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1 - Introduction

“For infrastructure work, C will be hard to displace.”

-- Dennis M. Ritchie

COOGL is based on a subset of  the C language,  enhanced with 
safe, concurrent, object oriented, and generic programming support.

This book does not require that the reader be familiar with the C 
programming language, the complete COOGL language is described. 
Nonetheless,  familiarity  with  C  is  expected  from  most  users  of 
COOGL, the book is organized to satisfy both audiences. The few 
differences between COOGL and C are explained in Appendix §3D 
(page 307), which C programmers will want to refer to. Programmers 
that are not familiar with C might also want to read The C Program-
ming Language by Kernighan and Ritchie. 

1.1   Rationale for COOGL

The large majority of the world's system software infrastructure is written in C or in 
C++. Software at risk from the unsafe nature of C and C++ includes: operating sys-
tems, virtual machine hypervisors, database servers, transaction monitors, application 
servers, web servers, file servers, backup systems, compilers, run-time systems, in-
dustrial control systems, web browsers, networking infrastructure, security, authenti-
cation, encryption, and a large number of applications built on top of these technolo-
gies, even if those applications are written in safe languages.

A few safe, or safer, programming languages, such as C#, Java, Eiffel, and Go, are  
used at the higher levels of application programming, but the core infrastructure con-
tinues to be written primarily in C or C++. The gap between C and C++ and these  
other languages is large, causing large bodies of system software to continue to be 
maintained and enhanced in C and C++ instead of being rewritten in safe languages. 
The fundamental problem with those safe languages is that their memory manage-
ment approach, through mandatory garbage collection, and their memory safety ap-
proach, through an extremely tight type system, makes their use inappropriate as an 
evolutionary path for existing C and C++ code.

As the world's dependence on information systems continues to grow, it is impor-
tant that an evolutionary path exist for these systems to be reengineered, incremen-
tally, into systems that are safer through the use of a safe programming language for 



14        Introduction Chapter 1

system software, COOGL is that language.

The problems caused by the unsafe nature of C and C++ are at least an order of  
magnitude more complex when shared memory multi-processing is involved through 
multi-threaded programming as a means to take advantage of the additional perfor-
mance provided by modern multi-core systems. The safe aspect of COOGL's mem-
ory management support is specially well suited for shared memory multi-processing 
systems.  COOGL's memory management is based on a stable type memory model 
and its type safe approach results in a safe programming language suited as an evolu-
tionary path for C code bases. Safety in  COOGL is provided while preserving C's 
rich memory manipulation support where it is most useful, which is when manipulat-
ing data with externally imposed representations. For example in the implementation 
of protocols, storage systems, and other information processing where detailed mem-
ory layout control is fundamental.

COOGL's  enhancements:  concurrent,  object  oriented,  and  generic  programming 
support, are all optional, they are used only when the programmer requires them,  
they don't impose any overheads if they are not used. Of  COOGL's enhancements, 
only safe programming is used by default, most system software can be written com-
pletely  as  safe  software,  unsafe  operations  have  to  be  requested  through  the 
unsafe_cast() operator, unsafe facilities are provided to allow low level system 
software to be written, for example a memory allocator for objects of any type. The  
rationale for including unsafe support as part of  COOGL is to ensure that system 
software, at any level, can be written completely in COOGL, possibly with a small 
amount of assembly language for the lowest level of systems programming such as 
the lowest levels of interrupt and exception handling, context saving and restoring, 
etc. Because safety is such an important aspect of COOGL, this book doesn't make 
use of unsafe code other than in the examples used to describe the unsafe_cast() 
operator itself.

COOGL doesn’t mandate, or even encourage, that garbage collection be the dy-
namic  memory management technique  that  must  be  used  by  programs written in 
COOGL.  Some  programs  will  not  use  garbage  collection  at  all.  Other  programs 
might use some amount of garbage collection, for example type based garbage col-
lection that only garbage collects objects of a few specific types. Some other pro-
grams might use garbage collection for all dynamically allocated memory. Garbage 
collection for all memory, or a few specific types, can be fully implemented in the 
language, most implementations of garbage collection require writing unsafe code.

A particularly troublesome area with C and C++ is that some compilers take many 
liberties under the guise of optimization and the excuse of  undefined behavior to 
make code that the programmer wrote disappear into thin air, in a way these compil-
ers are introducing security holes and data integrity risks into existing code. Code 
that might have worked for years might suddenly stop working because it was com-
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piled with a newer compiler that optimizes undefined behavior, when it sees it, to 
delete the programmer's code and make the program go wrong faster. This is intolera-
ble and has no end in sight in C or C++. COOGL addresses all of these issues in a 
way that those kinds of problems don't exist for code written in COOGL.

C++ is a mind-numbingly and absurdly complex language, its complexity continues 
to grow without restraint. C++ causes system infrastructure written in it to be at fur-
ther risk because of the complexity that the language itself engenders. COOGL pro-
vides an avenue to reengineer C++ systems away from that run-away complexity 
train. It seems that the people evolving the C++ language and its compilers have au-
tomated themselves into their jobs through a never ending stream of proposals and 
language changes. These experts in the intricacies of C++ will write examples into 
their books that they themselves can't tell are broken, they then encourage that style 
of programming, then some tool finds that the code is not expected to work, none of  
the experts could tell that the code was not supposed to work, because it relied on un-
specified behavior, and that if it worked it was by luck during compilation, and then 
they go change the language to make the example code and all its derivatives that 
propagated into actual programs work. The worst aspect of C++ is that no single line 
of code can ever be examined with certainty of what it does, first a myriad lines of 
header files and templates in them have to be investigated to ensure that nothing in 
them causes the line to do something unexpected, between the C preprocessor, opera-
tor overloading, function name overloading, templates, and thrown exceptions, the 
reader of the code can not be certain of anything. Unless the programmer is inti-
mately aware of every aspect of the code in the header files the programmer can't tell  
what might be happening because of the level of obfuscation that C++ allows and en-
courages.

1.2   Object oriented terminology

A few terms used in object oriented programming are used in this book. Brief defi-
nitions of these terms follow, subsequent paragraphs expand on these concepts:

 Class – a programmer or language defined type and the operations on objects 
of that type.

 Object – an instance of a specific type or class, for example a variable or a 
dynamically allocated entity of that type.

 Pointer – data that can contain the address of other data, pointers are objects.

 Constructor – a procedure that initializes raw memory into the initial state of 
an object.

 Destructor –  a procedure that deinitializes an object and turns it back into 
raw memory.
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 Member – an entity, for example a variable, declared within a class declara-
tion. Other kinds of members are: functions, constants, enumerations, and 
types. The term member applies to all of them, when referring to a specific 
kind  of  member,  terms  such  as:  member  variable,   member  function,  or 
member type are used.

 Static member – is a per class  member, not a  per  object member. A static 
member can be accessed independent of any object, an object doesn't have to 
be provided to access a static member. A static member is nothing more than 
a global entity specific to a class.

 Non-static member – a per object member, not a per class member. Each ob-
ject has its own instance of the member. An object must be specified to ac-
cess a non-static member.

 Member function – a member function is a function declared as a member of 
the class.

 Static member function – is a member function that does not require an ob-
ject of the class to be provided, it doesn't operate on a specific object. 

 Non-static member function – is a member function that requires an object of 
the class to be provided for it to operate on.

 Inheritance – a mechanism that allows an existing class to be used in the 
specification of the interface or the implementation of another class, usually 
in a way that allows objects of the new class type to be used as if they were 
objects of another class type, even though their implementation details might 
be different. When inheritance is used it is said that the new class  inherits 
from the other class.

 Derived class – a class that inherits from another class can be described as 
being derived from it.

 Base class – a class that a derived class inherits from can be described as be-
ing the base class of the derived class.

 Ancestor class – a class that is either a base class of another class, or that is 
an ancestor class of one of its base classes.

 Descendant class – a class that has another class as an ancestor class, is a de-
scendant class of the other class.

 Related classes – a set of classes is said to be related to each other if they  
have a common ancestor, or if one of them is an ancestor of all the others.

 Polymorphism – the ability of related classes to have different implementa-
tions of the same member functions. Polymorphism occurs when there is a 
descendant relationship between two classes and the descendant class rede-
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fines a member function defined by the ancestor class. Polymorphism causes 
the member function that is invoked to be determined by the actual type of 
the object, irrespective of the type of the pointer that is used to refer to the 
object, frequently a pointer to an ancestor class.

