recursive
makes sense only if in the future they wanted to add another flavor. Wouldn’t it be
funny to see a mutual exclusion lock with a mtx_sharedexclusive flavor? Lastly,
the memory for the mtx_t implementation data would have required additional
memory in every mtx_t to support the mtx_timed lock flavor, and the lock owner
and recursion count. The icing on the cake is that mtx_lock() would be more com-
plex because even in the fastest path, mutex not being locked, it would have to obtain
some kind of thread id to store in the lock instead of an immediate value.

15.12 Concurrency support in COOGL lib.concur

The problems in C11 <threads.h> are addressed by the COOGL library lib.-
concur, its interfaces are based on classes, it is similar to the C11 <threads.h>, but
it is a much simpler interface.

Synchronizers, lib.concur.mutex and lib.concur.cond are meant to be de-
clared within other data as members, they, are not meant to exist on the run-time
stack.A lib.concur.thread object can only be allocated dynamically, it is not
meant to live on the run-time stack, its constructor is prot, it is lib.creatable.

276 Concurrent programming Chapter 15

extend namespace lib {
 pub namespace concur {
 pub class mutex {
 pub void deinit() {...}
 pub void lock() {...}
 pub void unlock() {...}
 pub bool try_lock() {...}// if free locks it
 pub bool owned() {...} // owned by this thread?
 }
 pub class cond {
 pub void deinit() {...}
 pub void wait(mutex *m) {...}
 pub void wait_timed(mutex *m, time_t time) {...}
 pub void wake_one(mutex *m)require(m->owned()){...}
 pub void wake_all(mutex *m)require(m->owned()){...}
 }
 pub class thread(void start() deleg,
 bool detached = true,
 thread_info *info = NIL) prot {
 pub is lib.creatable(thread);
 return;
 priv void deinit() {...}
 pub static void exit() {…}
 pub void join() {...}
 pub void yield() {...}
 pub void sleep(time_t time) {...}
 pub static thread *current() {...}
 }
 }
}

The thread_info optional argument specifies whatever run-time stack related ar-
guments or scheduling information might be required when creating a thread, e.g.
when the default choices need to be overridden, it is not described further in this
chapter.

The following two pages describe lib.concur, a multi-threaded Sieve of Eratos-
thenes example program is shown in the next section. The start() function dele-
gate function pointer argument to lib.concur.thread is used to pass whatever in-
formation the thread requires to do its work and to return whatever results it returns
to another thread when it completes. Note that start() does not return a value, nor
is a value allowed to be returned through lib.concur.thread.exit() or can a
value be obtained from a thread when it exists via thr->join(). Whatever value is
to be communicated back when the thread exits, if any, is communicated through the
object that start() is a delegate for, this simplifies lib.concur.thread signifi-
cantly as it is not in the business of returning values, usually of some compromised

15.12 Concurrency support in COOGL lib.concur 277

type anyway. If values are to be produced by the thread when it exits, they are what-
ever is right for the programmer, they can be obtained from the object that start()
is a delegate for when thr->join() returns.

The agreement between a thread that creates another thread is that if the thread was
not created detached, i.e. that it will be eventually the subject of thr->join(), then
it is the thread that performs the thr->join() the thread that destroys its memory
through thr->destroy(). If the thread was detached, then the thr->destroy()
will be done internally by lib.concur.thread.exit() whether it is called explic-
itly or implicitly when start() returns. In the first case deinit() for the thread ob-
ject occurs in the context of the thread that performed the thr->join() and in the
second case it occurs in the context of the thread itself while it is exiting, note that
when a thread is exiting it is still a thread and it might still block while it is doing its
work.

A class that inherits from lib.concur.thread, for example iothread, and adds
additional non-static data members can provide a static iothread.current_io-
thread() member function that returns a pointer to the iothread if the current
thread is an iothread, NIL otherwise.

With iothread.current_iothread() it can access its non-static data members,
this serves the purpose of thread local storage without the complexity of C11 tss_t
and its tss_dtor_t destructors and their convoluted specification:

pub class iothread {
 pub inherit thread;
 pub is lib.creatable(iothread);
 priv ioqueue work;
 return;
 pub static iothread *current_iothread()
 return try_cast(iothread *, NIL)
 lib.concur.thread.current();
}

An iothread that is specialized to be a file system I/O thread, an fsthread, can
have its own thread local storage too:

pub class fsthread {
 pub inherit iothread;
 pub is lib.creatable(iothread);
 priv opqueue fswork;
 return;
 pub static fsthread *current_fsthread()
 return try_cast(fsthread *, NIL)
 lib.concur.thread.current();
}

This scheme could be used to support a class of threads that provide the more

278 Concurrent programming Chapter 15

baroque concept of thread local storage slots that are allocated at initialization time
and into which pointers to data, per thread, can be stored and fetched.

To block a thread until a condition occurs, the mutex that protects state changes in
the condition has to be locked, the wait() and timedwait(), both specify the mu-
tex as an argument, the mutex is atomically dropped at the same time that the thread
is blocked until the condition occurs. When the thread returns from the cv->wait()
or cv->wait_timed() the mutex has already been locked on the thread’s behalf.
The thread must always determine again whether the condition that it blocked for is
actually true, if it isn’t it must block again or do whatever other action is needed, it
must not assume that the condition is true, even if the condition was indicated to a
single thread through cv->wake_one(), because implementations are allowed to
spuriously unblock threads even if cv->wake_one() or cv->wake_all() was not
invoked on the condition variable.

The cv->wake_one() and cv->wake_all() member functions also have the mu-
tex that protects the condition as an argument, the require() that the mutex be
owned by the current thread, because calling these member functions without the
caller having locked the mutex could lead to a incorrect synchronization and threads
blocking forever. Note that because spurious unblocking can occur, there is little
value in complicating the interface of cv->wait_timed(), if the caller is interested
in knowing if time elapsed it can obtain the current time and determine if that was
the case, thus the synchronizers are even simpler, internally they don’t need to pro-
duce and communicate this information so that it can be returned as a value by cv-
>wait_timed(), it doesn’t merit the extra complexity.

Various implementations of lib.concur are provided, a production one with no de-
bugging support, a production one with additional use checks, a performance investi-
gation one with lock performance instrumentation, and a debugging one with exten-
sive debugging support.

15.13 Multi-threaded Sieve of Eratosthenes and thread safe queue

A queue that can be accessed concurrently with capacity N of value-like objects:

pub class queue(pub genre lang.value type) {
 priv lib.concur.mutex mutex;
 priv lib.concur.cond not_full, not_empty;
 priv lit uindex N = 100;
 priv uindex count = 0;
 priv type data[N], *getp = data, *putp = data;
 return;

15.13 Multi-threaded Sieve of Eratosthenes and thread safe queue 279

 pub type get() {
 mutex.lock();
 while (count == 0) not_empty.wait(&mutex);
 type val = *getp++;
 if (getp == data.end) getp = data;
 if (count == N) not_full.wake_one(&mutex);
 --count;
 mutex.unlock();
 return val;
 }

 pub void put(type val) {
 mutex.lock();
 while (count == N) not_full.wait(&mutex);
 *putp++ = val;
 if (putp == data.end) putp = data;
 if (count == 0) not_empty.wake_one(&mutex);
 ++count;
 mutex.unlock();
 }
}

The following example finds all the primes smaller than N_SIEVE concurrently:

primes p;
int main() {
 p.parallel_sieve();
 p.print_primes();
}
class primes {
 pub lit size_t N_SIEVE = 1L << 24;
 pub bool sieve[N_SIEVE];
 pub queue(int) doneq;
 pub queue(int) workq;
 pub void print_primes() {
 for (int i = 2; i < N_SIEVE; ++i)
 if (!sieve[i]) on (i; '\n') print();
 }
 priv void scratch_multiples(void *vp) {
 for (;;) {
 int prime = workq.get();
 if (prime < 0) lib.concur.thread.exit();
 int mult = prime;
 while ((mult+=prime) < N_SIEVE) sieve[mult] = true;
 doneq.put(1);
 }
 }

280 Concurrent programming Chapter 15

 pub static int known[] = {2, 3, 5, 7, 11, 13, 17, 19};
 pub void parallel_sieve() {
 lit int N_THR = 4;
 for (int i = 0; i < N_THR; ++i) {
 decl lib.concur.thread *thread =
 lib.concur.thread.create(scratch_multiples);
 assert(thread);
 }

 int queued = known.max[0];
 for (int i = 0; i < queued; i++) workq.put(known[i]);
 int last_prime = known[queued - 1];

 while (queued) {
 for (int worked; queued > 0; queued -= worked)
 worked = doneq.get();
 int stop = last_prime + last_prime;
 if (stop >= N_SIEVE) stop = N_SIEVE - 1;
 for (int scan = last_prime+1; scan <= stop; ++scan)
 if (!sieve[scan]) {
 workq.put(scan);
 last_prime = scan;
 ++queued;
 if (queued >= N_THR) break;
 }
 }
 // threads exit when given a negative prime
 for (int i = 0; i < N_THR; i++) workq.put(-1);
 }
}

15.14 Memory model and concurrency

Concurrent programs that use lib.concur.mutex and lib.concur.cond to coor-
dinate and implement their shared memory accesses don’t need to be aware of the
memory model. Programs that operate on naturally aligned scalar types (the integral
and floating point types) and fetch and store the values of pointers (not what they
point to, but the pointers themselves), can operate on the shared data without concern
that somehow the data in individual concurrent fetches and stores will get commin-
gled in a way that the values in memory are values that were never stored into it. If
the concurrent access makes sense to the application, the compiler will not get in the
way of them, the compiler will not perform actions unknown to the programmer in
some misguided optimization attempt. For example, a series of 7 stores of true into
an array of 8 bool that the compiler can determine that is aligned on a 64 bit bound-
ary will not be transformed by the compiler into a 8 bit load of the 8 th bool into a 64

15.14 Memory model and concurrency 281

bit register, and then setting the other 7 bytes in the register to the value true (i.e.
one), and then store back the 8 bytes. Such an operation is reading and writing back
the 8th bool and it might cause a concurrent store into it by another thread to disap-
pear, as if it was never occurred. The compiler could generate code that builds the 7
byte string into a register and then perform a 7 byte string store as long as the opera-
tion does not cause the 8th bool to be stored into, i.e. if the compiler support such in-
structions and doing so is somehow more efficient. The compiler could produce a 32
bit store, a 16 bit store, and an 8 bit store, to implement the 7 stores, such stores are
indistinguishable from individual stores in every computer system.

Similarly, systems with register pair loads and stores, or multi-register load and
store instructions, those instructions can be generated by the compiler as long as the
stores correspond to stores requested by the programmer.

From the programmer’s perspective and the computer hardware behavior each
thread of execution perceives its operations as if they occurred sequentially wherever
the language specifies order relationships between them, for example, the effects an
expression statement are to occur in such a way that the next expression statement
perceives the first one as if it occurred in order. These are the sequence points defined
in the C89 standard. Subexpression evaluation, argument expressions, and others pro-
ceed in unspecified order, unless documented to occur otherwise, thus the program-
mer can not depend on the evaluation order. For example: a[i++] = i the value
stored into the array can not be determined. The compiler produces compilation er-
rors for these expressions, but it is possible, through pointers that refer to the same
memory without the compiler knowing about it, to construct expressions whose side
effects are such that the results of the operation are unknown, they might be what the
programmer expected, and after some unrelated code changes the results might be
different when the code is recompiled or because the compiler version might have
changed and it might have chosen a different optimization strategy, or maybe because
the optimization levels and related parameters to it were changed. Whatever the re-
sults are, they are not undefined behavior, the results are just unspecified. For exam-
ple, memory unrelated to the data in question will not be affected arbitrarily .
Assuming that p and q point to the same int, which for the sake of argument we
will assume has the value 7, and that the compiler doesn’t know about it: a[*p] =
(*q)++ then either a[7] or a[8] are affected, and the value stored into one of them
is 8.

The compiler and the computer hardware are allowed to reorder operations so that
they occur efficiently as long as the thread that is executing them can not perceive
them to have occurred out of order, other threads could perceive them to have oc-
curred out of order. Whenever a function call that the compiler doesn’t know about
its code is invoked, everything needs to be in memory as the programmer pro-
grammed it to be, but the computer hardware itself might still be in the process of
draining its write buffers and the operations can be perceived to occur out of order by

282 Concurrent programming Chapter 15

concurrently executing code unless the called function, for example a mutex being
unlocked, performs the hardware actions required by it, for example a memory bar-
rier instruction prior to the store that releases the mutex. In consequence, concurrent
algorithms that don’t coordinate their shared memory accesses with synchronizers,
have to be written very carefully, in ways that force the compiler to do what the pro-
grammer requested, and that the computer hardware does so too, from the perspective
of hardware concurrent execution, from the computer hardware’s memory model. For
portable code a weakly ordered memory model should always be assumed, code cor-
rect for it will also be correct for hardware with a strongly ordered memory model.

15.15 C11 and C++11 memory model

C11 and C++11 both specify a memory model that is meant to be the same across
both standards, the memory model has the same origin, first going into C++ and from
there into C. The description of the memory model is tremendously complicated,
written in english prose in such a way that it attempts to be precise but doesn’t in -
clude proper definitions and uses many words with meanings whose definitions are
not easily found in the standard, if they are present anywhere at all.

The C11 and C++11 memory model includes notions such as data races and that
data races lead to the dreaded undefined behavior, meaning there will be security
holes introduced by the compiler behind the programmers back, and thus the NSA,
KGB, and other spy agencies will be glad that the backdoors are being introduced by
the compilers so can exploit them. Malicious hackers will do the same.

15.16 COOGL memory model

If you can decipher the C11 and C++11 memory model that is the memory model
of COOGL but without the notion of data races and the undefined behavior. COOGL
is a language for the real world, not a language for future mythical machines that the
C11 and C++11 language standards seem to attempt to want to leave the doors open
for.