 Created – when an object is allocated dynamically from a run time memory 
heap, and constructed, it is said to be created. Usually through a static mem-
ber function, create().

 Destroyed – when a created object is destructed and its memory released to 
the run time memory heap it is said to be destroyed, usually through a non-
static member function, destroy().

Some object oriented literature refers to regular variables, integer variables for ex-
ample, as objects. In COOGL an integer variable is indeed an object of the int class 
type. This book refers to them simply as variables, unless some object oriented as-
pect of them is being emphasized.

Most well designed software has functions to initialize data structures, and deini-
tialize them when they are no longer needed. In object oriented languages it is not the  
duty of the programmer to invoke these functions, the compiler produces code to 
cause their invocations without the possibility of the programmer forgetting to do so. 
The constructor is invoked whenever memory is designated to be used as an object of 
a given class. For example, a local variable declaration causes the compiler to pro-
duce code that invokes the constructor. Similarly, dynamically allocated memory of a 
given type, allocated from a memory allocator, causes its constructor to be invoked. 
In non object oriented languages, such as C or Pascal, the programmer must always 
explicitly invoke the initialization and deinitialization functions.

Because the compiler generates calls to the constructor and destructor functions, 
they must be known to the compiler. In some languages the code for the constructor 
and destructor might need to be generated by the compiler, if they are not provided 
by the programmer, it is generated to ensure that the construction and destruction of 
the non-static data members of the class occurs. The constructor function in COOGL 
is not optional and is never generated by the compiler, simply because the class dec-
laration is also the class constructor. The destructor is optional and is generated by 
the compiler when it is not provided.

1.3   Member function invocation syntax

Consider the following stack class, int is a built in integer type. Unless you are 
familiar with other programming languages, you night not understand the code the 
code yet. For now just read it, the only important aspects to focus on is that the class 
defines various members, some are data members, e.g. entries and sp, MAXENT is a 
compile time literal constant, and some member functions: empty, full, push, pop, 
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and top. 

class stack promise(empty()) {
    pub lit int MAXENT = 100;   // literal constant not variable
    priv int entries[MAXENT];   // array of MAXENT ints 
    priv int *sp = &entries[0]; // int pointer, set to point ...
    return;                     // ... to address of entries[0]
    pub bool empty() { return sp == entries; }
    pub bool full() { return sp == entries + MAXENT; }
    pub void push(int v) require(!full()) { *sp++ = v; }
    pub int pop() require(!empty())
                  promise(!full()) { return *--sp; }
    pub int top() require(!empty()) { return sp[-1]; }
}

Preconditions and postconditions,  promise() and  require(),  of  the class  and 
some  of  its  member  functions  are  also  specified.  A stack  object  promises  to  be 
empty() immediately after being constructed, to push() an element onto the stack it 
is required that the stack not be full(), furthermore, after pushing an element onto 
the stack it promises that the stack() is not empty(), and finally prior to examining 
the top() element of the stack or using pop() to remove the top element from the 
stack it is required that the stack not be empty().

The following code makes use of s, a stack object, and p a pointer to an object of 
stack type, initialized to point to s, its address, i.e. &s, is assigned to p:

void use_stack() {
    stack s;
    stack *p = &s; 
    s.push(7);
    int seven = p->pop();
    int max = s.MAXENT;
    max = p->MAXENT;
    max = stack.MAXENT;
}

The expressions s.push(7) and p->pop() are member function invocations. The 
dot operator: . is used with an object, for example s, to refer to a member, for exam-
ple s.push(). The arrow operator: -> is used with a pointer to an object, for exam-
ple p, to refer to a member, for example p->pop().  The references to the MAXENT 
literal:  s.MAXENT,  p->MAXENT and stack.MAXENT are all valid. The later one uses 
the class name, stack, instead of an object or a pointer to an object, to refer to MAX-
ENT. Use of the class name to refer to MAXENT is valid because MAXENT is a lit dec-
laration, literal values are compile time constants, their values are not different across 
objects of the class, thus they are accessible as if they were  static declarations, 
they declare per class literal values, not per object literal values.

When a non-static member function is invoked, the object on which the member 
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function is invoked is passed implicitly as a hidden first argument to the member 
function. When a static member function is invoked, an implicit object is not passed 
as an argument, because the static member function does not operate on an object.

The s.push(7) and p->pop() invocation forms refer to member function names 
within the scope of the names of the class type of s, i.e. stack, and of the underly-
ing class type that the declaration of p states that it points to, i.e. stack. When refer-
ring to an object through a pointer the actual member function implementation that is  
invoked might vary according to the underlying type of the object in question, i.e. 
when there is polymorphism, which is not the case in this example.

1.4   Hello world and type safe input and output

The traditional hello world program in COOGL is:

int main() {
    libc.puts("hello, world");
}

COOGL does not support functions with variable number of arguments such as 
printf(), they are a wart from C’s ancestral BCPL origins, the on statement is how 
type safe input output is implemented without input output being built into the lan-
guage. A different version of hello world is:

int main() {
    "hello, world\n".print();
}

The type of the  "hello, world\n"  string in  COOGL is  strlit(class const 
char) a native generic type, short in this case for string literal of const char, not 
const char[] which is its type in C. COOGL allows types, including native types, 
to have member functions added to them, thus the int and strlit(class const 
char) types  can  be  extended,  to  add  print() member  functions  to  them.  The 
COOGL library adds  print() and various other  member functions  to  these and 
other types.

The source code for a COOGL program is stored in a file with a .cog extension. 
An example compilation and invocation on UNIX:

$ COOGL hello.cog
$ ./a.out
Hello, World.
$

Formatted output uses the on statement:



20        Introduction Chapter 1

int main() {
    float f = 78;
    float c = (f - 32) * 5 / 9;
    on ("temperature in Caracas: ";
        f; "(f) "; c.fmt(4,2); "(c)\n") print();
}

The program above is a type safe version of this C program:

#include <stdio.h>
int main() {
    float f = 78;
    float c = (f - 32) * 5 / 9;
    printf("temperature in Caracas: %f(f) %4.2f(c)\n", f, c);
}

The output of both of these programs is:

temperature in Caracas: 78(f) 25.56(c)

The  c.fmt(4,2) expression implies that the built in  float type, the type of  c, 
must have been extended with a member function fmt(), which returns the value of 
c formatted as a string according to the printf() like specified precision.

The on statement causes the invocation of a member function on a list of expres-
sions. Its syntax is:

on (semicolon_separated_expression_list) function_invocation_expression

A list of one or more expressions separated by semicolons must be specified within 
the parenthesis after the on keyword. For example:

on (expression1; expression2) function(a, b, c);

can be thought of as a short hand for:

((expression1).function(a, b, c),
 (expression2).function(a, b, c));

but when function() returns a value, there is more to it, see §9.2 and §9.3.

The types of the arguments in the argument lists of all of the  member  functions 
must be compatible with the specified arguments. There is no difference between the 
on statement and the expression statement that it stands for. The expressions used in 
the argument list are evaluated on each member function invocation.

The above program with the on syntactic sugar removed, is harder to read:
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int main() {
    float f = 78;
    float c = ((f - 32) * 5) / 9;
    ("temperature in Caracas: ".print(),
        f.print(),
        "(f) ".print(),
        c.fmt(4, 2).print(),
        "(c)\n".print());
}

The  on statement can  also  produce  a  numeric  value  which can be used  as  the 
means through which end of file or errors can be reported, or to return the number of 
bytes written, as in printf(), or the number of items scanned, as in scanf(), see 
§9.2. 

1.5   Compilation model

Programming language definitions usually don't describe their compilation models, 
though some programming languages do, for example Java not only specifies the 
compilation model but also the target instruction set, i.e. the Java Virtual Machine, 
and various other facilities such as class loading and verification.

The  COOGL language definition includes the specification that  COOGL is com-
piled into C11 code. The COOGL facility that supports interfacing with C code de-
pends  on  this  specification.  The  C  code  that  results  from  the  translation  from 
COOGL, is automatically compiled by the C compiler into instructions for the under-
lying computer system. The compilation model for COOGL is global, the user speci-
fies a set of source files and libraries, the COOGL library is included by default, but 
it can be excluded. The user perception of the compilation is that all files are com-
piled together, whether all the files are actually compiled each time the compiler is 
invoked or only compiled when needed is not specified by the language, the current 
compiler only compiles a file if it is required to do so, caching transparently the re-
sults of prior compilations. It is expected that all compilers will do this.

Function and type declarations are extracted from the source files where they are 
declared and used to ensure that function invocations and type uses are correct. The 
C notion of header files does not exist in COOGL, the user does not have to maintain 
function prototypes and external variable declarations in header files.

Compilation into C allows the native system compilers to be used for code genera-
tion, it also facilitates operating system kernel development in COOGL because spe-
cific compilation options required for kernel mode development are supported by the 
underlying C compiler. Options to the C compiler are passed through by the COOGL 
compiler.

The C code that the COOGL compiler produces is formatted and indented in such a 
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way so as to keep it as close as possible to the original C code. The intent is not to 
use the generated C code as a portable machine language. Instead, by maximizing 
generated code readability, the engineering and verification of the compiler was a 
simpler effort. Before the first COOGL compiler existed, it had to be written in some 
language other than COOGL. It was written as the expected output of itself, in C, it  
was then hand translated to COOGL, and compiled with itself, with its output com-
pared with the original compiler written in C to ensure that they were the same.

The compiler distribution includes the compiler source code in  COOGL, together 
with its output in C11, a thorough set of test cases for regression testing, and build  
scripts. Part of the compiler installation verification includes ensuring that the output 
that it produces is identical to the C version of the compiler distributed with it.

1.6   C versions and COOGL ancestry

The C language has had various minor variations, usually compiler or operating 
system vendor specific. It has had four standard versions:

 The language described in the first edition of The C Programming Language 
by Kernighan and Ritchie, also known as K&R C. Its first edition was the 
authoritative language definition, it  was the de-facto C standard. The first 
generation of widely available C compilers were based on the UNIX Porta-
ble C Compiler (PCC), which reinforced this de-facto standard.

 C89, the first official C language standard (ANSI C89 and ISO C90, infor-
mally C89). Its most notable addition was the adoption of C++ syntax for 
function declarations and prototypes.

 C99, the second official C language standard. Includes a slew of additions to 
attempt to allow numerical code to be written in C and be competitive with 
FORTRAN code: complex numbers, type generic math (i.e. <tgmath.h> li-
brary functions), variable length arrays, and the restrict qualifier. Miscel-
laneous but  convenient  changes include intermingling of  declarations and 
statements and BCPL comments, both of which were in wide use in existing 
compilers.  Among all  the  additions,  variable  length  arrays introduced  the 
most complexity.

 C11, the third official C language standard. Its most important enhancement 
is multi-threading support and a memory model mostly relevant to concur-
rency. Atomic data types. The  _Generic keyword that allows type generic 
macros to choose between different functions based on the type of an argu-
ment, this allows FORTRAN like libraries to be written by programmers in-
stead of only by the compiler vendor (as in <tgmath.h> in C99). Minor en-
hancements include Unicode characters and string literals. Optional support 
for newer floating point and complex number standards. Anonymous struc-
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tures and unions,  and alignment specification.  Additionally  the ability  for 
compilers to indicate that they do not support some C99 features (complex 
numbers and variable length arrays are optional). Most new features in C11 
are optional.

COOGL descends primarily from C89 and Simula67. A few enhancements from 
C99 and C11 were incorporated into COOGL. Some ideas were borrowed from Eif-
fel. Other COOGL ancestors from its C family lineage are: K&R C, ALGOL68, B, 
PL/1, BCPL and CPL. Common ancestors of C and Simula67 are: ALGOL60 and 
FORTRAN.

Both B and K&R C have elements of PL/1. B's  extrn,  auto, semicolon termi-
nated statements and /* comment */ came from PL/1. C got from PL/1 these as-
pects: NULL, static,  the -> operator, and the rule that local variables without ex-
tern or static are auto by default. COOGL does not descend from C++. If any-
thing,  COOGL learned from C++ what not to do, instead of what to do. Though it  
could be perceived that the keywords this, priv, and prot come from C++, in re-
ality  they come from the Simula73:  this,  hidden,  and  protected.  The use of 
priv instead of hidden, and the pub keyword are a nod, but also a cleaning up and 
simplification,   of  the C++ terminology used in its  label-like syntax,  which uses: 
public: and private: respectively to dictate the accessibility of subsequent decla-
rations.

1.7   C language schism: concurrency and undefined behavior

There  has been a  growing schism between C compiler  writers  and  C language 
users. People involved in the development of compilers, and others involved in the 
specification of programming language standards for C and C++, specifically some 
of those involved in efforts to specify a memory model for concurrency (starting with 
efforts in the C++ standardization community that lead to the memory model present 
in both C11 and C++11) have come to claim that traditional C could have never been  
used to write concurrent programs because concurrency had not been specified in the 
C language standard, thus it was not possible to have been able to reliably write con-
current programs in C.

These people forget that well before there was the first standard for C, C89, the lan-
guage existed and large reliable concurrent programs were written with it, e.g. the 
UNIX kernel, relational database systems, etc. It is absurd to say that something is 
impossible while typing those statements most likely on computer systems where the 
operating system kernel for those systems was most likely written in C, (e.g. MacOS, 
Windows, Linux, or UNIX), which have long supported hardware concurrency, then 
they post their words in web servers most likely written in C, also running on SMP 
systems.
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What the compiler writers actually mean is that now that the language has been 
specified, poorly, say as it was done in C89, and that it doesn’t specify concurrency, 
they don’t know when to stop with their unwieldy optimizations for the sake of get-
ting tiny performance improvements in the compilation of sequential benchmarks. 
Thus compilers have become so aggressive in their optimizations that operating sys-
tem kernels and other concurrent programs have to be compiled with a series of com-
piler options to ensure that the compiler doesn’t perform optimizations that are use-
less  to the point  that  they only work on sequential programs, or code generation 
strategies that are confused, and could make concurrent programs misbehave.

Even with the schism, C programmers know that the C compiler can not assume 
anything about code that the C compiler is not allowed to see. Thus a function call to 
a function, that is not expanded inline and that is not subject to global compilation or 
link time optimization, is the last resort for programmers and the perfect boundary for 
preventing the compiler from performing optimizations across function calls to them. 
At those function call boundaries it can be assumed that data that must by then be in 
their corresponding memory must be stored there by the code generated by the com-
piler prior to the function call, or the sequential programming model would be bro-
ken. Furthermore, because pretty much any memory that is global, or memory on the 
run-time stack whose address has been taken and passed to functions or stored glob-
ally, could have been modified by the function whose code is unknown to the com-
piler, the calling function is not allowed to cache those values, for example in regis-
ters,  and must refetch those values from their proper locations after the unknown 
function returns. Thus the function call boundary when calling functions whose code 
is unknown to the compiler, global optimizer, and link time optimizer, is the correct 
place to implement synchronizers. For example, the acquisition and release operation 
in a mutual exclusion lock together with any memory barriers that might be required 
by the hardware on weakly ordered memory systems. Thus all has remained well in 
the implementation of concurrent programs in C. Some kernels that are heavily opti-
mized might desire to have low level assembly functions that manipulate hardware or 
implement synchronizers expanded inline into their invocation locations, and that re-
quires a more careful dance with the compiler to ensure that it doesn’t perform opti-
mizations that cause the code to be incorrect, for example by moving code around it,  
or caching values in registers, etc. In practice calling functions directly is heavily op-
timized by modern computer systems, and if a compiler provides a pragma that indi-
cates which registers are affected by a function, then implementing synchronizers as 
assembly functions, instead of as inline assembly, is usually just as fast as inlining 
them, the minuscule overhead saved by avoiding a function call is counterbalanced 
by the reduced code footprint and its impact on the instruction cache.

Another form of the schism, and in some ways even more dangerous, is the unde-
fined behavior disease which means that anything that is written in the C language 
standard and labeled as undefined behavior is an opportunity for optimization by the 
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compiler. The compiler writers, in their search for optimization in the wrong places, 
identify  undefined  behavior,  and  instead  of  causing  a  compilation  error,  use  that 
knowledge to  perform optimizations that  makes the execution of  the program go 
faster, or misbehave in possibly subtle ways, or crash horrendously, instead of simply 
allowing what the underlying hardware in the computer system would do under those 
circumstances. Notions such as wobbly data values and other silliness are invented to 
justify the compiler’s behavior. The compiler writers, instead of producing compilers 
that are more useful to programmers by producing compilation errors when presented 
with code that would lead to undefined behavior, instead turn working programs that 
worked with earlier compilers into programs that no longer work.

For example, what could have been a machine dependent operation that might be 
different between different underlying hardware, for example a shift by 32 bits of a  
quantity in a data type that is 32 bits wide, a no-operation on x86 but a proper 32 bit 
shift on POWER, becomes an optimization opportunity for the compiler, which in-
stead of producing a compile time error, causes every value that depends on the result 
of that computation to be undefined and to delete as much code as possible based on 
that, silently. What is at the hardware level machine dependent, and well specified, 
gets turned into an irrational optimization opportunity.