The memory model of COOGL is a weakly ordered memory model, it mandates
that loads and stores of the fundamental types are indivisible if they are done to ad-
dresses that are multiples of the data type size. On a 32 bit system concurrent loads
and stores of 64 bit integral types (ularge and large) might not be performed
atomically, because they are usually implemented with individual 32 bit loads and
stores because the 32 bit instruction sets usually don’t have 64 bit loads and stores.
This of course, is just a reflexion of normal hardware. The programmer is supposed
to know what he is doing, the compiler will not penalize him by saying that these are
data races and that the whole program will misbehave, the dreaded undefined behav-
ior will not be triggered. Note that loads and stores of 64 bit floating point values are

15.16 COOGL memory model 283

atomic on 32 bit computer systems, other than some stone age ones that might imple-
ment floating point by emulating it with integer instructions, those are not interesting,
and they certainly don’t tend to support multiple CPUs in an SMP configuration.

Portable functions that provide access to the underlying hardware operations re-
quired to work with a weakly ordered system are provided by the language libraries,
see §L.4.

15.17 Atomic memory operations

Atomic memory operations supported by the hardware are provided through porta-
ble libraries. If an operation on a specific data size or a specific operation is not sup-
ported, then the corresponding library function is not provided and the compilation
will fail, the programmer will have to deal with it by implementing an alternative op-
eration, the supported interfaces are provided in lib.atomic. Where possible the
missing operations, implemented in software, possibly at considerable expense, are
provided in lib.atomic.missing. A program can import lib.atomic and lib.atom-
ic.missing into its own address space, say app.atomic and access them from there
when it is initially being ported, the programmers can later investigate the impact of
the user of the slower missing ones and figure out what they want to do.

15.18 Exception handlers

If an exception handling function returns, the instruction that caused the exception
to be raised is retried, causing the exception to occur again, unless the handler per-
forms some action that causes the exception to no longer occur, for example, by map-
ping memory into an area where memory was not previously mapped, or changing
the protection of the memory area that caused the exception.

XXX Exception handlers are per thread, arguments, etc. Alternate stacks. Kind of
like per-cpu hardware interrupt stacks. Should exception handlers be allowed to
block, etc? Then can not share pool of exception handling stacks, but if they can
block then they could block to acquire an exception handling stack, but that could
lead to resource exhaustion related deadlocks, then again exception handling is sup-
posed to be exceptional, not the bread and butter of a software design, at least not in
the exception handling paths which should be brief and non-blocking. Memory foot-
print costs, sharing of exception handlers, between threads (to reduce cost), etc. Need
the minimalist mechanism which is UNIX signals with alternate stacks, etc. Need al-
ternate stacks for when the thread stack overflows. In Windows could use the Vec-
tored Exception Handling features. See also SetConsoleCtrlHandler() for Win-
dows console processes.

XXX Should a proposed standard C library extension that is OS neutral be de-
signed? In Windows stack space exhaustion might need to be carefully managed to

284 Concurrent programming Chapter 15

ensure that at least there is some space to switch to an alternate stack when required,
so minimal stack space might need to be guaranteed. Language level specification vs
C library signals setjmp/longjmp to an outer layer. Initially implement POSIX signals
on Windows and divorce the design of a new API from this language, only adopt it if
it becomes part of C in the future.

Appendix 1L – Libraries lang, lib, and libc

“C provides no operations to deal directly with
composite objects such as character strings, sets, lists,
or arrays considered as a whole. There is no analog,
for example, of the PL/1 operations which manipulate
an entire array or string. The language does not define
any storage allocation facility other than static
definition and the stack discipline provided by the
local variables of functions: there is no heap or
garbage collection like that provided by Algol 68.
Finally, C itself provides no input-output facilities...”

“Although the absence of some of these features may
seem like a grave deficiency (“You mean I have to call
a function to compare two strings?”), keeping the
language down to modest dimensions has brought real
benefits.”

-- Brian W. Kernighan and Dennis M. Ritchie

The language run-time support is described in this appendix, pro-
grammer accessible aspects of it are exposed in the lang namespace.
The language library, lib, and a safe subset of the standard C library,
libc, are described.

1L.1 Generic function lang.on_array()

XXX use argsof and arguments now have to be in a the table which has to be aug-
mented with a place for argument values, but if the evaluation of the arguments is
non-trivial and contradicts the sequential execution model, then it can not be done,
usually it can, it is just passing a pointer argument, e.g. the FILE pointer to be used.

286 Appendix 1L – Libraries lang, lib, and libc

extend namespace lang {
 on_array.type on_array(pub genre lang.integral type,
 on_array.delegate delegates[])
 require(delegates.max[0] > 0) {
 pub typedef type (*delegate)() deleg;
 delegate *dp = delegates;
 delegate d = *dp;
 type n = d();
 if (n > 0)
 while (++dp < delegates.end) {
 d = *dp;
 type c = d();
 if (c <= 0) break;
 n += c;
 }
 return n;
 }
}

1L.2 Obtaining the object that contains a field field_to_obj()

The function field_to_obj(), field to object, is used to obtain a pointer to an ob-
ject from a pointer to a field within the object, is a language provided function, its
fieldp argument is a pointer to field_type, type has a member of field_type,
its name is specified in the field argument. If fieldp points to the field member
of type, then a pointer to the containing object is returned, otherwise NIL is re-
turned.

extend namespace lang {
 priv field_to_obj.type
 *field_to_obj(pub genre void type,
 genre void field_type,
 fieldof type field_type field,
 field_type *fieldp) { ... }
}

1L.3 Atomic array descriptor fetching and copying

Atomically fetching an array descriptor that is not a local variable or argument to a
function is lock free and not more than 2 times as expensive than the underlying
loads to obtain the data from the array descriptor. Atomically updating the array de-
scriptor is also lock free where the hardware has the correct instructions to atomically
update two pointer sized words, ignoring 32 bit environments because they are not

1L.3 Atomic array descriptor fetching and copying 287

really interesting anymore for multi-threaded code on SMP systems. Single thread
code has similar issues on a single CPU system, but they are easier to solve, 32 bit on
SMP is becoming extinct, we look forwards with the language not backwards. Imple-
mentations exist for 32 bit SMP, they are not worth discussing here (for example, just
use a generation count as in the more than one dimension case below).

ARM64, x86/64, and POWER all have 16 byte (data must be 16 byte aligned)
atomic memory load_linked/store_conditional or x86/64 cmpexch instructions. Uni-
dimensional array descriptors implemented as two 64 bit words: start and max[0].
(end is computed at runtime in this case). The value of end can be assumed to exist
and be valid in array descriptors that exist in the run-time stack as part of the calling
convention so they don't need to be recomputed when they are passed around as ar-
guments to functions. The calling convention on systems with enough registers might
pass the 3 values, other architectures might just pass the two values instead. Note that
having max[0] instead of end be the better choice of the value to represent in array
descriptors stored in global memory is based on the fact that multiplication to com-
pute end is much faster than division to compute max[0], and that quite often the
multiplication is against a small literal and the compiler can perform those frequently
without hardware multiplication.

Atomically fetching the 16 byte value, without performing stores, makes use of a
register pair load, and a generation count. A register pair load, even though obviously
not atomic, is an indivisible instruction, meaning that a thread can not be preempted
in the middle of it, so there is no concern for having to hook the scheduler to restart
the instruction sequence. To fetch the two values a register pair load is used, but be-
cause the values might not really be a logical pair but a broken pair a generation
number stored in both would have to be used. Using a relatively narrow generation
number is good enough because there are no unbounded long lived preemptions be-
tween the two values being read, the cache line could conceivably be bounced around
between CPUs for a period of time in between the two hardware issued fetches for
the register pair load, but for a large enough generation number it is inconceivable
that two words that exist in the same cache line that makes it to the L1 cache of a
CPU would continuously be removed from the cache as the two words are repeatedly
updated in other CPUs and eventually the L1 coming back to have its second word
fetched and have the generation number coincide with the generation number fetched
from the first word. For example with 64 bit words, if 16 bits are dedicated to the
generation number, it would have required 64K updates of the array descriptor while
a CPU stalls between consecutive loads of two words that coexisted in the L1 while
the first word was satisfied. An extra safety net could be built that counts the number
of retries from mismatched generation numbers, if the number of mismatches is
larger than a reasonable value an exception could be thrown as the repeated storing

288 Appendix 1L – Libraries lang, lib, and libc

into the array descriptor could be part of an attempt by malicious code to defeat the
language safety.

Atomically updating with 16 byte atomic update requires reading a consistent prior
value against which to perform the atomic update because the prior version of the
generation count has to be updated correctly, thus the atomic fetch is first performed
and the values obtained are the basis for the 16 byte atomic update after incrementing
the generation count.

If a register pair load is not available then a different implementation approach
would have to be used because a thread preemption between the two word loads
could allow for the generation count to wrap and produce an incorrect generation
count mismatch. The thread preemption could could honor an instruction restart re-
gion and simply backup the program counter appropriately so that when it resumes it
retries the two word fetches.

Threads could have a preemption count which they could fetch prior and after to
see if they have been preempted. This is a much cleaner interface than restartable PC
backing by the kernel. The kernel just has to increment the per-thread preemption
count and not be aware of special address ranges for restartable instruction se-
quences. Per-thread preemption value would be part of thread context and when the
thread is running it could be exposed (read-write! For user mode thread multiplex-
ing!) at a well known address per-core. So apart from validating gen was the same it
would also ensure that preemption did not happen. Note that running an interrupt
handler and resuming from the kernel to the same thread wold be considered a pre-
emption because arbitrary code ran while the thread was running. If the kernel is up-
dating the preemption count, and user mode is updating it too, then they have to be
done with a ll/sc pair in user mode (and kernel mode too if the hardware architecture
requires it), note that with user level thread switching on a core, the per-thread se-
quence numbers are being context switched too to the well known per CPU location.

Array descriptors with more than one dimension would require 3 or more words, so
they might as well also store end in memory, their non run-time incarnations would
have a generation count in them. Their atomic fetch would fetch the generation count,
use the value fetched as a data dependency to compute the address of the other values
and a final re-fetch of the generation count. If the generation count did not change
then the atomic fetch succeeded. A special generation count, say zero, would mean
that an update is in progress and the code fetching the values atomically would have
to spin until a stable generation count is obtained. A thread updating an array descrip-
tor would use the low values that are CPU numbers as the generation count and es-
tablish it atomically if it was not a CPU number already. A thread that has thus locked
the generation count and was preempted would require its preemption to go through a

1L.3 Atomic array descriptor fetching and copying 289

release sequence prior to the preemption to restore the generation count and its pro-
gram counter would have to be reset to the start of its instruction restartable sequence
for when it resumes. Communication to the thread preemption code might involve a
per CPU location that stores the address of the generation count, the value to be re-
stored, and the program counter to back up to, note that because the values of the ar-
ray descriptor are in the middle of an update their prior values would have to be re-
wound, but this all amounts to a way of making backwards possible, it would be just
as easy to have the preemption code to complete the update instead of undoing it, in-
stead of storing the pre-values, what would be stored in the preemption per CPU area
would be the post-values and new generation count desired and the starting address
where the stores should be performed, the read would then atomically fetch the gen-
eration count, compute the new one, all the new values, and last store the address of
where the new values go, this final store which is perceived by the CPU in program
order tells a future preemption that if the generation count in the data is the CPU
number then the values are to be used for the update, if the generation count is not the
CPU number, it means that the thread not yet locked it, so the program counter can
be safely backed up to the point where the thread refetches the generation count and
is about to store it again in the per-CPU memory, note that for this preemption the
pointer to the data would to updated to zero to indicate when it resumes and if it is re-
preempted nothing needs to be done. Note that an immediate preemption after fetch-
ing the generation would be caught by the compare-and-swap like operation that en-
sures that the storing of the CPU number in the generation is not done over a newer
generation number or some other thread having stored their CPU number there.

In the discussions above intimate interactions with the scheduler through user mode
accessible and documented shared memory that is per CPU is implied, depending on
the environment thread id could be used instead of CPU number and per thread mem-
ory instead of per CPU memory, the details are similar but more intricate and vary
from system to system.

Note that memory barriers are not required as assignment into or fetching from
global array descriptors can still be weakly ordered with respect to other data.

1L.4 Weakly ordered memory control

Portable functions that provide access to the underlying hardware operations re-
quired to work with a weakly ordered system are provided by the language libraries.

1L.5 Standard input output

XXX

290 Appendix 1L – Libraries lang, lib, and libc

1L.6 String literals and the str string type

XXX

Appendix 2S – Identifier mapping and calling convention

“C is peculiar in a lot of ways, but it, like many
successful things, has a certain unity of approach that
stems from development in a small group.”

--Dennis Ritchie

The memory layout of a class is specified by the language. Binary
compatibility between completely separately compiled modules is
supported through interfaces exposed through classes, even if differ-
ent compilers are used. The layout of classes that have not been pub-
lished (see §8.4) is not dictated by the language and are subject to
heavy optimization.

Compilation of COOGL source code into C11 requires that identi-
fiers be mapped to C11 identifiers in a way that accounts for their ac-
cessibility modifier and the scope where they were declared. This
chapter explains this identifier mapping. In other languages this
process is referred to as mangling.

2S.1 Introduction to the calling convention

A calling convention, in programming languages, is a description of the argument
passing and value returning convention followed by the language to implement func-
tions and function calls. Calling conventions are usually specified in a computer ar-
chitecture specific way, for example what registers are used to pass integral argu-
ments, what registers are used to pass pointer arguments, what registers are used to
pass floating point arguments, how are structures passed by value, what is done when
there are not enough registers to pass all the arguments via registers, for example how
is the run-time stack call frame laid out to pass additional arguments that can not be
passed in registers. Additionally, how values returned by the function returned, for
example in which registers the values are returned, if possible, and if they can not be
returned fully in registers how are the values returned in memory. An aspect of the
calling convention is which registers are to be preserved by the function and which
registers can be changed without preserving their values for the calling function. The
calling convention also includes details about how the run-time stack is organized, its
stack frame alignment, what memory can be used, etc. If these conventions are fol-
lowed properly then other tools such as debuggers can examine the run-time stack

292 Appendix 2S – Identifier mapping and calling convention

and reliably show the various call frames and the data of the functions.