C is the low level language of choice for programming the lowest levels of operat-
ing systems on real hardware, real hardware does not have wobbly data, nor does it 
have shift instructions that cause a bunch of dependent operations to be skipped, or 
that turn one memory load into two memory loads, etc. If real hardware had such be-
havior it would be labeled as errata, i.e. a hardware bug.

COOGL does not have any undefined behavior, the C11 code it generates does not 
have undefined behavior either. Any construct that would lead COOGL source code 
to be compiled into C11 code with undefined behavior causes a compilation error, for 
example  constructs  that  would  be  unsafe.  Every  memory  access  performed  by  a 
COOGL program, that doesn’t use the unsafe_cast() and doesn’t use NULL, is a 
valid memory access, accessing the NIL pointer or the set of trapping addresses de-
fined by the language are also valid memory accesses, it is valid to access them they 
reliably cause an exception they are not undefined behavior,  COOGL knows about 
this, the underlying C11 compiler doesn’t know about this, and it can not do anything 
about it other than to perform the memory access that the programmer programmed. 
The NULL pointer (or the value 0 when used as a pointer) are deprecated and should 
not be used by safe programs, they remain in the language as a bridge for interoper -
ability with C code.

COOGL is a firewall between the needs of the programmers and the degeneration 
that is occurring to the C language, which is moving farther and farther away from 
the real world of concrete hardware, and into a world of a needlessly complicated 
language specifications mostly to satisfy the needs of compiler writers at the cost of 
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programmers and risking the stability of existing code bases. Evolving the C lan-
guage from the standards community perspective seems to have become a full time 
job for a large number of people and there doesn’t seem to be much restraint in those 
efforts,  features  are  being invented irrespective  of  them having  ever been imple-
mented in practice and most without the benefit of even an experimental implementa-
tion.

The needs of existing C programs and C programmers are not always addressed by 
the C standard writers, though the C compiler writers continue to make accommoda-
tions to ensure that existing C code doesn’t stop working, mostly through compiler 
options  that  disable  some of  the  most  misguided  optimizations.  For  example  the 
Linux kernel doesn’t work with these compilers that use the notion that signed arith-
metic overflow is undefined behavior and perform irrational optimizations based on 
that assumption. For the Linux kernel to work and many other large code bases they 
need to be with options which turn off quite a few optimizations predicated on unde-
fined behavior. A problem with the C standard is its definition of volatile which it 
has been known to have been incorrect for almost two decades and even with an error 
report that could have been included in C17, it wasn’t, the compiler writers in this  
case knew what to do and they implemented the behavior desired by the program-
mers and ignored what was described by the language. The compilers are right in this 
case, the standard is wrong, hopefully the compiler writers won’t forget this and go 
break some more code in the future because they chose not to update the standard to 
reflect the intended language design and actual standard practice.

Some of the most absurd undefined behavior over optimizations cause, what used 
to be trivial in C, to become obfuscated to prevent the compiler from doing stupid 
things. For example, in an operating system that wanted to initialize some low mem-
ory to some specific contents, for example moving exception handler code there, say 
at physical address 0, prior to turning on the MMU and enabling interrupts, to have to 
confront the compiler that sees a pointer with value 0 and decides that any memory 
references based on that  pointer  are  undefined behavior and the compiler  can do 
whatever it pleases it, not to produce an error, but crazy things, for example not to  
generate any other code for the function it is compiling, not even a return instruction, 
of course without a warning, simply because the standard says it is undefined behav-
ior. So the C programmer has to write an assembly function that returns a pointer 
with value 0 and call that so that the compiler stops doing absurd things with its code, 
remember, in C, the programmers were supposed to know what they were doing, the 
compiler was supposed to just do it. The new generation of C compiler writers and C 
standard writers do not seem to have learned that. To any complaint from a C pro-
grammer with their compiler’s behavior they mutter:  “Its UB, I could corrupt the  
contents of your files if I wanted to, the standard says I can do whatever I want, go  
away.” They say these things so often that  UB, undefined behavior, is part of their 
everyday lingo.
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This is what the original developer of the LLVM project and, at the time, a member  
of the Clang compiler development team at Apple had to say about the subject, un-
derlined highlights are by the author of this book:

“There is No Reliable Way to Determine if a Large Codebase Contains Un-
defined Behavior”

“Making the landmine a much much worse place to be is the fact that there  
is no good way to determine whether a large scale application is free of un-
defined behavior, and thus not   susceptible to breaking in the future  . There 
are many useful tools that can help find some of the bugs, but nothing that  
gives full confidence that your code won't break in the future.”

“The end result of this is that we have lots of tools in the toolbox to find  
some bugs, but no good way to prove that an application is free of unde-
fined behavior. Given that there are lots of bugs in real world applications  
and that C is used for a broad range of critical applications, this is pretty  
scary.” –  Chris Lattner (What Every C Programmer Should Know About 
Undefined Behavior)

Views typical of compiler writers who have hijacked the meaning of C, and only 
seem to care about performance, resulting in an unsafer language, mostly because the 
compiler  teams where originally  tied to  the CPU design teams and achieving the 
highest  SPEC performance  numbers  was  the  only  thing  that  mattered,  while  not 
breaking too much working code. They are all busy rummaging through the stan-
dards to see how else they can make things go faster based on undefined behavior:

“Using a Safer Dialect of C ...”

“A final option you have if you don't care about "ultimate performance", is  
to use various compiler flags to enable dialects of C that eliminate these  
undefined behaviors. For example, using the -fwrapv flag eliminates unde-
fined behavior that results from signed integer overflow (however, note that  
it does not eliminate possible integer overflow security vulnerabilities). The  
-fno-strict-aliasing flag disables Type Based Alias Analysis, so you are free  
to ignore these type rules. If  there was demand, we could add a flag to  
Clang that implicitly zeros all local variables, one that inserts an "and" op-
eration before each shift  with a variable  shift  count,  etc.  Unfortunately,  
there is no tractable way to completely eliminate undefined behavior from  
C without breaking the ABI and completely destroying its performance. The 
other problem with this is that you're not writing C anymore, you're writing  
a similar, but non-portable dialect of C.” – Chris Lattner

So pretty much every operating system kernel, written in C, is from this compiler 
writer's perspective not written in C but in a dialect of C, thus the schism between the  
C compiler writers and the users of the compilers grows. Somehow they can not read 
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that undefined behavior in the standard allows also for “program execution in a doc-
umented manner characteristic of the environment,” because they prefer to do what-
ever they want instead of what the programmers want. So when they support, be-
grudgingly, the behavior expected by the programmers they then state that they are 
writing code in a language that is not C, but a dialect of C, and that the dialect is not  
portable, which is hilarious because these large code bases are portable to many CPU 
architectures and many different operating systems.

The historical reality is that in the rationale documents for both C89 and C99 this is  
the rationale for undefined behavior:

“Undefined behavior gives the implementor license not to catch certain pro-
gram errors that are difficult to diagnose. It also identifies areas of possible  
conforming  language extension:  the  implementor  may  augment  the  lan-
guage  by  providing  a  definition  of  the  officially  undefined  behavior.”  
C99RationaleV5.10.pdf:11

C designed by Dennis Ritchie and implemented originally by Ritchie, and reimple-
mented into the PCC (Portable C Compiler) by a small team at Bell Labs is being at-
tributed,  incorrectly,  this  sentiment  by  Lattner:  “Undefined  behavior  exists  in  C-
based languages because the designers of C wanted it to be an extremely efficient  
low-level programming language.” Lattner’s loop optimization concern, expressed in 
his article, is addressed in §10.9.

Historical reality is that Ritchie and Ken Thompson wanted a language into which 
UNIX could be rewritten from PDP-11 assembly language, they just needed it to be 
reasonably efficient. Ritchie, Johnson, Lesk, and Kernighan wrote: “The language is  
sufficiently expressive and efficient to have completely displaced assembly language  
programming on UNIX” when describing C (in his article  “The C Programming 
Language” article received for publication on December 5th, 1977 in the Bell System 
Technical Journal issue July/August 1978 vol 57, no. 6, part 2). Ritchie continues “C 
was originally written for the PDP-11 under UNIX, but the language is not tied to  
any particular hardware or operating system. C compilers run on a wide variety of  
machines,  including the Honeywell  6000, the IBM System/370,  and the Interdata  
8/32.”

Ritchie closed his paper  “The Development of the C Programming Language,” a 
historical account presented in the ACM SIGPLAN History of Programming Lan-
guages Conference (HOPL-II) which took place April 20-23 1993 “it evidently satis-
fied a need for a system implementation language efficient enough to displace assem-
bly.” The goal was not for C to be “extremely efficient” as Lattner incorrectly claims.

The spirit of C, its original spirit, lives on in a family of C compiler’s written by  
Ken Thompson for Plan 9, the grandfather of C, the creator of UNIX and its C’s di-
rect  ancestor  B.  Thompson’s  report  about  his  then  new  C  compilers:  “produce 
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medium quality object code.” It also lives in the Go programming language, the spiri-
tual descendant of C, that Thompson and his Bell Labs compatriots, from UNIX and 
Plan 9 fame, created at Google, a language whose definition doesn’t have undefined 
behavior either.

COOGL is a language for the real world, for the needs of C programmers, it is writ-
ten and supported by C and COOGL programmers that find it useful, and it doesn’t 
turn your COOGL programs into a morass of undefined behavior compiler optimiza-
tion opportunities for your code to disappear, it doesn’t get in the way of what you 
do.Defined behavior and implementation dependent behavior

COOGL program constructs translate into code that has either defined behavior, i.e. 
behavior that can be derived from the source code and is specified by the language, 
i.e. behavior that doesn’t vary across compilers and computer systems. Otherwise the 
construct has implementation dependent behavior which is as close as possible to 
what the underlying computer system does, it is also what you would expect on that 
computer system for the construct to do. See §10.7 and §14.

1.8   COOGL syntax and language design philosophy

COOGL is a language designed to be learned and used. Reducing complexity was 
one of the most important guiding objectives in its design. The language should be 
easy to learn, simple, with no surprises and no intricate cleverness that requires deep 
language lawyering over the intricate delicate description of the language in a lan-
guage standard, as C++ does. The meaning of every language construct should be 
trivial to understand. The fewer the language constructs the better. Many language 
constructs were considered for the language, and rejected, because of the complexity 
that they would introduce was not worth their value.

Language design questions were always answered with keep it as close as possible  
to C. In contrast, other languages such as Objective C and C++ have freely imported 
syntactical constructs from other languages without much consideration of C's syn-
tax. For example, when choosing between the pub or public keyword names, pub 
was chosen, because C uses abbreviated names, such as int, float, and char (in-
stead of  integer,  floating, and  character). A modifier syntax was chosen for 
pub, like C got static from PL/1, instead of C++'s label like public: syntax. The 
expression of inheritance through the inherit keyword in COOGL instead of what 
C++ choose from Simula67, i.e. the colon (i.e. :) character in a specialized context 
to mean inheritance. Other examples include the use of  defer to indicate the de-
ferred declaration of a member function instead of the specialized use of =0 used by 
C++ for a similar purpose.

The intent is to have no surprises, anything in the code that looks like C behaves 
exactly as it does in C. For example in C#:
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int* p, n;

surprisingly, to a C programmer, declares both p and n as pointers to int, whereas 
in C it declares p as a pointer to int, and n as an int. Thus in C and COOGL the 
use of whitespace should always be:

int *p, i;

as shown by Kernighan and Ritchie in their C book. C++ suffers from an idiomatic 
misplaced space disease propagated broadly by Stroustrup’s C++ books, because the 
meaning of the declaration is the same as in C, nonetheless C++ programmers tend to 
use the misleading convention: int* p, n;.

COOGL includes minimal support for language features, the bulk of the functional-
ity is implemented in libraries. There is no syntactical support in the language syntax 
for: input output, heap based dynamic memory management, threads, or locks. The 
only syntactical support for dynamic memory allocation in C is the sizeof operator, 
COOGL requires  an  additional  construct,  argsof.  C  included  variable  argument 
functions  to  support  formatted  input  output  operations,  COOGL includes  the  on 
statement, a general purpose statement that can be used to implement type safe for-
matted input output.

COOGL is an evolution of a subset of C, it is not a superset of C. Language evolu-
tion requires change, if change is restricted to additions, i.e. if removal is not allowed, 
then the resulting accumulation of features leads to needless complexity. If animal 
evolution were like most programming language evolution, we would all be wonder-
ing why do we still need a monkey like tail!

1.9   Programming language complexity

Some languages are stillborn because their sheer complexity makes their implemen-
tation and adoption impossible. An example of that was Algol68, which took its spec-
ification through a complexity path that made its specification flawed and incompre-
hensible, taking until its 3rd specification iteration, Algol68c, to get to the point of 
being less flawed but still required a very steep learning curve. Eventually it was im-
plemented and used, but its broad adoption never occurred.

Another language that in some way learned from Algol68's design mistakes was 
Ada, a much less complex language, but quite complex for its time, it only succeeded 
because of the sheer perseverance and tremendous investment behind it by the USA's 
DoD (Department of Defense) with its purchasing contracts and other R&D grants, 
and the myriad defense contractors, defense systems manufacturers, civilian and mili-
tary aero-space manufacturers, that took it from an almost stillborn language into the 
language of choice for those systems for weapons and defense systems. In a way we 
can all feel more safe from a software catastrophe caused by weapon systems or nu-
clear reactors because these systems are written in Ada instead of C (or C++). If any-
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thing we should all be concerned about the F-35 because most of its new subsystems 
are written in C++, with its legacy sub-systems, from the F-22, remaining in Ada.

Other languages achieve success because they are able to ride on the coattails of an 
earlier successful language and its ecosystem, for example C++ was able to ride the 
coattails of C, and evolve, initially slowly into its current high complexity condition. 
C++'s current tremendous complexity can be attributed, in part, to its initial set of de-
sign choices and the complexity that they subsequently engendered. Starting with op-
erator overloading, which forces the introduction of references, and the eventual ad-
dition of exception handling, because there is no way to report an error from an over-
loaded operator. Note that operator overloading was the last feature added to Algol68.

Stroustrup choose complexity instead of simplicity for C++ at every step: choosing 
to add multiple implementation inheritance, virtual base class, and all that that engen-
ders.  Stroustrup's choice of a template mechanism, that from its  inception should 
have served the language users by specifying the requirements of the parameterized 
types, which had already been done in the Clu language prior to C++'s templates. The 
subsequent discovery of meta-programming with C++ templates and the complexity 
that arises from that is enormous. How often does a language gets discovered inside 
of another language? Lastly the technique of SFINAE (substitution failure is not an 
error) in C++ templates is mind boggling, it says, generate code according to the tem-
plate, if the code does not compile, ignore it, and try another template choice.

Choosing complexity over simplicity at every step of the way, and the design by 
committee that ensued during and after its initial standardization, resulted in the sin-
gle most complex language that has ever existed, and with no end in sight to its com-
plexity explosion. The language creator, Bjarne Stroustrup, stated in an interview in 
April 2010, as C++0x was evolving into C++11:

“Even I can’t answer every question about C++ without reference to sup-
porting material (e.g. my own books, online documentation, or the stan-
dard). I’m sure that if I tried to keep all of that information in my head, I’d  
become a worse programmer. What I do have is a far less detailed – ar-
guably higher level – model of C++ in my head.”

“What programmers should know is the basic facilities of the language, the  
basic of the functioning of the main features, and how to gain more knowl-
edge as needed. In other words: People need a model of the language and  
have access to information sources. I do not require people to believe in  
magic. Never! There is far less “magic” in C++ than in other modern lan-
guages and I think that is part of the problem. You can look at a standard-
library algorithm or a boost library and see exactly how it is put together.  
Sometimes, reading such code is an expert-level task.” – Bjarne Stroustrup

Basically C++ has become a language for two types of programmers, users of C++ 
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and template library writers, Stroustrup's “expert-level task” programmers. The lan-
guage complexity does leak from the expert level written code into the realm of the 
regular users of C++, making their life just as thrilling when, as Stroustrup stated:

“C makes it easy to shoot yourself in the foot; C++ makes it harder, but  
when you do it blows your whole leg off.”

More recently, the paper by Stroustrup  “Remember the Vasa!” (March 2018) at-
tempts to sound the alarm about the work towards the ANSI C++2x standard in its 
working group (WG21):

“Many/most  people  in  WG21  are  working  independently  towards  non-
shared goals. Individually, many (most?) proposals make sense. Together  
they are insanity to the point of endangering the future of C++.”