Modern calling conventions pass quite a few arguments in registers and usually fol-
low a similar register assignment convention to return values from the function.
Older calling conventions might be limited in the number of registers used to return
values. Machines with dedicated address and integer registers are not in common use
anymore, all modern systems pass pointers and integers in general purpose registers
and floating point values in floating point registers.

COOGL is compiled into C, its calling convention is specified in C, to understand
its calling convention at the assembly level you have to understand the calling con-
vention of the underlying C compiler. Understanding the calling convention at the C
level is more important because it will help you understand how to call C code and
how it calls into COOGL code.

2S.2 Hidden arguments: this and on

Hidden arguments to functions are passed by the compiler on behalf of the pro-
grammer, for example the this object pointer when invoking a non-static member
function, e.g. stack->push(10), the function at the C level receives two arguments,
this and v, the value to be pushed, the first argument is this followed by the argu-
ments of the function.

Another example is when the class constructor is invoked it receives a hidden argu-
ment, named on, that points to the memory on which the object is to be constructed,
note that that argument is not the this argument, the on argument is specified after
the arguments to the constructor. Constructors don't have a this argument unless they
themselves are a non-static member function of another class, see the iterator
class that is a non-static member function of class stack in §4.14. This means that a
class constructor that is also a non-static member function of another class receives
both of these hidden arguments: this and on.

2S.3 Tuple arguments and return value

Functions that have tuple arguments receive those arguments as individual argu-
ments, not as a structure. Functions that return tuple values return the tuple value in a
structure where each member of the tuple has a corresponding structure member with
the same name and type. If a future version of C includes support for tuples, and
COOGL is adapted to support that version of C as its target language, then, as an
evolutionary option, the compiler can be directed to return tuple values natively as
native C tuples instead of returning them through structures.

2S.3 Tuple arguments and return value 293

Note that modern calling conventions, for example 64 bit ARM, are able to pass
and return structures by value through calling convention registers designated for ar-
gument passing, at least when the structure fits completely in those registers. 64 bit
little-endian POWER calling convention also allows for this. The RISC-V calling
convention doesn't. Some older calling conventions only allow one value to be re-
turned in registers, others allow up to two values. The most common tuples have two
pointer sized (or smaller) values, most calling conventions are pretty efficient already
in this case, for example both 32 bit and 64 bit x86 allow structures with two words,
2 x 32 or 2 x 64 bits respectively, to be returned in two registers.

2S.4 Arguments that are a value object

An object passed as a value to a function is constructed by the calling function from
another object, by either calling init() or init_deinit() on the source value.
Only the calling function knows which of these calls is appropriate, if the source ob-
ject doesn’t need to be deinitialized, then init() will be invoked, but if the source
object will be deinitialized immediately, then init_deinit() is invoked. The mem-
ory for the object that is being passed by value must be allocated by the calling func-
tion (for example as a local C variable), in consequence, when objects are passed by
value the address of the object is what is actually passed as an argument to the func-
tion being called. An obvious optimization performed by the compiler, is that if the
source object is to be deinitialized, after being used to initialize the value object, then
instead of even invoking init_deinit() it can instead just pass the address of the
value object.

Very small objects, a few words, might be more efficiently passed in registers than
creating the object in memory and passing a pointer to it. For example an object that
completely fits in a single register would be passed more efficiently in a register in-
stead of creating it in memory just to pass a pointer in a register to it. All objects that
fit in a register, are constructed in a C variable and passed by value at the C level.

It is enticing to pass objects by value when they use more than a single register, say
two registers, and when the underlying C calling convention for passing structures by
value would pass the structure in registers. The problem with doing this is that such a
structure might internally have pointers into itself and passing that in registers and
then having the receiving function put those registers in memory to dereference the
memory would cause the pointers to point to the data on the calling side and not on
the receiving side. By restricting this optimization to register sized objects, the object
even if it is internally just a pointer, could not point to itself, so it is safe to do so.

It is also tempting to do other similar optimizations if the object is just plain data.

294 Appendix 2S – Identifier mapping and calling convention

For example an object that has not been published within the module that defines it,
this optimization could be done for it globally within the module, for example if the
compiler detects that it is passed by value significantly. The current compiler doesn't
implement this, but it might in the future if there is demand for it. An alternative solu-
tion, for the programmer, for such plain-data objects would be to implement them in
structures and depend on the efficient passing of structures by value from the under-
lying C compiler. A future enhancement to the language might allow the programmer
to specify that objects of a specific class type should be passed by value following
the structure passing convention.

Allowing the calling convention to be specialized for value objects depending on
their size (i.e. if they fit in a register or not) does not impose additional coupling be-
tween separately compiled modules because those modules already are exposing the
size of their objects to each other when they objects are allowed to be declared on the
stack, assigned to each other, and initialized from each other. The size of the objects
become part of the application binary interface (ABI) exposed by the module. The
only way to decouple knowledge about the size of specific objects between modules
is to have their constructor be inaccessible, i.e. to be priv, and requiring that the ob-
jects of that type to only be created dynamically, or if pre-allocated, to be pre-allo-
cated by the module that defines their class which can then pass pointers to them to
code in other modules. Objects not meant to be members of other objects can also
benefit from this technique. Classes without a priv constructor also expose their size
as part of an ABI when declared to be members of, or inherited by, other objects.

2S.5 Return values that are a value object

Objects returned by value, that fit in a register, are returned as value. Objects larger
than that, that are the single value returned by a function, or a value returned as part
of a tuple, are optimized better if they can have memory for them in the called func-
tion (instead of the calling function). The calling convention for receiving object val-
ues returned by a function passes the address of where the objects values should be
placed as additional arguments passed to the function through the normal calling con-
vention. There are two possible cases for the receiving objects, they either already ex-
ist as objects and are being assigned to, or are newly declared objects being initial-
ized, its either one of these two, not a combination of these cases.

An additional argument that indicates either that the values returned are being as-
signed to existing objects, or that they are used to initialize objects being declared.
By passing an extra argument with this information, the most optimal function can be
used, i.e. reinit_deinit() or init_deinit(), respectively, but in some cases it
might need to use reinit() or init() instead, for example when the value object

2S.5 Return values that are a value object 295

being returned is not about to be deinitialized because it will continue to exist after
the function returns, for example because it exists in a globally reachable data struc-
ture. If the function just returns the value of another function that it calls, then it just
has to pass the extra arguments with this information and it is no longer involved in
the decision making process, supporting tail recursive functions efficiently.

The calling convention for functions that return object values passes a hidden argu-
ment, bool return__init, followed by one or more addresses for the receiving
value objects that have already been constructed (when return__init is false) for
example because they are being assigned into; or the raw memory where the receiv-
ing value objects are to be initialized (when return__init is true). Note that when
a function is inlined, the return__init argument, usually a constant argument, and any
generated if statements based on it, are removed by the compiler.

Values returned by functions that return a tuple, that are not objects, are returned as
if all those values were part of a C structure, that structure is returned by value and
subject to whatever is done for those by the underlying C compiler's convention.

2S.6 Unidimensional array descriptor arguments

Unidimensional array descriptors, a lang.vecdesc, are a type implemented by the
language, their value fits in two registers, its two members to hold the values of
start and max[0], their argument passing convention doesn't follow the convention
of objects of user defined classes. The start member value is passed in the argu-
ment for the array descriptor, and the max[0] member value is passed in the next ar-
gument. For example:

void scale(double vec[], double factor) {
 for (index i = 0; i < vec.max[0]; i++) vec[i] *= factor;
}

Is compiled into this C code:

void scale(double *vec, size_t vec__max0, double factor) {
 for (index i = 0; i < vec__max0; i++) vec[i] *= factor;
}

The prototype produced for this functions forces calls to scale() from C to pro-
vide the vec__max0 argument.

2S.7 Array descriptor return value

Array descriptors are returned as a value as if they were a C structure.

296 Appendix 2S – Identifier mapping and calling convention

2S.8 Multidimensional array descriptor arguments

Multidimensional array descriptors are passed as a value as if they were an object
of a user defined class, the calling function ensures that the array descriptor, if its
value is coming from a data structure, i.e. not a local variable or an argument, that it
is atomically copied into memory in the calling function, the calling function passes a
pointer to that memory, even though a pointer is passed, if that function subsequently
passes the array descriptor to other functions it simply passes the pointer it received.

If a function that receives an array descriptor as an argument assigns to the array
descriptor, then the compiler makes a local copy of the array descriptor for the func-
tion to manipulate and change. In general functions don't assign to array descriptors
received as arguments, the compiled code can depend on the invariant that they are
not addressable from any other thread and that their values don't change when passed
as an argument to another function, the only code that can change it is the function
function itself, so its compilation is fully aware of the only source of changes to it.
For example the function can cache the start and various max[] values into regis-
ters without concern about these values changing, it can still pass the pointer to the
array descriptor to other functions without any concern about it changing.

2S.9 Internal and external identifiers

Assuming these global declarations:

pub int func(int arg) { return arg + 1; }
pub int var;
pub enum state { free = 0, valid = 1, io = 2 };
pub struct huge { large data[8]; };

When compiled into C11 code their names, at the C level don't change.

The identifiers func and var are external identifiers from the perspective of C. Ex-
ternal identifiers correspond to executable code or data declared in the global scope
or data that is declared static, such code and data exist at fixed memory address lo-
cations while the module is loaded in memory and able to be used at runtime.

The opposite of an external identifier is an internal identifier. Internal identifiers are
associated with non-global and non-static data, for example a local variable, a func-
tion argument, or a non-static data member. Internal identifiers are also associated
with entities that don't exist in memory during execution of the compiled code, for
example an enumeration type and its value, or a literal declaration, or the type de-
clared by a struct declaration. Above arg, state, free, valid, io, huge, and
data are all internal identifiers.

2S.9 Internal and external identifiers 297

An external identifier length limit might be imposed by the static or the run-time
linker, and not just by the underlying C11 compiler. The internal identifier length
limit is imposed, usually, only by the C11 compiler, certain environmental factors
such as field length limits on debugging information formats, or limitations of debug-
gers might cause the internal identifier length limit to be smaller than what the com-
piler might support internally. For example, the same compiler on two different plat-
forms might have different internal identifier length limits.

The C11 standard requires that external identifiers of up to 31 characters and inter-
nal identifiers of up to 63 characters be supported. To ensure maximum COOGL
source code portability, the programmer can choose that these be the limits used in-
stead of the actual limits imposed by the underlying compiler. Additionally, program-
mers can choose their own limits, presumably the most restrictive limits across the
platforms supported by their software. Limits larger than supported by the target plat-
form for which code is being compiled are not allowed.

2S.10 Identifier mapping from COOGL to C

When COOGL is compiled into C most identifiers have their names adjusted so
that they can exist within the single global identifier name space of C code, both
global internal and global external identifiers exist in a single global name space in C.

Only pub declarations at the outermost scope have their names unchanged when
compiled into C code. All other names require some amount of adjustment of their
names when translated into C, the mapping into C is described in this chapter.

The language reserves double underscore for identifier mapping, user defined iden-
tifiers can not contain double underscore, nor can they start or end with underscore.
Sometimes triple underscore is used, in those cases, the triple underscore is shown in
red bold, i.e. ___,to make it easier to discern from double underscore.

When file names are included as part of an identifier mapping, the extension of the
file name is always ignored, and every slash is replaced by double underscore, for ex-
ample src/file.cog is mapped to src__file. Note that all filenames are always
relative to the top of a hierarchy where they exist, file names are not absolute, they
can't start with slash, walking up the directory hierarchy via the parent directory is
not allowed, i.e. .., it is also not allowed to use the current directory, i.e. . in file-
names. For example, these are not allowed: /s/f.cog, ../s/f.cog, s/../f.cog,
and ./f.cog.

The general rule for use of triple underscore vs double underscore is that triple un-
derscore separates entities of these different kinds from each other: modules, file-
names, and identifiers. Whereas double underscore separates entities of the same kind

298 Appendix 2S – Identifier mapping and calling convention

(components of a pathname from each other, or identifiers from each other).

Module names and filenames must be proper COOGL identifiers with the exception
that the ASCII minus character, '-', can be used too, it is a synonym for underscore
and is often preferred by programmers than underscore in their file names.

2S.11 Identifier mapping: global declarations outside of lexical scope

If the identifier declaration is global, and not within a lexical scope, for example not
inside a namespace or a class declaration, then: pub declarations remain unchanged;
priv declarations are prefixed by priv___module___file___; and prot declara-
tions are prefixed by module___. The identifier space within which global priv
declarations outside a namespace exist is the identifier space within a single file, be-
cause file names only have to be unique within a module, the identifier mapping for
them has to also include the module name. The identifier space within which prot
declarations outside a namespace exist is the identifier space within a module, in con-
sequence these identifiers only need to be prefixed by the module name. The default
module name is mn, short for the main module. For example the source file src/
file.cog:

pub int a;
priv int b;
prot int c;
int c2; // default for globals is prot

is compiled into this C code:

int a;
int priv___mn___src__file___b;
int mn___c;
int mn___c2; // default for globals is prot

Note that when you are debugging a program, for example in a command line de-
bugger you are always within some context, when you are examining code, setting
breakpoints, single stepping, etc. you are always working in a specific location, in-
side a function, inside a file, and inside a module. When you specify names to the de-
bugger, your names are interpreted relative to your current location, as if it were your
current directory, so you refer to them relative to the current scope. Also you specify
them in their unmapped form, using their original names.