Myself, having used and tracked the evolution of C++ for more than 30 years, share 
Stroustrup's concerns and the concerns of many others in the industry about what has 
already happened to C++ and is bound to continue to happen to it.

The final word about complexity in C++ goes to Ken Thompson: creator of the 
UNIX operating system (the direct ancestor of all modern commercial UNIX operat-
ing systems, MacOS X, iOS and GNU/Linux a clone of UNIX); the creator of the B 
programming language (ancestor of B, basically C without types); the co-creator of 
Belle (five times world chess computer champion and first computer chess program 
awarded the rank of Master by USCF, a direct ancestor to ChipTest, a predecesor of  
IBM's DeepBlue); created computer chess end-game tables for 4-6 pieces; co-creator 
of the Plan 9 operating system; co-creator of UTF-8 (the encoding of choice for Uni-
code text); co-creator of the Inferno operating system; and co-creator of the Go pro-
gramming language. From the book  “Coders at Work: Reflections on the Craft of  
Programming,” September 2009:

Seibel: “You were at AT&T with Bjarne Stroustrup. Were you involved at in  
the development of C++?”

Thompson: “I'm gonna get in trouble.”

Seibel: “That's fine.”

Thompson: “...”

Seibel: “Can you say now whether you think it's a good or bad language?”

Thompson: “It certainly has its good points. But by and large I think it’s a  
bad language. It does a lot of things half well and it’s just a garbage heap  
of ideas that are mutually exclusive. Everybody I know, whether it’s per-
sonal or corporate, selects a subset and these subsets are different. So it’s  
not a good language to transport an algorithm—to say, “I wrote it; here,  
take it.” It’s way too big, way too complex. And it’s obviously built by a  
committee.”
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“Stroustrup campaigned for years and years and years, way beyond any  
sort of technical contributions he made to the language, to get it adopted  
and used. And he sort of ran all the standards committees with a whip and  
a chair. And he said “no” to no one. He put every feature in that language  
that ever existed. It wasn’t cleanly designed—it was just the union of every-
thing that came along. And I think it suffered drastically from that.”

I shudder to think what Thompson thinks about C++ now.

Sadly, the final final word has to go to the C++ expert community: Gabriel Dos 
Reis, Herb Sutter and Jonathan Caves who wrote in a proposal to change the lan-
guage definition to address bugs that have been written by C++ expert programmers 
for over 30 years without knowing that they were writing those bugs into their code. 
They write in “Refining Expression Evaluation Order for Idiomatic C++” a C++17 
language change,  underlined highlights are by the author of this book:

“2. A CORRODING PROBLEM ”

“These questions aren’t for entertainment, or job interview drills, or just for  
academic interests. The order of expression evaluation, as it is currently  
specified in the standard,  undermines advices,  popular programming id-
ioms, or the relative safety of standard library facilities. The traps aren’t  
just for novices or the careless programmer. They affect all of us indiscrimi-
nately, even when we know the rules.”

“Consider the following program fragment: ”

void f() {
    std::string s = "but I have heard it works even "
                    "if you don't believe in it";
    s.replace(0, 4, "").replace(s.find("even"), 4, "only")
                       .replace(s.find(" don't"), 6, "");
    assert(s == "I have heard it works only "
                "if you believe in it");
 }

“The assertion is supposed to validate the programmer’s intended result. It  
uses “chaining” of member function calls,  a common standard practice.  
This code has been reviewed by C++ experts world-wide, and published  
(The C++ Programming Language, 4th edition.) Yet,  its vulnerability to  
unspecified order of evaluation has been discovered only recently by a tool. 
... Newer library facilities such as std::future<T> are also vulnerable to  
this problem, when considering chaining of the then() member function to  
specify a sequence of computation. ... For example, using << as insertion  
operator into a stream is now an elementary idiom. So is chaining member  
function calls. The language rules should guarantee that such idioms aren’t  
programming hazards. ...  Without the guarantee that the obvious order of  
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evaluation for function call and member selection is obeyed, these facilities  
become traps, source of obscure, hard to track bugs, facile opportunities  
for vulnerabilities.”

So apart from 30 or more years of possibly broken code that might not ever be mi-
grated to a C++17 compiler, with its new rules for order of expression evaluation, yet  
another layer of complexity is thrown into the C++ language. Newly written code 
will now start to purposely depend on these new rules for the order of evaluation of 
expressions, some programmers might not understand the new rules and introduce 
bugs thinking that they know what is going on with the minutiae of the order of ex-
pression evaluation.

1.10   Book Organization

Chapter §1, explains the rationale for the  COOGL language. Presents object ori-
ented terminology, the member function invocation syntax, the hello world program, 
the compilation model for the language, its lineage, design philosophy, and the unde-
fined behavior schism.

Chapter §2, describes CLEAN, the subset of C from which COOGL evolved, code 
that needs to be used as both as C and COOGL source code is written in CLEAN.

Chapter §3, describes array descriptors, pointer arithmetic, tuples, and literals.

Chapter §4, is detailed presentation of classes and inheritance. Presents contracts, 
classes as constructor functions, classes are functions and functions are also a special 
kind of classes, accessibility modifiers and member declarations, object declarations, 
member functions, introduction to inheritance and member function redefinition, con-
tract specifications and member function redefinitions, constructor restrictions and 
organization, unification of member declarations and their initialization, nested class 
declarations, this object pointer, iterators and the use of this in member functions 
that are non-static classes, functions as degenerate types and nested member func-
tions, default arguments, and the stringifying operator #.

Chapter §5, presents abstract classes, interfaces, and destructors. Describes value 
like objects, assignment, default constructor, initialization of an object from another 
object, the lang.value interface. These topics are then presented in more detail with 
the help of a string value like objects, various optimizations that minimize the cre-
ation of temporary objects. Lastly literal members are described.

Chapter §6, presents abstract classes, interfaces, and inheritance in detail. Single in-
heritance  and  multiple  interface  implementation,  deferred  and  redefined  member 
functions, accessibility modifiers are revisited also their relationship to inheritance 
and interface implementation, member access aliases, qualified accessibility modi-
fiers, pointers and inheritance, duplicate member names, and contracts and their rela-
tionship to redefined member functions.
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Chapter §7, explains class declaration extensions, class declaration continuations, 
class of pointers and class of array descriptors and their implicit declaration, pointer 
arithmetic and size of objects as it relates to inheritance and polymorphism, control of 
class data layout, lookup of identifiers in the context of the function being called in-
stead of the context of the calling function, delegate function pointers, and various 
other aspects of classes.

Chapter §8, explains various aspects of the language that support programming in 
the large: name spaces, modules, dynamic linking, global declarations, accessibility 
controls for a class as a type versus the class as its constructor, class initialization, 
and global construction order.

Chapter §9, presents control flow aspects of the language: replacing the goto out 
idiom with a function destructor, the on statement, vital function values, jump state-
ments their restrictions and their relationship to object destruction, lack of structured 
exception handling syntactical language support, and loop member functions and the 
loop statement.

Chapter §10, describes operators, expressions and keywords, parenthesis require-
ments under certain circumstances to reduce programming errors, the member lookup 
operator, fine grained function inline control, checked arithmetic operators, language 
keywords, and C language keywords that have been removed.

Chapter §11, presents generic programming: type path expressions, type arguments, 
type variables, type values, restriction on type arguments and type variables, and the 
argsof tuple type compiler declared member, dynamic object allocation, literal ar-
guments to generic classes, field name arguments and fieldof, and an implementa-
tion of a generic intrusive list.

Chapter §12, explains additional aspects related to types: integer, floating, complex, 
imaginary, enumerations, bit fields, unicode characters, character and string literals, 
incompatible types, global types, type dimensions (as in units of measure) and literals 
of  specific  dimensions.  Additionally  class  hierarchies  that  relate  to  various  array 
types, pointers, and various number types and the number type hierarchy, in support 
of both generic programming, class extensions, and smart pointers.

Chapter §13, presents variable length arrays and dynamically allocated arrays, error 
reporting due to failure of an object's construction while constructing an array of ob-
jects, restrictions on array descriptors and variable length arrays, array memory rein-
terpretation, dynamic creation and destruction of arrays, and restrictions on walking 
arrays with pointers when inheritance is involved.

Chapter §14, describes the approach of the language to remain as flexible in its 
memory management as C is, while being a safe language, all unsafe aspects of C are 
presented and the approach to safety of the language is presented.

Chapter §15, explains the language concurrent programming support, various de-
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sign considerations, hardware aspects, memory models, and examples.