2S.12 Identifier mapping: global declarations inside a lexical scope

If the declarations were within a language lexical scope, for example declared
within a namespace or members of class, then the module and file that contains them

2S.12 Identifier mapping: global declarations inside a lexical scope 299

are completely irrelevant, their accessibility modifiers dictate their identifier map-
ping. Note that in this case the identifier that provides the lexical scope for the decla-
ration has to be mapped too, if that identifier is a global declaration that is not inside
lexical scope, that identifier has its name mapped as described above, otherwise it is
mapped by the same means as identifiers are mapped when inside a lexical scope.
For the following example we will use a global pub namespace prog , because the
mapping for prog doesn't affect its identifier.

When declarations are inside a lexical scope the pub accessibility qualifier doesn't
affect the identifier mapping; priv causes a single underscore to be appended to the
identifier as part of its mapping; and prot causes a double underscore to be ap-
pended. This code:

pub namespace prog {
 pub int a;
 priv int b;
 prot int c;
 // int invalid; // error: accessibility modifier required
}

Is compiled into this C code:

int prog__a;
int prog__b_;
int prog__c__;

If prog was declared prot, i.e.: prot namespace prog {...}:

int mn___prog__a;
int mn___prog__b_;
int mn___prog__c__;

If prog was declared priv, i.e.: priv namespace prog {...}:

int priv___mn___src__file___prog__a;
int priv___mn___src__file___prog__b_;
int priv___mn___src__file___prog__c__;

2S.13 Exceeding the external identifier length limit

Module name and file name components in the identifier mapping can be encoded
differently on platforms that have a restrictive external identifier length limit, e.g.
when a module's filename's are too long and cause the identifiers to become too long
for the target platform. In the alternative encoding the module name and all the file
name components are replaced by a number whose first digit is 0-9 (which makes it
different than a module name which must be a valid COOGL identifier), followed by
digits in base 62 using the characters 0-9A-Za-z, each digit representing values in the

300 Appendix 2S – Identifier mapping and calling convention

range 0-61 (0-9 is 10 digits, and A-Z and a-z are 26 digits each, 62 = 10 + 26 x 2).
Four digits constructed this way are used to encode the module and filename map-
ping. The first two digits represent the module name, allowing 10 x 62 = 620 possible
module names, the last two digits represent the file name within the module, allowing
62 x 62 = 3844 files per module. The mapping between file numbers and file names
is kept in a file managed by the compiler, the mapping between module numbers and
module names is managed by the compiler and its tools. The encoding is actually
variable length. A minimum of 4 digits must be present. If there are 2 x N digits, the
first N belong to the module number and the second N belong to the file number. If
there are 2 x N + 1 digits, the first N + 1 belong to the module name, and the other N
to the file number. For example an operating system kernel with a particularly large
set of device drivers, more than 620, and where unique symbolic information for all
of them is required to be produced even though they won't all ever be loaded into a
single running kernel at the same time.

Note that this is mostly a legacy C compiler problem, most compilers and linkers
support very large symbols to support the C++ name mangling done by most imple-
mentations of that language. The programmer can choose to use these shorter identi-
fiers for other reasons, by using the compiler option --base62-names, for example
if other unrelated tools have trouble with these long identifiers.

2S.14 Identifier mapping for a class and its members

A class declaration declares both a function and an underlying C struct used to im-
plement the data layout of objects of the class type. Assuming the stack declaration
in §1.3, but assuming it was declared pub, so we can ignore the identifier mapping
for stack itself, and that it was in the source code file stack.cog. Its compilation
results follow (comments and #line directives were removed, the code was refor-
matted to fit, and automatic inlining was disabled), the two resulting files stack.h:

typedef struct stack__struct stack;
enum { stack__MAXENT = 100 };
struct stack__struct {
 int *sp_;
 int entries_[stack__MAXENT];
};
void stack__promise(stack *on);
void stack__on(stack *on);

2S.14 Identifier mapping for a class and its members 301

void stack__class(stack *on);
bool stack__empty(stack *this);
bool stack__full(stack *this);
void stack__push(stack *this, int v);
pub int stack__pop(stack *this);
pub int stack__top(stack *this);

The second file produced is stack.c, below. Note that implicit this maps to
this and the memory were an object is to be constructed maps to that. Remember
that the class constructor does not have a this argument (unless it is itself a non-
static member function of another class, see §4.14), instead the class constructor re-
ceives an extra hidden argument after the class arguments (see §XXX calling conven-
tion), which is named on in the compiled code, the raw pointer that refers to the
memory that is to be constructed to be used as a stack.

#include <lang.h>
#include "stack.h"
void stack__promise(stack *on) {
 promise(stack__empty(on));
}
void stack__on(stack *on) {
 on->sp_ = on->entries_;
}
void stack__class(stack *on) {
 stack__on(on);
 stack__promise(on);
}

bool stack__empty(stack *this) {
 return this->sp_ == this->entries_;
}
bool stack__full(stack *this) {
 return this->sp_ == this->entries_ + stack__MAXENT;
}
void stack__push(stack *this, int v) {
 require(!stack__full(this));
 *(this->sp_)++ = v;
}
int stack__pop(stack *this) {
 require(!empty(this));
 int retval = *--(this->sp_);
 promise(!full(this));
 return retval;
}

302 Appendix 2S – Identifier mapping and calling convention

int stack__top(stack *_) {
 require(!empty(this));
 return this->sp[-1];
}

Note that the constructor stack__class() uses two supporting functions
stack__on() and stack__promise(), this relates to the promises of a class only
being checked after an object is fully built, for example if another class inherits from
it, then stack__promise() is only invoked after the class that inherited from stack
has been constructed, the descendant uses stack__on() to construct the inherited
stack, not stack_class(), and after the descendant constructor is done (all imple-
mented in its own xxx__on() function) then its constructor, for example opstack
from §6.7, opstack__class() calls both opstack__on() and stack__prom-
ise(), remember that in an inheritance chain only one constructor can promise a
post-construction invariant, all descendants must satisfy it, just as opstack does,
which requires that the promise be checked only after the outermost object is con-
structed.

Note that certain language keywords are used as part of the identifier mapping, for
example on and class were used above, they are not valid user defined identifiers,
so their use by the name mapping convention doesn't cause problems. The on and
this keywords are also used to name function arguments The promise() in the
compiled C code is similar to an assert(), it is provided in <lang.h>.

2S.15 Identifier mapping of array descriptor declarations

The declaration of a unidimensional array descriptor is equivalent, to and compiled
as if the declaration was made using the lang.vecdesc (§Error: Reference source
not found) generic class. Similarly, the declaration of a multidimensional array de-
scriptor is as if the declaration was made using the lang.arraydesc (§Error: Refer-
ence source not found) generic class. See §S.16. For example:

int v[]; // compiled as: decl lang.vecdesc(int);
float matrix[][]; // compiled as: decl lang.arraydesc(int, 2);

2S.16 Identifier mapping and generic code

A generic function or class has one or more generic arguments, i.e. declared with
genre, each use of such a class or function with a unique combination of generic ar-
gument types causes code for the function or class to be specialized for those specific
types. The identifier mapping for generic classes uses the type name for the generic
arguments to map the function's or class' name so that their specialized form be

2S.16 Identifier mapping and generic code 303

uniquely identified.

A related aspect of the generic specialization of code is that for some type combina-
tions the code that is generated, at the instruction level, could be identical between
specializations with unrelated types. The compiler ensures only a single copy of such
common specialized code is generated. For example a the generic stack class from
§11.3, specialized to implement a stack of int * or a stack of float * is shared be-
cause the stack at its lowest levels ends up just being a stack pointers and what those
pointers point to is not important at that level. Note that a stack of ularge and double
could not share the same code because functions such as push(), pop(), and top()
require different underlying calling conventions on most modern systems for their ar-
gument passing and value returning that is not the same at the instruction level, dif -
ferent registers, integer or floating point, are used.

The identifier mapping for the generic stack from §11.3, which is parameterized
with the type of its elements and the maximum number of elements, assuming it was
declared pub. Note that entries[] is implemented by the generic class
lang.vecdesc:

pub class stack(genre lang.value type,
 size_t max, int *error) promise(empty()) {
 priv type entries[];
 entries.create(max);
 priv type *sp = entries.start;
 *error = !sp = libc.ENOMEM : 0;
 ...
}

When used as a stack(int), results in stack__genre__int.h:

typedef struct lang__vecdesc__genre__int__struct
 lang__vecdesc__genre__int;
struct lang__vecdesc__genre__int__struct {
 int *start;
 size_t max[0];
};
void lang__vecdesc__genre__int__create(
 lang__vecdesc__genre__int *on, size_t n);
void lang__vecdesc__genre__int__destroy(
 lang__vecdesc__genre__int *on);
typedef struct stack__genre__int__struct stack__genre__int;
struct stack__genre__int__struct {
 lang__vecdesc__genre__int entries_;
 int *sp_;
};

304 Appendix 2S – Identifier mapping and calling convention

void stack__genre__int__promise(stack *on);
void stack__genre__int__on(size_t max, int *error , stack *on);
void stack__genre__int__class(size_t max, int *error, stack*on);
void stack__genre__int__deinit(stack *this);
bool stack__genre__int__empty(stack *this);
bool stack__genre__int__full(stack *this);
void stack__genre__int__push(stack *this, int v);
pub int stack__genre__int__pop(stack *this);
pub int stack__genre__int__top(stack *this);

The second file produced is stack__genre__int.c:

#include <lang.h>
#include "stack.h"
void stack__promise(stack *on) {
 promise(stack__empty(on));
}
void stack__genre__int__on(size_t max, int *error , stack *on){
 lang__vecdesc__genre__int__create(&on->entries_, max);
 on->sp_ = on->entries_.start;
 *error = !sp = libc__ENOMEM : 0;
}
void stack__genre__int__class(size_t max, int *error, stack*on){
 stack__on(max, error, on);
 stack__promise(on);
}
void stack__genre__int__deinit(stack *this) {
 lang__vecdesc__genre__int__destroy(&this entries_);→entries_);
}
bool stack___genre__int__empty(stack *this) {
 return this->sp_ == this->entries_.start;
}
bool stack__full(stack *this) {
 // COOGL: atomic fetch not needed, immutable: entries_
 return this->sp_ == this->entries_.start
 + this->entries_.max[0];
}
void stack__push(stack *this, int v) {
 require(!stack__full(this));
 *(this->sp_)++ = v;
}

2S.16 Identifier mapping and generic code 305

int stack__pop(stack *this) {
 require(!empty(this));
 int retval = *--(this->sp_);
 promise(!full(this));
 return retval;
}
int stack__top(stack *_) {
 require(!empty(this));
 return this->sp_[-1];
}

2S.17 Functions with default argument expressions

Functions with default argument expressions are implemented by having a different
version of the function for each argument that has a default value. Each implementa-
tion computes its default argument, and invokes the next version with that additional
argument. For example, for memget() from §4.16 these additional functions are:

void *memget__1(size_t size) inline {
 return memget__2(size, true);
}
void *memget__2(size_t size, bool cached) inline {
 return memget(size, cached,
 size >= sizeof(large) ? sizeof(large) :
 size >= sizeof(int) ? sizeof(int) :
 size >= sizeof(short) ? sizeof(short) : 1);
}

Their names are formed by appending a double underscore to the function name, in
this case just memget, followed by their number of arguments. These functions then
have their names mapped into C when compiled into C.

Note that the UNIX open() system call function is used with either 2 or 3 argu-
ments, when specified as COOGL code the third argument is specified with a default
value. Note that in some operating systems the C prototype for open() is specified
as a variable argument function, only declaring the first two arguments, which causes
the type checking of its third argument to be bypassed in the calling location, funda-
mentally this kind of function was never addressed by C89 or later versions of C.

int open(char *path, int flag, mode_t mode = 0) {...}

2S.18 Identifier mapping of functions risky to caller

As described in §14.9 functions such as strchr() are risky for the caller, the com-
piler must verify that the value returned by it, if its first argument is a local variable,

306 Appendix 2S – Identifier mapping and calling convention

is not misused in a way that leads to unsafe code. The identifier mapping for it is dif -
ferent because of this:

char *strchr(char str[], int c) promise(retval == NULL ||
 str.start <= retval &&
 retval <= str.end) {
 char v;
 char *s = str;
 char *send = str.end;
 for (; s < send; ++s) {
 if ((v = *s) == c)
 return s; // address of c in s, even if c == 0
 if (!v) break;
 }
 return NULL; // return NULL otherwise
}

Is compiled into this code:

char *strchr__return__str(char *str, size_t str_max0, int c) {
 char *str__end = str + str__max0;
 char v;
 char *s = str;
 char *send = str__end;
 for (; s < send; ++s) {
 if ((v = *s) == c) {
 promise(str <= s && s <= str__end);
 return s; // address of c in s, even if c == 0
 }
 if (!v) break;
 }
 return NULL; // return NULL otherwise
}

XXX other cases need to be described.

Appendix 3D – Differences between C and CLEAN

“#if is almost always followed by a variable like
‘‘pdp11.’’ What it means is that the programmer has
buried some old code that will no longer compile.
Another common usage is to write ‘‘portable’’ code by
expanding all possibilities in a jumble of left-justified
chicken scratches.”

--Ken Thompson

CLEAN is a subset of COOGL that is C compatible, the most sig-
nificant change is the removal of the C preprocessor and the addition
of safe programming. Other changes are small, they simplify and im-
prove the language, without silently changing the meaning of C code.

3D.1 Summary of differences between CLEAN and C

This appendix can be skipped by programmers that are not familiar with the C pro-
gramming language.

COOGL is an evolution of a subset of C, this common subset is CLEAN. COOGL
is not a superset of C. Language evolution requires change, if change is restricted to
additions, i.e. if removal is not allowed, the accumulation of features leads to too
much complexity.

Evolution of the C base of COOGL involves a few changes to the base C language.
These changes are not silent changes. This means that these changes don't allow
CLEAN code to behave different when used as C code, it means that any use of a
feature of C that has been removed, causes a compilation error instead of a silent
change in its meaning. This language design principle restricts the changes to the re-
moval of arcane, useless, or problematic C features (those that usually lead to incor-
rect programs or needless complexity). This design principle allows some of those re-
moved features to be brought back at a later time if backwards compatibility with
some of them is later required, for example by a hypothetical transitional compiler
that might fully or partially support both C and COOGL languages at the same time.

These evolutionary changes to the C language in COOGL and a few of the simpler
additions to COOGL are described below. A detailed description of them is presented
throughout the rest of this chapter.

A fundamental difference between C and COOGL is that C is not a context free

308 Appendix 3D – Differences between C and CLEAN

language. Determining what specific language constructs are being used in C is
sometimes not possible without examining code that is elsewhere. A context free lan-
guage is one that can be parsed purely based on its syntax, without the aid of a sym-
bol table, context free languages make the writing of tools that are language aware
easier to implement because the syntax of the language, its parsing, does not require
the use of information from declarations found elsewhere to resolve syntactical ambi-
guities at parse time. C requires the use of a symbol table to resolve ambiguities in its
parsing, it also requires that entities be declared prior to their use. Language aware
editors and source code searching are much easier to implement when a language is
context free because parsing with the aid of a symbol table is not required to be able
to determine what a certain syntactical construct means.

Some examples of ambiguous C constructs:

 a(*b) which, if a is a type, is a declaration of b as a pointer to objects of
type a; otherwise it is a function invocation of a with argument *b.

 a(*b)(c) which if a is a type, is a declaration of b as a function pointer that
has an argument of type c and returns a value of type a; otherwise it is an
invocation of a function a with argument *b and the returned value, presum-
ably a function pointer, then being invoked with argument c.

 (a)(b) which can be interpreted as cast b to the type a, or as a function call
of a with argument b.

 (a)(b)(c) which can be parsed as ((a)(b))(c) or as (a)((b)(c)) de-
pending on whether a is a type or not.

When using languages that are parsed in a single pass, such as C, the programmer
has to provide redundant information, for example function prototypes, and other
prior declarations to ensure that the information required to disambiguate the parsing,
or even to ensure proper code generation, is available at the appropriate times.
COOGL is globally compiled in a single pass, but it doesn't require prototypes, re-
moving a common source of programming errors in C. No form of forward declara-
tions such as prototypes, extern, or struct tag; declarations are required, or al-
lowed. C might generate incorrect code if the function signatures is unknown when
compiling a function call, for example:

 C assumes that functions are int, unless declared otherwise, thus a function
that returns float or a structure type will have the wrong code generated for it
in the calling location, causing strange errors at run time, which might even
include invalid memory references.

 C assumes that integer function arguments are passed with argument passing

3D.1 Summary of differences between CLEAN and C 309

conventions associated with int arguments. A function whose declaration
has not been seen seen by the compiler is assumed to receive integral argu-
ments as if they were int. If the argument is actually meant to be long
long (the C99 type for a 64 bit integer) and assuming that int is 32 bits, the
stack layout of arguments might be wrong, or the argument calling conven-
tion might be confused enough to the point were the values received by other
arguments might be shifted between arguments in unexpected ways.

Even though use of prototypes is a well known solution to these problems, a miss-
ing include header file can easily cause these problems not to be caught. Editing of
header files, and nested header files, sometimes causes a prototype that has been
moved between header files to no longer be visible from some C code. This problem
is always a possibility in C because prototypes are not mandatory. Some compilers
have options that cause warnings or errors if a function is invoked without its signa-
ture being known, the language itself doesn't require any such checking.

Two simple changes to COOGL's subset of the C language were made to make the
language context free, which facilitated the removal of C prototypes and forward
declarations. These changes also make programs easier to read when declarations are
combined with other COOGL enhancements such as generic types. The two changes
are:

 When the C operator sizeof is to be applied to an expression, instead of a
type, the sizeofex operator should be used instead.

 Cast expressions in COOGL use the cast(type) operator instead of the C
(type) operator, for example cast(int) instead of (int).

C features removed in COOGL's C subset are:

 The C preprocessor was removed. The #include, #define, #if, #ifdef,
#ifndef, #error, #pragma, and #line preprocessor directives are not
available. Language level facilities in COOGL exist to accommodate or re-
move the underlying needs for these features, with the exception of the arbi-
trary unstructured code mutations that are possible in C through unstructured
uses of #define, #ifdef, and #include, see §D.3.

 Legacy K&R C function declaration syntax was removed. Only the C++ de-
rived syntax introduced in C89 is allowed, see §D.4. Functions without argu-
ments can be declared with or without void in the function's argument list.

 Variable argument functions are not allowed, this reduces language complex-
ity while removing a feature that is unsafe and not required. In consequence
printf() and related functions are not supported either. See §D.5.

310 Appendix 3D – Differences between C and CLEAN

 Declaration of variables of a struct, union or enum type can not occur in
the same declaration that is the struct, union or enum type declaration it-
self. No variable or function declarations can follow the closing curly brace
of any of these declarations, see §D.7 and §D.8.

 Every declaration is local to its scope, except labels, see §D.9.

 Nested struct or union within another struct or union are allowed but
must be without a tag, see §D.10.

 Forward declarations are not needed nor allowed.

 Declarations in nested scopes are not allowed to hide function arguments, lo-
cal declarations, or members, see §D.11.

 Members of a union must all be plain data, see §14.5 and §14.7.

COOGL does not mandate the size of any type, various common data type size
combinations can be supported, as dictated by underlying hardware and operating
systems (such as ILP32, LP64, P64, and ILP64). Programming languages that man-
date the size of native types, for example Java and C#, result in programs that are
hard to port to wider or narrower word machines. For example, even today, with 64
bit machines, Java mandates that int be a 32 bit type, that means that an array with
more than 231 entries (one bit is consumed to represent negative numbers) can not be
used, because indexes are typically declared int, and Java mandates that int types
be 32 bits. So code that works today, needs to be changed as the systems evolve in -
stead of the language adapting appropriately to the system. The widening of the C
int type from 16 bits to 32 bits is an example of such adaptation when C was moved
to the DEC VAX from the DEC PDP-11. The types index and uindex are meant to
be used as index types instead of int and uint.

The ALGOL 68 inherited syntax that uses short, long, long long, long dou-
ble, double double, etc. to specify native type sizes was removed, this simplifies
the language in the areas of generic programming and constructor arguments to na-
tive types:

 The use of short and long together with int in declarations is invalid.
Thus forms such as: short int and int long are invalid, plain short and
long should be used instead. Use the type large which is at least 64 bits in-
stead of long long, for example in a ILP32 environment.

 The unsigned and signed modifiers were removed from COOGL, they are
reserved keywords. A complement of unsigned types was added: byte,
ubyte, schar (signed char), uchar, ushort, ulong, and ularge.

 All declarations must have an explicit type. The int type is not an optional

3D.1 Summary of differences between CLEAN and C 311

implicit type assumed when an explicit type is missing, see §D.21. Because
short and long are types, instead of type width modifiers, the most com-
mon uses of optional int are preserved, for example: long l or short s.

Minor C language adjustments in COOGL are:

 Parenthesis are mandatory in certain expressions that usually cause confu-
sion among enough C programmers. This does not mean that everything has
to have parenthesis, it means that certain uses that usually have them, or they
would be a bug in most cases, must have them, see §D.16.

 C89 changed the original K&R C behavior of expressions that involve both
signed and unsigned operands. COOGL follows all the rules of C99 for ex-
pression evaluation and integer and floating point promotions. With the ex-
ception that relational comparisons between signed and unsigned types,
which behave different in K&R C and C89. COOGL does not allow such in-
termixing in comparisons, see §D.17.

 The syntax d3[i,j,k] does not correspond to the 3 dimensional array in-
dexing, it is an invalid expression in COOGL, though it is valid in C, but its
meaning in C does not correspond to the tridimensional array indexing that
programmers used to other programming languages might expect.

Minor C related features added to COOGL are:

 The COOGL /# comment #/ replaces the need for the C preprocessor
when #if 0-ing out code so that it not be compiled. Also BCPL style com-
ments, were added, e.g. // comment until end of line, see §D.2.

 The use of struct and union is preserved for interfacing with C programs
and data. Programming in COOGL revolves around class and interface
declarations, not around struct or union declarations. C style program-
ming with just struct and union declarations is supported with some mi-
nor backwards compatible simplifications, see §D.6, §D.7, §D.8, and §D.10.

 COOGL provides the ability for its functions to be invoked from C code, and
vice versa, see §D.15.

 The COOGL bool type is a boolean type with literal values true and
false the same conversion rules as the C11 _Bool_ type, see §D.18.

 An integer type, a floating point type, or a pointer type, can be used as a
modifier in a enum declaration, thus dictating the type associated with its
values and the storage requirements for variables of that enum type, see
§D.19.

312 Appendix 3D – Differences between C and CLEAN

 Given that #define C preprocessor mechanism was removed, constant dec-
larations in COOGL use the lit keyword, alternatively, for a family of re-
lated constants, an enum declaration can be used. Values declared in an enum
or in a lit declaration are compile time constants, they can be used to size
arrays or as the number of bits in a bit field declaration, both of which are in-
valid uses in C for an enum value, see §D.20.

 Function expansion in the invocation location, also known as function in line
expansion. The use of inline modifiers in function declaration and in func-
tion invocation locations provides fine grained control over this facility, see
§Error: Reference source not found.

 Support for zero length and variable length arrays, see §D.22.

 Indentation induced mismatched if else programming errors cause compi-
lation errors, see §2.28.

The C keyword const and volatile remain in the language begrudgingly mostly
to interface with C code and have a larger common subset with it. Dennis Ritchie was
right: “I'm not convinced that `const' and `volatile' carry their weight; I suspect that
what they add to the cost of learning and using the language is not repaid in greater
expressiveness.”

Their complexity was indeed not merited by the language. They might be depre-
cated in the future, volatile particularly. Some intrinsics for device register load
stores would have been enough just like x86 compilers had in() and out() intrin-
sics to produce the x86 in and out instructions. Some architectures, with load store
accessible device hardware registers, require specialized instructions to be used (such
as the POWER eieio, enforce in order execution of input output) when using load
and store instructions to access device registers. Touching hardware device registers
might require other delicate actions such as setting up very low level exception han-
dling in case the device stops working, hangs, or misbehaves in some other way, thus
actual device hardware register access is hardly ever done from C through loads and
stores of device registers declared volatile.

3D.2 Comments

There are 3 types of comments in COOGL. C style comments which are bracketed
by the /* and */ tokens:

/* C style comment, continues irrespective of line
 boundaries until the end of comment token */

BCPL style comments, which start with the // token and end at the end of the line:

3D.2 Comments 313

// BCPL style comment, ends at the end of the line

Comments bracketed by the /# and #/ tokens:

/# Comment form used to comment out code that has the
 other two styles of comments, continues irrespective
 of line boundaries until the end of comment token #/

To avoid programming errors that result from a missing closing comment token, the
following restrictions apply:

/# invalid because of this-> /# extra comment start token #/
/* invalid because of this-> /* extra comment start token */
/* invalid because of this-> /# COOGL comment start token */
/* invalid because of this-> // BCPL comment token */
// invalid because of this-> /* C comment start token
// invalid because of this-> */ C comment end token
// invalid because of this-> /# COOGL comment start token
// invalid because of this-> #/ COOGL comment end token

The purpose of COOGL style comments is to allow code with comments to be
commented out, so this is valid, see §2.2 for rationale and examples:

/# ok to have these tokens here: */ /* // #/

3D.3 No C preprocessor

The C preprocessor langugage is not part of the COOGL language. The idiomatic
uses of the preprocessor are addressed by native COOGL language facilities and
code organization conventions:

 The use of #define macros to implement assert(expr) and similar
macros is supported through the #identifier operator, see §4.17 for its use
to implement assert(expr) and §D.17 for another example puts_if(e).

 The temporary commenting out of code by placing it between a #if 0 or an
#ifdef notdef and a #endif is addressed by the /# comment #/ as de-
scribed above.

 Uses of #if, #ifdef and #ifndef in function bodies can be replaced by
if statements with constant expressions. This mandates that all the code
compiles irrespective of the constant expression values. This is both a restric-
tion and a long term benefit. Platform dependencies (operating system, win-
dow systems, hardware, etc.) that would otherwise be dealt with conditional
compilation are either so small that they can be easily addressed through if
statements or are misplaced and ought to be factored out anyway into envi-
ronment dependent code in a platform dependent file. Any modern compiler

314 Appendix 3D – Differences between C and CLEAN

is capable of removing dead code, for example dead code subordinate to a
compile time constant expression in an if statement, thus there is no run-
time cost associated with replacing #ifdef with if statements.

 Uses of #ifdef outside of functions to cause different versions of a function
to be chosen depending on platform considerations are addressed by segre-
gating the functions for each version into a separate file and choosing the ap-
propriate platform dependent file when building the program.

 Uses of #ifdef to cause structure declaration mutations in a platform de-
pendent manner can be replaced with platform dependent files and the plat-
form dependent substructure included in what would have been the structure
with #ifdef in its declaration. For example the C code:

struct io {
#ifdef UNIX_IO
 int file;
#endif
#ifdef LIBC_IO
 FILE *file;
#endif
 /* common to both */
};

Can be dealt with 3 source files. Source file io.cog contains:

class io {
 pub inherit iox;
 // common to both
}

file unix_io.cog contains:

class iox { pub int file; }

and file libc_io.cog contains:

class iox { pub FILE *file; }

Only one of these last two files is used as part of the program compilation.
There are other ways to deal with this example when common code with C is
required. See XXX (empty structures and fields of their type).