Five appendixes complement the book:

Appendix 1L – Libraries lang, lib, and libc

Appendix 2S – Identifier mapping and calling convention

Appendix 3D – Differences between C and CLEAN

Appendix 4C – Sharing Code and Using C Code

Appendix 5R – Language and Compiler Manual



1.10 Book Organization          37

[ This page left blank to work around issue in LibreOffice that is causing an empty  
blank page to be created in the next chapter in between its pages ]



2 - COOGL's C subset: CLEAN

“A designer knows he has arrived at perfection
not when there is no longer anything to add,
but when there is no longer anything to take away.”  

-- Antoine de Saint-Exupéry

This chapter describes  CLEAN, the subset of C implemented by 
COOGL.  CLEAN excludes  C's: preprocessor,  obsolete  constructs, 
and minor language quirks. Their use causes compilation errors to en-
sure the meaning of C code does not silently change when used as 
COOGL code. Code written in CLEAN can be used as C or COOGL 
code.  CLEAN code, when used as C code, is used together with a 
header  file  to  bridge  very  minor  syntactical  differences  between 
CLEAN and C. A few  COOGL only details are introduced in this 
chapter, they are presented in bold to make them easier to find.

2.1   Tokens and identifiers

The term token is used to refer to sequences of characters considered to be a single 
entity. For example, the tokens used in comments: //, /*, */, /#, and #/. The vari-
ous language keywords: enum, return, if, while, etc. Various operators: +, -, ++, 
+=, =, !=, ==, <<, etc. Certain tokens are defined by the user instead of by the pro-
gramming language. There are two kinds of user defined tokens: literals and identi-
fiers. Literal tokens correspond to explicit values: numbers, characters, and strings, 
for example: 1, 123, 3.1416, 'a', and "string".

Identifiers are a sequence of one or more characters, digits, and underscores. An 
identifier can not start with a digit or an underscore, nor can it end with an under-
score.  Identifiers can not contain two consecutive underscores. Examples of valid 
identifiers:  MAX,  create_file,  CreateFile,  log2,  i18n,  and  a.  Identifiers  are 
case sensitive, these are three different identifiers: MAX, Max, and max. Examples of 
invalid identifiers: 0zero, my-cat, my dog, _,  x_, _x, and a__z.

2.2   Comments

Text prefixed by // through the end of the line is a comment, this BCPL comment 
syntax was later adopted by C++ and C99. The C /* comment */ can be used to 
comment out code as long as it doesn't include any other comments. Use of the /* 
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token within a /* comment */ causes an error, instead of silently allowing code to 
be turned into a comment accidentally. If allowed, the assignment to i would not oc-
cur:

void example() { /* invalid COOGL code */
    int i = 0;   /* because this comment is not closed here =>
    i = 1;       /* this statement would be commented out! */
}

The // comments can not include these four tokens: /*, */, /#, or #/ For exam-
ple, the following COOGL code causes a compilation error:

a = b //* divisor */ c
      + d;

in C89 and C99 that code has two different meanings, a silent change between those 
two languages. Those meanings are:

a = b + d;     // C99 meaning
a = b / c + d; /* C89 meaning, which has no // comments */

C programmers use pre-processor directives to prevent code from being compiled, 
for example to be able to compile and test the surrounding code. The C preprocessor 
is not part of COOGL. A third form of comment, not part of CLEAN, /# com-
ment #/, syntax can be used to comment out code that has /* comments */ or // 
comment comments. The /# comment #/  does not nest within other /# comments 
#/. There is no way to comment out code that already contains /# comments #/.

 Neither one of the comment start tokens have any significance within a string lit-
eral. Comments can not start within a string literal, for example:

void use() {
    byte *p = "this /* is not a comment */";
}

Comment examples:

/* Binary tree node. */
struct node {
    node *right;  // right sub tree
    node *left;   // left sub tree
};

Remember that the best comment is sometimes no comment at all, compare:

int depth(node *tree) {
    if (!tree) return 0;
    int left = depth(tree->left);
    int right = depth(tree->right);
    return (left > right ? left : right) + 1;
}

to the paper-work filling bureaucratic style sometimes confused with programming:
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/# Please do not do this sort of stuff!!!
/*
 * Name:      depth
 * Argument:  tree, a pointer to a tree of nodes
 * Result:    The depth of the longest branch of the tree.
 * Algorithm: Recursively compute the depth of each branch,
 *            use the depth of the deepest tree branch to
 *            compute the depth of the tree.
 */
int depth(node *tree) {
    /* painfully commented code that I have spared you from. */
}
#/

2.3   Source code after comment removal

Comments are processed at compilation time before any other processing is done. 
Comment removal is equivalent to the replacement of the comment tokens and non-
space characters within the comment with space characters. An empty comment does 
not lead to the concatenation of surrounding text, for example, this causes a compila-
tion error:

int i = 1/**/0;

After comment removal it is equivalent to:

int i = 1    0;

It is not equivalent to:

int i = 10;

After comment removal, the remaining contents of a source file are treated as a pos-
sibly empty sequence of global declarations, as explained in §2.7.

2.4   Functions and the return statement

Functions correspond to the procedures and subprograms of other  programming 
languages. Functions have arguments and return a value, their types are declared by 
the function. Functions that don't return a value use the type void as the type of their 
return value, they correspond to procedures in other languages. Arguments are passed 
by value, modification of an argument does not affect the data used by the caller  
when invoking the function. Functions that return a value must use the return ex-
pression; statement to compute the value returned, after the return statement is 
executed the function returns to its caller. 

Subsequent sections explain declarations in detail. This introduction to functions 
makes use of simple declarations of variables whose type is the integer type:  int. 
Functions without arguments have an empty argument list, for example, the one() 
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function below. The type of the value returned by a function precedes the function 
declaration:

int one() { return 1; }

Functions with a non-empty argument list include a list of comma separated argu-
ment declarations within the parenthesis that follow the function name. The  add() 
function, below, returns a value of type int, its argument list declares a and b, both 
of type int:

int add(int a, int b) { return a + b; }

The return statement without a value expression can be used by a void function 
to cause the function to return to its caller, see also §9.9. A void function doesn't re-
quire a return statement as the last statement of its function body, if execution con-
trol reaches the end of the function, the function returns to its caller. For example:

void test_add(int a, int b) {
    int result = add(a, b);
    if (result != a + b) puts("add() is not working");
}

The first statement in  test_add() declares a local variable, named  result,  of 
type int. The value returned by the add() function is used to initialize result. Ex-
amples in this  chapter  use the standard C library,  libc,  function  puts(),  which 
writes its string argument followed by a new line character to standard output:

int puts(char s[])

If the flow of control within a non-void function can reach the end of the function, 
then the last statement of the function must be a return statement:

int invalid() { /* error: missing return statement */ }

2.5   Built-in types

The built-in types are:

 Boolean: bool.

 Character types: char, wchar_t,  char16_t, char32_t, and unic.

 Signed integer types: byte, short, int, long, large, index, ptrdiff_t, 
and ssize_t.

 Unsigned integer types:  ubyte,  ushort,  uint,  ulong,  ularge,  uindex, 
and size_t.

 Floating point: float and double. Some platforms might support some of 
these other types: float128, long_double, double_double.

 Complex floating point:  complex_float (and its more succinct equivalent 
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complex) and complex_double. Complex numbers store both a real and an 
imaginary component. They require twice the memory than their correspond-
ing floating point type. Some platforms might support some of these other 
types:  complex_float128,  complex_long_double,  and  complex_dou-
ble_double).

 Imaginary floating point: imaginary_float (and its more succinct equiva-
lent imaginary) and imaginary_double. Complex numbers are capable of 
storing both a real and an imaginary component. The imaginary numbers are 
complex numbers with a real part with value 0. They only require memory 
for the imaginary value. Some platforms might support some of these other 
types:  imaginary_float128,  imaginary_long_double,  and  imagi-
nary_double_double)..

The types large and ularge take the place of the types introduced in C99 and re-
fined  in  C11:  long  long and  unsigned long long .  Together  with  uchar, 
ushort,  uint,  and  ulong,  they are meant to remove the ad-hoc morass of AL-
GOL68 enabled syntactical combinations of unsigned, int, long, double , com-
plex, and imaginary in a variety of forms that require compiler changes for each 
new ad-hoc variation. Common code shared with C can use typedef if the verbosity 
of long long is desired (e.g.  typedef large long_long;).