 The use of #define to introduce named constants, as in this C code:

3D.3 No C preprocessor 315

#define MAXENT 100
struct stack {
 elem *sp;
 elem entries[MAXENT];
};
#define STACK_INIT(stackp) \
 ((stackp)->sp = (stackp)->entries)

is replaced in COOGL by the use of lit or enum declarations:

class stack {
 pub lit int MAXENT = 100;
 pub elem entries[MAXENT];
 pub elem *sp = entries;
}

A COOGL lit is a constant expression. It can be used wherever a constant
is required, e.g. to size an array, as a bit field, or as the value of a switch()
case label. The C const does not work this way, it cannot be used as a con-
stant expression in any of those cases. The benefit of symbolic debugging
and the prevention of arbitrary language mutation outweighs any benefits of
preserving #define. Additionally, COOGL constants can be declared within
a scope as done above for class stack , i.e. where they are relevant, they
don't pollute the global name space as #define does. The MAXENT declara-
tion could have been global if that is what was really desired. The C #de-
fine NULL declaration is a lit declaration in COOGL, see §D.23.

 In COOGL the underlying integer base type of an enum can be declared,
thus enumerations are not restricted to int values. For example:

ularge enum {
 MSB64 = 1uLL << 63
}

 Uses of #define to declare named macros with arguments that can be used
to inline arbitrary text in the macro invocation location, without regards for
scope, is replaced by well formed function inline support. Support for inline
expansion of: functions, member functions, nested functions and delegates
completely removes the non language mutating needs for this form of #de-
fine. The unification of structures, classes and functions also removes the
need for #defines similar to the STACK_INIT() above that are usually lo-
cated near the structure declaration. In COOGL the class declaration is the
constructor as shown in the class stack above, see §4.2.

 The use of #define to make believe that fields within an inner structure are
part of an outer structure that contains them is addressed by inheritance or

316 Appendix 3D – Differences between C and CLEAN

the alias field aliasing syntax, for example the C code:

struct inner {
 int in_count, in_total;
};
struct outer {
 struct inner in;
 int out_free;
};

/* bad: these have global scope! */
#define out_count in.in_count
#define out_total in.in_total

int main() {
 struct outer o;
 o.out_count = 3;
}

is written this way in COOGL:

class inner {
 pub int in_count, in_total;
}
class outer {
 pub inner in;
 pub int out_free;
 // good: these have class scope
 pub alias out_count = in.in_count;
 pub alias out_total = in.in_total;
}
int main() {
 outer o;
 o.out_count = 3;
}

 Use of #define to implement macros such as OFFSETOF():

#define OFFSETOF(type, field) \
 ((size_t) &(type *)0)->field)

These are addressed by the generic programming facility which allows for
type arguments with genre and field name arguments with fieldof, see
§11.3 and §11.13 for their respective descriptions and an implementation of
the offsetof() function.

 The need for the #include mechanism and the notion of header files in gen-
eral is removed. Declarations are extracted from the source files without any

3D.3 No C preprocessor 317

programmer intervention. The set of files that makes a program is known at
compile time. It is provided by the programmer, the list is supplied in a file
or as part of the compiler command line argument list. The compiler caches
information required for separate compilation into files that it manages trans-
parently to the user. Structure layouts, function signatures, etc. are cached by
the compiler and the information is not re-extracted unless the source files
that contained them have changed. The compiler also remembers the list of
files, if the set of files changes, or their contents change, it adjusts the cached
information.

 Optimized compilation for production always recompiles every file so that it
has an opportunity to inline functions and perform global optimization. Opti-
mized compilation for development can be done without inlining thus obtain-
ing the benefits of incremental compilation. Code that requires strict separate
compilation doesn't take full advantage of global optimization, for those
cases, usually libraries, the compiler knows where to find the cached ex-
tracted information for the library interfaces. Even in the case of libraries, in-
lining can be chosen for selected sets of functions, thus getchar(),
putchar(), and isalpha() equivalent functions don't have to be any
slower than their C #defined implementations. COOGL files that contain
only the class and structure data layouts, signatures and other declarations re-
quired or relied upon for strict separate compilation can be produced by the
compiler, i.e. everything is extracted other than constructs that directly cause
instructions to be emitted by the compiler. These compiler produced files are
similar to the header files that are maintained explicitly by C programmers.

3D.4 No K&R C function declarations

The K&R, ALGOL style, function declarations are removed. Function declarations
are only in the non-K&R form introduced by C++ and later adopted by C89. For ex-
ample, abs() 's declaration is invalid COOGL code, this is a K&R style declaration,
the declaration of max() is valid:

int abs(i) int i; { return i >= 0 ? i : -i; } /* K&R style */
int max(int a, int b) { return a > b ? a : b; }

 A function declared without arguments is synonymous with a function taking no
arguments, for example, void f() {} is equivalent to void f(void) {}.

3D.5 Variable argument functions are not allowed

Variable argument functions are not allowed, this feature originated in BCPL and

318 Appendix 3D – Differences between C and CLEAN

got into C via B, this mechanism is not type safe, nor extensible, and notoriously er-
ror prone in its use. In consequence printf(), scanf(), and related functions are
not supported either. The on syntax provides a type safe, extensible, and general pur-
pose mechanism to implement formatted input output and traces. The traces can be
compile time removable traces when not required for debugging, and very efficient,
both when they are run-time disabled or enabled. See §9.2 and §9.3.

Leftover historical variable argument functions in C that were never meant to be
supported with variable argument lists, but have now been contorted into them, such
as the open() UNIX system call:

int open(const char *path, int oflag, ...);

Which is meant to be used in one of the following two ways, the 2nd one providing
mode when oflag includes the O_CREAT flag:

int open(const char *path, int oflag);
int open(const char *path, int oflag, mode_t mode);

Note that the use of the C variable argument list declaration syntax ... removes in-
formation from the declaration of open() and the type of its optional 3rd argument,
allowing incorrect arguments to be used without compilation warnings or errors.

In COOGL the declaration of open() follows, the type of its 3rd argument is cor-
rect and if the user doesn’t specify it, its value defaults to zero.

int open(const char path[], int oflag, mode_t mode = 0) { ... }

3D.6 Forward struct and union declarations are invalid

Mutually referring structures in C require these forward declarations:

struct node;
struct tree { /* C code */
 struct node *root;
 int count;
};
struct node {
 struct tree *top;
 struct node *left, *right;
};

COOGL is globally compiled, it doesn't need types to be declared before they are
used. The forward struct and union forms are not needed, they are invalid in
COOGL:

struct node; // error: syntax error
union united; // error: syntax error

3D.6 Forward struct and union declarations are invalid 319

The global compilation model allows these forms of cross dependencies to be ex-
pressed without order considerations. All declarations, with the exception of local
and global variables, are order independent. Forward declarations such as the ones
shown above for structures or extern declarations for data types are invalid, and not
required in COOGL.

The equivalent COOGL code is:

struct tree {
 struct node *root;
 int count;
};
struct node {
 struct tree *top;
 struct node *left, *right;
};

The reason that order matters in local declarations is the obvious one, construction
occurs at declaration time, there is a well defined life time for a local variable, fur-
thermore there is a well understood execution flow. The actual order of declarations
of types, classes and functions does not correspond to an execution order, it only has
to do with a compilation order. Order of global variable declarations matters as a fea-
ture that can be depended upon. Single pass compilation used to matter a very long
time ago, i.e. when the program being compiled resided on tape and two passes
meant reading the tape twice (because the program source code could not be assumed
to fit in memory with the compiler and the compilation data). It is, of course, very
safe to say that those days are long gone.

3D.7 Variable declarations in type declarations are invalid

C allows for a struct or union declaration together with variable declarations and
typedef declarations. For example this valid C code is invalid COOGL code:

struct node {
 struct node *parent, *left, *right;
 struct info *data;
} root_node, *root = &root_node; // error: syntax error
typedef struct { int i; } other_t; // error: syntax error

The syntax that in the code above allows for struct node , root_node, and root
to be declared together has been removed from the COOGL language. The code
above has to be written in COOGL as:

320 Appendix 3D – Differences between C and CLEAN

struct node {
 struct node *parent, *left, *right;
 struct info *data;
}; // mandatory semicolon required
struct node root_node, *root = &root_node;
struct other { int i; };
typedef struct other other_t;

3D.8 Semicolon after closing curly brace in struct and union

In COOGL a semicolon is mandatory after the closing curly brace of a struct or a
union declaration (unless the struct or union is nested within another struct or
union). The COOGL syntax for struct and union is a strict subset of the C syn-
tax. As seen above, not all valid C struct and union declarations are valid COOGL
declarations, the only declarations that are valid are the ones in which the semicolon
follows the closing curly brace (ignoring intervening whitespace and comments). In
COOGL a declaration based on the type just introduced by a struct or union declara-
tion is never followed by declarations after the closing curly brace.

3D.9 Every declaration is local to its scope

Declarations in COOGL are local to the scope that contains them. In C, when a
function whose return value or complete signature is needed for appropriate compila-
tion sometimes the function is declared (with or without extern) in the scope of the
function that needs the declaration. For example:

int main() { /* C code */
 void *malloc(size_t);
 char *p = malloc(100);
 ...
}

In COOGL, such a declaration would be an incomplete, i.e. invalid, declaration of a
nested function of main(), i.e main.malloc(), whose code was not provided.

In COOGL, lit, enum, struct, union, class and function declarations within a
scope introduce a name only within that scope. Every declaration introduces a name
within the scope where it occurs. If the name is to be referred to from outside of the
scope, a qualified name must be used. Actual access to the entity is subject to the ac-
cessibility determined by the entity declaration.

3D.10 Invalid nested typeless struct and union declarations 321

3D.10 Invalid nested typeless struct and union declarations

A struct and union declaration must specify a tag name, for example:

struct { // error: missing struct tag name
 int i, j;
};

The rationale for this is simple, no variables can be declared at struct or union
declaration time in COOGL, thus if no tag name is given, the declaration would serve
no purpose, it could not be used for anything.

Nested struct and union declarations within other struct or union declara-
tions are allowed but they must not contain a tag, for example:

struct outer {
 int out;
 struct inner { // error: nested struct has tag: inner
 int in;
 };
};

The meaning of the similar C code is actually compiler dependent, some compilers
ignore the inner structure and allocate no space to it. Other compiler's treat it as an
anonymous struct that does allocate space in the structure, a form of poor man's in-
heritance. Another reason to disallow these forms in COOGL is that every declara-
tion in COOGL is relative to its scope, which would not be the case in C. In C the
struct inner is introduced as a global type, there are no nested types in C. To
avoid silently changing underlying legacy C behavior these nested forms with a tag
are invalid.

An easy, C compatible work around in COOGL is:

struct inner {
 int in;
};
struct outer {
 int out;
};

A typical use of nested structure declarations in C is valid in COOGL too:

struct foo {
 int i;
 struct {
 int a, b;
 } table[10];
};

322 Appendix 3D – Differences between C and CLEAN

3D.11 Non global names cannot be hidden

Non global names cannot be hidden, for example by other declarations within a
block, function, class or enum. For example:

void func(int i) {
 int i; // error: hides i
 int b;
 if (i) { int b; } // error: hides b
}

3D.12 Struct and union For C interoperability

COOGL struct and union declarations exactly follow the structure layout rules
of the native C compiler. In COOGL fields within a class must be explicitly de-
clared with an accessibility modifier (i.e.: pub, priv, prot, etc). Entities declared
within a class without an explicit accessibility modifier are not actual fields or
members of the class, they are simply local variables of the constructor of the
class. This enables the unification of classes and functions in COOGL, see §4.2.

For struct and union the accessibility modifier of every field is implicitly pub. It
is not possible to declare constants, enumerations or functions within a struct or
union. It is invalid to use an accessibility modifier within a struct or union.
Structs or unions can not have executable code of any kind in them, they are not
constructors.

Neither a struct nor a union can contain or refer to a type that is not either: a
fundamental type, a function pointer, a struct, an union, or an array of these types.
Function pointers in them must not have as their signature a type outside of this re-
stricted set of types, nor can they be delegate function pointers, see §7.10. Anything
that appears in a COOGL struct or union can be extracted (together with its de-
pendent declarations) and used to interface with C code without the risk of COOGL
constructs being part of them.

Arrays within a struct or union can make use of lit or enum declarations to ex-
press their dimensions. Shared source code files between C and COOGL for those
would require #defines that are equivalent to the lit and enum values, for exam-
ple:

/* file common to C and COOGL */
struct foo {
 int i;
 int b[NUMB];
};

3D.12 Struct and union For C interoperability 323

Some other COOGL file contains:

lit int NUMB = 17;

Usually a simple COOGL program can be written to produce the #define for
NUMB:

// file gen.cog
int main() { on ("#define NUMB "; NUMB) print(); }

Alternatively, the values might be C #defines and the COOGL file with the lit
declarations can be generated by a C program.

3D.13 Function invocation from C Code

A bridge between C and COOGL is that both languages use the same calling con-
vention, the identifier name mapping rules to map a COOGL identifier into a C iden-
tifier are very simple, and are part of the language definition. Any COOGL function
can be called from C code, and vice-versa, non-static member functions receive as
their first argument the address of the object that the member function is being in-
voked on. See §Appendix 2S – Identifier mapping and calling convention.

3D.14 Global declarations are by default prot

The default behavior of prot was chosen for all global declarations in COOGL be-
cause it leaves COOGL quite near C in this area. Particularly, when one considers
that typedef, enum and struct declarations in C are almost always in header files,
which are easily included from C files.

Complementing, with accessibility modifiers, the C use of static with global
variable and function declarations was required in COOGL because without header
files, control of the visibility of typedef, enum, struct, class, and other declara-
tions needed a syntax. Use of static with them would be strange, and is not al-
lowed, use of priv, prot, and pub is natural.

3D.15 Interfacing with other languages

The issues involved in language interfacing are well understood. For example, to
invoke Fortran code from C, many languages turn the function names to all lower-
case and append an underscore. Data type issues are more complicated. Particularly
array indexing (starts at 1 in Fortran) and order of dimensions of multi-dimensional
arrays in memory. The FORTRAN array access a(i,j) is a[j-1][i-1] in C. Inter-
operability with other languages is not a high priority goal for COOGL, system level

324 Appendix 3D – Differences between C and CLEAN

solutions, at the translated C level are used for this purpose.

3D.16 Mandatory parenthesis in a few troublesome cases

COOGL includes all of the operators in C, with the same precedence, associativity
and semantics. COOGL requires parenthesis to be used in a few cases. The cases
where parenthesis are needed are fully described in §10.1. The cases involved are the
ones where if parenthesis are omitted it is very likely a programming error, or likely
to cause confusion when read by most C programmers.

For example: if (x & 2 == 2) means this in C: if (x & (2 == 2)) which
further means: if (x & 1) . In COOGL it results in a compilation error, the pro-
grammer must write: if ((x & 2) == 2) if that is what he meant, or: if (x & (2
== 2)) if that is what he surprisingly actually wanted.

Parenthesis are required when certain operators are used together and when the
parsing of the expression doesn't already imply an interpretation that doesn't lead to
confusion. In the example shown above, the specific use of & and == mandates the
need for parenthesis. Parenthesis are not required in the large majority of cases, for
example: x = y & 2; or if (x & 2 && x != 0xff).

3D.17 Errors with signed and unsigned: < <= >= >

 Anomalous mixed sign comparisons are not supported, neither the C89 nor the
K&R C behaviors are supported, the programmer must address the compilation error
explicitly, for example through a cast. Turning one type to the other is inherently in-
correct for some cases.

C89 dictates that -1 > 1u evaluates to true. The comparison between -1 (signed)
and 1u (unsigned) causes the -1 to be converted to an unsigned value with the same
bit pattern, which is a very large unsigned value. As a result -1 > 1u is a true condi-
tion in C89, which is contrary to intuition. COOGL addresses these issues by causing
a compilation error and forcing the programmer to be aware of it and address it.

#define PUTS_IF(e) do if (e) puts(#e); while (0) /* C code */
int main() {
 PUTS_IF(-1 > (unsigned long long) 1);
 PUTS_IF(-1 > (unsigned int) 1);
 PUTS_IF(-1 > (unsigned short) 1);
 PUTS_IF(-1 > (unsigned char) 1);
}

The output of the C program above is:

3D.17 Errors with signed and unsigned: < <= >= > 325

-1 > (unsigned long long) 1
-1 > (unsigned int) 1

The promotion to int during expression evaluation, the C89 dictated result occurs
for unsigned int and unsigned long long but it does not occur for unsigned
char or unsigned short, this is assuming that sizeof(short) < sizeof(int),
otherwise the unexpected result also occurs for unsigned short. C89 adopted
value preserving semantics, thus when an unsigned char or an unsigned short
are evaluated in an expression that involves an int, their values can be fully repre-
sented as int and the result of the comparison has the expected behavior.

The equivalent COOGL comparisons below, results in compilation errors for the
first two, the unreasonable ones that imply that a negative number is greater than a
positive number. This approach is within the COOGL design principle of not making
silent changes to the C language, i.e. changes that would make the code behave dif-
ferent between C and COOGL.

This program uses the special # argument stringifying operator, see §4.17, to cause
the compiler, not a preprocessor, to turn the expression used for argument b into a
string and use its value for the default value of another argument:

void puts_if(bool b, char msg[] = #b "\n"){ if(b)msg.print());}
int main() {
 puts_if(-1 > cast(ularge) 1)); // error: int > ularge
 puts_if(-1 > cast(uint) 1)); // error: int > uint
 puts_if(-1 > cast(ushort) 1));
 puts_if(-1 > cast(ubyte) 1));
 puts_if(true, "override default msg[] with this\n");
}

Most relational comparison between sub-expressions of type int and uint , or be-
tween int and ularge, result in a compilation error. The mathematical correct thing
to do for these comparisons would be to ensure that negative numbers are always
smaller than unsigned values, and only comparing their values if the signed value
was not negative. Mixed signed and unsigned comparisons of this nature are not di-
rectly supported by computer hardware comparison instructions, thus it is not sup-
ported by the COOGL language either, though a higher level language could adopt
such a strategy. Comparison between an unsigned value and a literal signed value that
is non-negative are allowed, the literal value is considered unsigned and the compari-
son proceeds as a comparison between unsigned values.

3D.18 Hardware dependent types and bool

COOGL has a bool type together with true and false literal values. The

326 Appendix 3D – Differences between C and CLEAN

sizeof(bool) is 1. Any non-zero expression assigned to a bool variable causes the
variable to have the value true. A zero expression causes the variable to have the
value false. When true is converted to an integer type, its numeric value is 1,
when false is converted to an integer type its value is 0.

COOGL defines a set of hardware independent types (int:8, int:16, int:32,
and int:64, and their uint counterparts), COOGL doesn't have to worry about the
class of machines with 18 bit words and 36 bit double words from a few decades ago,
or the ones with 27, 29, or 31 bit words. Long gone are the days of 6, 7 and 9 bit byte
machines! COOGL simply assumes that machines are byte addressable and that they
have native support for arithmetic all the way up to 64 bits, even if multiple instruc-
tions are required to implement 64 bit arithmetic in a few legacy systems, i.e. 32 bit
embedded processors and Intel/AMD x86 which is now in full transition to x86-64
which has full 64 bit support.

These are the COOGL hardware dependent types and typedef defined types, and
their sizes on modern systems:

size in
bytes

number
of bits

signed
type

unsigned
type

1
2
4
8

8
16
32
64

byte
short
int
large

ubyte
ushort
uint
ularge

3D.19 Type specifiers in enum

COOGL allows enum declarations to have an integer type, a floating point type, or
a pointer type, as a modifier, see §Error: Reference source not found.

3D.20 lit modifier introduces a compile time constant

The lit modifier introduces a compile time constant. It can be used to size an ar-
ray, as the number of bits in a bit field declaration, or as the value of the case label
of switch() statement. The C const is a weak notion of a runtime constant that
should not be modified, it is not a compile time constant.

3D.21 Declarations must have an explicit type

The last vestiges of C's untyped BCPL and B genome are removed. All declarations
must explicitly indicate the type involved, int is not a default type for when a type is
missing. This valid C code is not valid COOGL code:

3D.21 Declarations must have an explicit type 327

i;

main() { i=3; }

The types must be explicit:

int i;
int main() { i=3; }

3D.22 Variable length arrays

COOGL allows multidimensional variable length arrays, i.e. with the number of en-
tries in the array determined at run time, in a better way than C99 does, see chapter
§13.

3D.23 NULL pointer

Traditionally C programs make use of NULL as the value associated with an invalid
pointer, for example the value returned by malloc() when memory allocation fails,
or the value that terminates a NULL terminated list. NULL in C is a #define, these
two forms are used in various compilation environments:

#define NULL 0
#define NULL ((void *)0)

The definition of NULL in COOGL is:

lit void *NULL = cast(void *) 0;

Because of the undefined behavior of NULL pointer dereferencing and the unsafety
that might arise from the address space layout of most operating systems, the declara-
tion of NULL and the ability to use 0 as a pointer value are only allowed if the com-
piler option --NULL is used, NIL should be used instead, see §14.16.

COOGL --NULL p.cog

3D.24 Name mapping, double underscore, and underscore retrictions

There is minimal name mapping from COOGL to C to support generic program-
ming and for member function names to be qualified by the name of the class or
interface where they are defined. The name mapping rules are part of the language
definition, allowing COOGL code compiled with different COOGL compilers to be
linked together, see §Appendix 2S – Identifier mapping and calling convention.

Use of double underscore, i.e __, in identifiers is invalid. Double underscore is
used by COOGL to separate user defined identifiers into compound identifiers. For

328 Appendix 3D – Differences between C and CLEAN

example the pop() function of the stack class has its name mangled into
stack__pop() when translated into C. The use of double underscore is uncommon
enough that making their use in identifiers and thus allowing the name mapping to be
simpler is a worthwhile tradeoff.

Use of underscore at the start or end of an identifier is also invalid. This prevents a
class stack_ and a member function pop() into being mangled as stack___pop(),
and class stack with member function _pop() being mangled the same way (note
the 3 underscores, not two in stack___pop()).

3D.25 Deceiving indentation causes compilation errors

To aid in the discovery of visual indentation induced bugs, such as the one shown
in §2.28, COOGL produces a compilation error if the indentation levels of an if and
its corresponding else could cause confusion.

3D.25 Deceiving indentation causes compilation errors 329

[This page left blank to work around issue in LibreOffice that is causing an empty
blank page to be created in the next chapter in between its pages]

Appendix 4C – Sharing Code and Using C Code

“Independently, we went on and tried to rewrite Unix in
this higher-level language that was evolving
simultaneously. It's hard to say who was pushing whom
—whether Unix was pushing C or C was pushing Unix.
These rewrites failed twice in the space of six months, I
believe, because of problems with the language. There
would be a major change in the language and we'd
rewrite Unix.”

“The third rewrite—I took the OS proper, the kernel,
and Dennis took the block I/O, the disk—was
successful; it turned into version 5 in the labs ...”

-- Ken Thompson

 The mechanism used by COOGL programs to interface with C li-
braries and their header file exposed interfaces is important for pro-
grams that need to make use of such libraries or coexist with binary C
code. For example an operating system kernel level file system im-
plementation written in COOGL that needs to function in an operat-
ing system written in C. Or an operating system kernel written in
COOGL that makes use of large bodies of preexisting code written in
C, device drivers, file systems, networking, for example a reengi-
neered version of the Linux kernel in a multi-year effort to rewrite the
Linux kernel into COOGL.

Source code that needs to be shared and used both as C and
COOGL is written in the CLEAN subset of COOGL. A few program-
ming conventions are followed to allow the code to be used in both
languages. The conventions are presented together with examples.

4C.1 genassym lesson

When incompatible languages need to share data structure information, for example
C and assembly code, there are two ways of doing it. The wrong way, involves calcu-
lating the structure offsets and maintaining a series of #defined values (or some other
assembly language macros) and maintaining both the C and assembly definitions
carefully adjusting the offsets whenever the C structures change. Similarly for enu-

331 Appendix 4C – Sharing Code and Using C Code

meration values. The right way is to have a C program that includes the header file
and when run produces the definitions to be used by the assembly code, those pro-
grams have been historically called genassym because the generated the assembly
symbols from the C headers. They make use of offsetof() like macros and they are
easy to maintain. They use sizeof() to produce structure sizes, etc. Only the symbols
required to be accessed from assembly need to have their offsets produced. The width
of the data types themselves might change over time, some genassym generated code
might include macros that expand to the correct load or store instruction for the un-
derlying CPU architecture, the genassym can choose the correct instruction based on
the sizeof of the individual fields.

The same technique can be used when C headers contain interfaces that need to be
used from COOGL code. The programmer can write a small program that maps
#defined values into lit declarations, or vice versa. Because the struct. union,
enum, typedef, and function declaration syntax is largely the same in both lan-
guages and because there are no silent differences between them, it is also easy to
maintain civilized C header files that can be preprocessed to produce a COOGL
source file against which the COOGL code can be compiled in a way that it is made
believe that the code that it will be linked against is COOGL code but at link time
the C binary will be specified instead, or that the code lives in another module and
that the symbols will be resolved at dynamic linking time at program startup time, or
when the COOGL written module is dynamically loaded.

XXX show example of shared source code and header required on the C side to
cover minor language differences, e.g. #define sizeofex sizeof, #define cast(x) (x).

Appendix 5R – Language and Compiler Manual

“xxx”

by XXX

The grammar for the language is specified in a simple format, in the
file spec/grammar.spec, the keywords and operators for the language
are specified in another simple file, spec/tokens.spec. From these two
files a bison grammar with automatically generated code is pro-
duced by the script tool/mk, including code to build the parse tree,
create symbol tables for each scope, and insert the symbols into the
symbol table, it also produces a flex file, and together with pre-ex-
isting code the compiler is built. The transformation of the grammar
into a compiler includes automatic transformation of lists into tables.
Additionally nodes that are not needed in the parse tree are pruned,
which makes the parse tree more compact and easier to examine. The
compiler has various options to dump the parse tree, dump declara-
tions, among others.

The result of all this is that the grammar is very easy to modify and
the compiler is re-generated automatically without any effort.

5R.1 Introduction to the COOGL Compiler

XXX some of the descriptions are in the module specification section.

5R.2 Compiler Options

XXX some of the descriptions are in the module specification section.

5R.3 Compiler Option Specification

XXX feature turning on/off: through a compiler option, through an environment
variable that specifies flags, or locally or globally for the system through a configura-
tion file whose names is specified in a variable, if set for local modification, or glob-
ally if not set (for system wide specification).

333 Appendix 5R – Language and Compiler Manual

5R.4 Enabling ... Statement

Make ... a valid statement only with the --... compiler flag.

5R.5 Enabling NULL Support

Use --NULL to enable use of NULL or 0 as pointer values.

5R.6 Compilation of Concurrent Code

Use --concurrent to compile a program or a modules to work in a concurrent en-
vironment, this option causes the choosing of modules that implement facilities re-
quired by the module that also support concurrency.

5R.7 Add --clean to gcc

Add a --clean flag to gcc to ensure that the common subset between C and
COOGL is compiled and that causes an initial hidden header file to be included,
clean.h, so that cast() and other things that need to be mapped are mapped, in-
cluding basic types, etc.

5R.8 Compiler Specification Files

A source code repository with many COOGL programs, libraries, and loadable
modules can be browsed with a code browser that is language aware by using the
COOGL compilation description file. With C, makefiles and complicated build envi-
ronments and scripts would have to be examined or interpreted to determine what
files belong to what modules, programs, etc. The compilation description file needs a
specification.

	1 - Introduction
	1.1 Rationale for COOGL
	1.2 Object oriented terminology
	1.3 Member function invocation syntax
	1.4 Hello world and type safe input and output
	1.5 Compilation model
	1.6 C versions and COOGL ancestry
	1.7 C language schism: concurrency and undefined behavior
	1.8 COOGL syntax and language design philosophy
	1.9 Programming language complexity
	1.10 Book Organization

	2 - COOGL's C subset: CLEAN
	2.1 Tokens and identifiers
	2.2 Comments
	2.3 Source code after comment removal
	2.4 Functions and the return statement
	2.5 Built-in types
	2.6 Integer, floating, character, and string literals
	2.7 Declarations and declaration contexts
	2.8 Declaration kinds
	2.9 Order of declarations
	2.10 Statements within functions and classes
	2.11 Introduction to operators and expressions
	2.12 Compound statement
	2.13 assert() function and ... statement
	2.14 if and if else selection statements
	2.15 while and for iteration statements
	2.16 Operators and expressions
	2.17 Controlling expressions, relational operators, and truth values
	2.18 Logical operators
	2.19 Assignment and assignment-op operators
	2.20 Increment and decrement operators
	2.21 Ternary selection ?: operator and the comma operator
	2.22 C array types, operators and expressions
	2.23 Pointers: types, operators, and expressions
	2.24 Aggregate types and their operators
	2.25 Expressions
	2.26 Expression statements
	2.27 Default value returned by main()
	2.28 if and if else selection statements and indentation errors
	2.29 goto statement
	2.30 switch statement
	2.31 do while iteration statement
	2.32 break and continue statements

	3 - Array descriptors, tuples, and literals
	3.1 Array descriptors
	3.2 Multi dimensional array descriptors
	3.3 Array descriptor access restrictions
	3.4 Restricted array descriptors
	3.5 Restricted array descriptor accesses are atomic
	3.6 Array and array descriptor indexing is checked
	3.7 Arrays of arrays vs multidimensional arrays
	3.8 Array descriptor use in expressions
	3.9 Pointer arithmetic and array descriptors
	3.10 Use of pointers based on array descriptors is always safe
	3.11 Functions that return array descriptors
	3.12 Implicit array descriptor for string literals
	3.13 Tuples
	3.14 Literals

	4 - Classes and inheritance
	4.1 Contract specification: vital, require(), and promise()
	4.2 Class declarations are function declarations
	4.3 Accessibility modifiers and member declarations
	4.4 Object declarations and decl
	4.5 Member functions
	4.6 Introduction to inheritance and member function redefinition
	4.7 Access to redefined member functions
	4.8 Contract specifications and member function redefinitions
	4.9 Restrictions on constructor calls to non-static member functions
	4.10 Constructor organization
	4.11 Complicated constructor and the ini() programming idiom
	4.12 Member declarations and initialization are unified
	4.13 Object pointer: this
	4.14 A stack iterator and the use of this in the class constructor
	4.15 Functions as degenerate types and nested member functions
	4.16 Functions with default argument expressions
	4.17 Stringify operator #

	5 - Construction, assignment, and destruction
	5.1 Value like objects
	5.2 Abstract classes, interfaces and deferred member functions
	5.3 Destructor, the deinit() member function
	5.4 Destructor can not call non-static member functions
	5.5 Brief introduction to namespaces
	5.6 Default construction, init_default() static member function
	5.7 Value classes, init() and reinit() and member functions
	5.8 Optimization with init_deinit() and reinit_deinit()
	5.9 The lang.value interface
	5.10 Member functions specified by lang.value
	5.11 A string class example
	5.12 Object deinitialization: deinit()
	5.13 Pointer to raw memory
	5.14 Some string operations
	5.15 Initialization constructor: init()
	5.16 Brief preview of strings of generic value types
	5.17 Object slicing along incorrect type boundaries is not allowed
	5.18 Pseudo constructors
	5.19 Default construction
	5.20 Object reinitialization: reinit()
	5.21 Optimizing assignment of returned values: reinit_deinit()
	5.22 Optimizing initialization from returned values: init_deinit()
	5.23 Regular function's deinit() and retval
	5.24 Object arguments and return values
	5.25 Literal members

	6 - Abstract classes, interfaces, and inheritance
	6.1 Abstract classes and concrete classes
	6.2 Interfaces
	6.3 Single inheritance and multiple interfaces
	6.4 The defer and redef function modifiers
	6.5 Single inheritance and multiple interfaces example
	6.6 Redefining static member functions
	6.7 Accessibility modifiers
	6.8 Accessibility modifiers versus inherit and is declarations
	6.9 Member access aliases
	6.10 Qualified accessibility modifier
	6.11 Single inheritance example
	6.12 Pointers and inheritance
	6.13 Duplicate member names
	6.14 Constructor and destructor restrictions and contracts

	7 - Extension, continuation, and other class topics
	7.1 Class extension: extend class
	7.2 Class declaration continuation: continue class
	7.3 Class of pointers and array descriptors implicit declaration location
	7.4 Pointer arithmetic
	7.5 sizeof and sizeofex operators
	7.6 Layout control of class objects: class struct
	7.7 Only global declarations can be hidden
	7.8 Name lookup relative to the scope of a function
	7.9 Structure and array initializers
	7.10 Delegate functions: deleg
	7.11 Other aspects of delegate function pointers

	8 - Name spaces, modules, and initialization order
	8.1 Modules and name spaces in C
	8.2 Global declarations in C
	8.3 Modules and accessibility modifiers
	8.4 Publicized and published declarations
	8.5 Module specification
	8.6 Controlling access to class as type vs as constructor
	8.7 Name spaces
	8.8 Modules and namespaces are independent concepts
	8.9 Class initialization
	8.10 Global construction order

	9 - More about control flow and input output
	9.1 Replacement of goto out idiom with deinit()
	9.2 on statement
	9.3 on expression
	9.4 Arguments to on statement member function and str strings
	9.5 Byte count vs operation count on value convention
	9.6 Compile time and run time enabled traces with on
	9.7 Optional argument expression evaluation
	9.8 Goto target restrictions
	9.9 Use of return expression; in void functions
	9.10 Function values that are vital
	9.11 Classes whose objects are vital
	9.12 Jump statements cause object destruction
	9.13 Loop-member functions and the loop statement
	9.14 No structured exception handling

	10 - Operators, expressions, keywords, and behavior
	10.1 Parenthesis requirement in certain error prone expressions
	10.2 Member lookup operator ^
	10.3 Fine grained function inline control
	10.4 Checked arithmetic operators
	10.5 Keywords
	10.6 Removed keywords
	10.7 Undefined behavior and implementation dependent behavior
	10.8 Implementation-defined behavior and unspecified behavior
	10.9 Loop optimization concern

	11 - Generic programming and object allocation
	11.1 Type dot expression
	11.2 Constructor invocation syntax with built-in types
	11.3 Type arguments, type variables, and type values
	11.4 Restrictions on type arguments
	11.5 Type argument omission and deduction
	11.6 Specialization of generic classes and functions
	11.7 Type variables must be initialized, never assigned
	11.8 Function names vs class names
	11.9 The argsof tuple type member
	11.10 The lib.creatable interface
	11.11 Public static member functions that can't be inherited
	11.12 Literal arguments to generic classes
	11.13 Field name argument declarations with fieldof
	11.14 Generic intrusive lists
	11.15 Generic doubly linked list: list
	11.16 Use of list

	12 - More about types and smart pointers
	12.1 Integer types
	12.2 Indexing types
	12.3 Floating point, complex, and imaginary types
	12.4 Enums
	12.5 Bit fields
	12.6 Unicode characters
	12.7 Unicode 16 bit characters
	12.8 Character and string literal
	12.9 Incompatible and global types
	12.10 Types and literal dimensions
	12.11 class void
	12.12 User defined classes descend from lang.classes
	12.13 Base class of all arrays: lang.array
	12.14 Base class of all compile time sized arrays: lang.carray
	12.15 Base class of all dynamically sized arrays: lang.dynarray
	12.16 Construction and destruction of lang.carray and lang.dynarray
	12.17 lang.arraydesc and lang.vecdesc array descriptors
	12.18 Number type interface hierarchy: lang.number
	12.19 Pointers descend from class void *
	12.20 Smart pointers and their priv member: ptr
	12.21 Control during pointer dereference XXX
	12.22 Explicitly declared classes and smart pointer restrictions

	13 - Variable length and dynamically allocated arrays
	13.1 Variable length arrays
	13.2 v[] declaration syntax in C
	13.3 type v[][] declarations are always invalid in C
	13.4 Variable length arrays in COOGL
	13.5 Idiomatic error setting by constructor and arrays of objects
	13.6 Restrictions on array descriptors and variable length arrays
	13.7 Array memory reinterpretation
	13.8 Dynamic creation and destruction of arrays
	13.9 Array descriptors and polymorphism

	14 - Safe programming
	14.1 Safe programming
	14.2 Modern computer system hardware
	14.3 Safe programming approach
	14.4 Bad memory accesses in C
	14.5 Plain and non-plain data and types
	14.6 Insight for safe, C style, memory manipulation in COOGL
	14.7 Unions can't contain indexes, pointers, or array descriptors
	14.8 Global memory can't refer to memory on the run-time stack
	14.9 Returning addresses of run-time stack allocated memory
	14.10 Run-time stack allocated memory and execution contexts
	14.11 Run-time stack growth is checked
	14.12 Casts and safety: cast() and try_cast()
	14.13 Restrictions on class members whose type is a plain data type
	14.14 Implicit pointer conversions without casts
	14.15 Pointer to base cast to pointer to derived: is_cast()
	14.16 Trapping addresses, NIL, NULL, and uptr_cast()
	14.17 Trapping pointer value interface and implementation
	14.18 Use of NULL and zero as pointers is deprecated
	14.19 Addresses of members based on NULL or trapping addresses
	14.20 Use of NULL with objects of a class type is invalid
	14.21 The unsafe_cast() operator and disabling unsafe features
	14.22 Deconstructed values and uninitialized variables
	14.23 The uninit() member function
	14.24 Permanent association of heap virtual addresses and types
	14.25 Array walking through pointer ranges is always valid
	14.26 Invalid pointer value computation
	14.27 Use of objects at start-1 and at end
	14.28 Out of bounds indexing causes an exception
	14.29 Invalid memory access definition
	14.30 Prefix classes: preclass
	14.31 Extending the language safety model
	14.32 Dynamically unloaded modules and safety
	14.33 Hardware and software exceptions and exception handlers

	15 - Concurrent programming
	15.1 Concurrent programming
	15.2 Language design considerations
	15.3 Allowing concurrency support through libraries
	15.4 Concurrency support in libraries is optional
	15.5 Weakly ordered concurrent memory accesses
	15.6 Concurrency support in C
	15.7 Language design dilemma
	15.8 Concurrent programming building blocks
	15.9 Execution contexts
	15.10 Threads, mutexes and condition variables
	15.11 Weaknesses and complexity in C11 <threads.h>
	15.12 Concurrency support in COOGL lib.concur
	15.13 Multi-threaded Sieve of Eratosthenes and thread safe queue
	15.14 Memory model and concurrency
	15.15 C11 and C++11 memory model
	15.16 COOGL memory model
	15.17 Atomic memory operations
	15.18 Exception handlers

	Appendix 1L – Libraries lang, lib, and libc
	1L.1 Generic function lang.on_array()
	1L.2 Obtaining the object that contains a field field_to_obj()
	1L.3 Atomic array descriptor fetching and copying
	1L.4 Weakly ordered memory control
	1L.5 Standard input output
	1L.6 String literals and the str string type

	Appendix 2S – Identifier mapping and calling convention
	2S.1 Introduction to the calling convention
	2S.2 Hidden arguments: this and on
	2S.3 Tuple arguments and return value
	2S.4 Arguments that are a value object
	2S.5 Return values that are a value object
	2S.6 Unidimensional array descriptor arguments
	2S.7 Array descriptor return value
	2S.8 Multidimensional array descriptor arguments
	2S.9 Internal and external identifiers
	2S.10 Identifier mapping from COOGL to C
	2S.11 Identifier mapping: global declarations outside of lexical scope
	2S.12 Identifier mapping: global declarations inside a lexical scope
	2S.13 Exceeding the external identifier length limit
	2S.14 Identifier mapping for a class and its members
	2S.15 Identifier mapping of array descriptor declarations
	2S.16 Identifier mapping and generic code
	2S.17 Functions with default argument expressions
	2S.18 Identifier mapping of functions risky to caller

	Appendix 3D – Differences between C and CLEAN
	3D.1 Summary of differences between CLEAN and C
	3D.2 Comments
	3D.3 No C preprocessor
	3D.4 No K&R C function declarations
	3D.5 Variable argument functions are not allowed
	3D.6 Forward struct and union declarations are invalid
	3D.7 Variable declarations in type declarations are invalid
	3D.8 Semicolon after closing curly brace in struct and union
	3D.9 Every declaration is local to its scope
	3D.10 Invalid nested typeless struct and union declarations
	3D.11 Non global names cannot be hidden
	3D.12 Struct and union For C interoperability
	3D.13 Function invocation from C Code
	3D.14 Global declarations are by default prot
	3D.15 Interfacing with other languages
	3D.16 Mandatory parenthesis in a few troublesome cases
	3D.17 Errors with signed and unsigned: < <= >= >
	3D.18 Hardware dependent types and bool
	3D.19 Type specifiers in enum
	3D.20 lit modifier introduces a compile time constant
	3D.21 Declarations must have an explicit type
	3D.22 Variable length arrays
	3D.23 NULL pointer
	3D.24 Name mapping, double underscore, and underscore retrictions
	3D.25 Deceiving indentation causes compilation errors

	Appendix 4C – Sharing Code and Using C Code
	4C.1 genassym lesson

	Appendix 5R – Language and Compiler Manual
	5R.1 Introduction to the COOGL Compiler
	5R.2 Compiler Options
	5R.3 Compiler Option Specification
	5R.4 Enabling ... Statement
	5R.5 Enabling NULL Support
	5R.6 Compilation of Concurrent Code
	5R.7 Add --clean to gcc
	5R.8 Compiler Specification Files