The signed integer types are represented in  two's complement format, the format 
that all modern computer systems use. The following restrictions apply to the sizes of  
the signed integer types, and their corresponding unsigned counterparts. Their spe-
cific sizes are determined by the underlying system and its C compiler and the com-
pilation mode being used.

 byte, the smallest unit of memory that is directly addressable by the hardware, 
all modern systems have 8 bit bytes.

 int, usually the natural word of the machine, but on 64 bit systems the int type 
is usually 32 bits, instead of 64 bits.

 short,  its memory requirements can not be larger than the memory require-
ments of the int type, its size is usually 16 bits.

 long,  its memory requirements can not be smaller than the memory require-
ments of the int type, its size is usually 32 or 64 bits.

 large, its memory requirements can not be smaller than the memory require-
ments of the long type, its size is at least 64 bits.

 index, the type required to index into the largest possible array supported by the 
language, including indexing into data in a memory mapped file, same size as a 
pointer.

The character types:
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 char, the native character type of the system, its size is the same as the size of a  
byte, it is either signed or unsigned, depending on the underlying computer in-
struction set, underlying C compiler, and system ABI.

 wchar_t, a legacy character type from the C language, it is usually 16 or 32 
bits.

 char16_t, an unsigned character type that can represent a 16 bit Unicode char-
acter, from C11.

 char32_t, an unsigned character type that can represent a 32 bit Unicode char-
acter, from C11.

 unic,  a 32 bit  type used to store a Unicode character  which is  the same as 
char32_t,  it  is  the preferred type for  Unicode characters,  its  name is  more 
mnemonic and less machine oriented.

2.6   Integer, floating, character, and string literals

Variables of bool type use one byte of memory, their possible values are true and 
false. When used in an expression where integers are expected, their corresponding 
values are 1 and 0.

Integer literals are written in decimal, unless they are prefixed by a base: 0, 0x, or 
0b (respectively: octal, hexadecimal, and binary). The prefixes 0X and 0B can also 
be used, but the lowercase prefixes are preferred.

Suffixes can be used to specify the type of integer literals: l, ll, u, ul, and ull, 
respectively: long, large, uint, ulong, and ularge). Alternative forms with dif-
ferent cases and order: suffixes that use ll can not have mixed case variations, they 
are either  both lowercase (ll) or  both uppercase (LL).  The alternative forms are 
shown in parenthesis:  l (L), ll (LL), u (U), ul (uL, Ul, UL, lu, lU, Lu, LU), and 
ull (uLL,  Ull,  ULL,  llu,  llU,  LLu,  LLU). The types of floating point literals is 
double unless a suffix is specified, if f (or F) is specified, then the type is float. 
The integer and floating point suffixes are identical to the suffixes in C.

The type of integer literals varies depending on the suffix specified, if any, the base 
used to express the number, and the magnitude of the number. The type of a literal 
corresponds to the smallest type, but not smaller than  int, capable of representing 
the numeric value of the literal but only if that type is allowed, if unsigned types are 
allowed, then the signed type is always chosen first, if the value can not be repre-
sented, then the unsigned type of the same size is chosen. The following table shows 
which are the types (designated with v) that are considered for the type of the literal 
and in order of choice, from top to bottom, as a function of: the integer literal suffix  
(if any), its base (explicit or implicit), and the literal value's ability to be represented 
by the types allowed to be considered for the combination of base and suffix. Only a  
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single suffix that represents each class of suffixes equivalent to it is shown (e.g. ul is 
shown, it stands for its 7 variations shown above):

decimal (no explicit base) explicit base: 0, 0x, or 0b

suffix none u l ul ll ull none u l ul ll ull

int v v

uint v v v

long v v v v

ulong v v v v v v

large v v v v v v

ularge v v v v v v v v v

The overall idea is that values without a suffix are of the smallest integer type that  
can represent the value, but not of a type smaller than int. Decimal integer literals 
that don't have a suffix are never considered unsigned integer literals. Integer literals 
with an explicit base (i.e. either hexadecimal, octal, or binary) are considered to be 
unsigned if required to fit a type. For example, on a system with 32 bit int and 64 
bit long, the value 4294967295 (232 - 1) is of type long, but the same exact value 
expressed in  hexadecimal  0xFFFFFFFF (or  its octal  or  binary equivalents)  fits  an 
uint and its type is uint. The type is tied to the literal value only. The types of other 
literals or subexpressions in an expression that uses the literal value don’t affect the 
type of the literal.

2.7   Declarations and declaration contexts

Declaration forms and the various contexts in which they occur are described in this 
section. The contexts in which declarations can occur are:

 member,  members  of  a  class  or  function,  only  applies  to  COOGL,  not 
CLEAN.

 global, in the outermost context, i.e. not nested within another context.

 local, local variables of a function or class.

 aggregate, declarations that are within a struct or union declaration.

Examples of declarations in these various contexts follow.

Classes are not part of CLEAN, included here for completeness:

class line {   // line is declared in the global context
    pub point a;  // a and b are declared in the member context
    pub point b;  // of the line class, they are members of the
}                 // line class

Examples pertinent to C and CLEAN:
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int i;         // i is declared in the global context
int sum(       // sum is declared in the global context
        int a,    // a, b, and c are declared in the
        int b,    // local context of the sum function,
        int c)    // they are the arguments of sum
{
    int v;        // v is declared in the local context of
                  // the sum function, it is a local variable
    v = a + b + c;
    return v;
}
struct point { // point is declared in the global context
    int x;        // x, y, and z are declared in the 
    int y;        // aggregate context of the point
    int z;        // structure, they are fields of point
};

The syntax of declarations is the same within all the declaration contexts, with the 
exception of which declaration prefix keywords could be used with them. The decla-
ration prefix keywords are:

 accessibility modifiers, not part of CLEAN: pub, priv, or prot, used to 
control the accessibility of entities declared in a class, interface, namespace, 
or module, see §6.7;

 absence of an accessibility modifier within functions and classes, implies a 
local declaration of an entity that is not accessible outside of them.

The rules for the use of those keywords are:

 global declarations occur in the outermost context, they may be preceded by 
a  pub,  priv,  or  prot accessibility  modifier  in  COOGL,  but  not  in 
CLEAN;

 member declarations, not part of CLEAN,  occur only in the outermost 
block or the argument list of classes and functions. They are preceded by: 
pub, priv, or prot;

 local declarations only occur within functions and classes, or their argument 
lists, they are not preceded by: pub, priv, or prot;

 declarations within an aggregate, a  struct or  union, can not be preceded 
by any of these keywords: pub, priv, or prot.

2.8   Declaration kinds

The kinds of declarations are:

 variable;
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 literal, not part of CLEAN;

 function;

 class, not part of CLEAN;

 type;

 enumeration;

 aggregate.

These declaration forms are briefly explained below, together with examples. The 
example declarations are shown without a surrounding context, as if they were global 
declarations.

Variable declaration, variables can be declared of built-in or user defined types. 
Variable declarations can be accompanied by various syntactical constructs to declare 
arrays, pointers, and the arbitrary compounding of them. For example:

int n;       // n is a variable of type int
int a[10];   // a is an array of 10 int elements
int b[2][3]; // b is an array of 2 arrays of 3 int elements each
int *p;      // p is a pointer to an int
int **q;     // q is a pointer to a pointer to an int
int *t[3];   // t is an array of 3 pointers to int

Variables can be initialized at declaration time:

int n = 1;   // n is a variable of type int, initialized to 1
int *p = &n; // p is a pointer to an int,
             //   initialized with the address of n

Literal declarations. Not part of CLEAN. Are similar to variable declarations, but 
they declare a compile time value that can not be changed, a value must be specified 
at declaration time. For example:

lit int k = 1; // k is a literal of type int with value 1

Function declarations, they specify the type of the value that the function returns, if 
any. For example:

int five() { return 5; }   // five is a global function
void f() {}                // f is a global function

Functions can also have argument declarations, for example:

int factorial(int n) {     // factorial is a global function 
    if (n <= 2) return n;  // n is a local declaration
    return n * factorial(n - 1);
}

Class declarations. Not part of CLEAN. For an example see stack in §1.3.

Type declarations. The typedef,  typenew, and typeglob (the last two are not 
part of CLEAN) declarations are used to declare types based on other types. Their 
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declaration syntax is based on the declaration syntax of variable declarations:

typedef int integer;

Declares the  integer type, which is  identical to the built-in  int type. Variables 
declared of the  integer type are  identical from their type perspective to variables 
declared of the int type.

typedef int *intptr;

Declares the intptr type, which is identical to the compound type: pointer to int, 
i.e. the type: int *. Variables declared of the intptr type are identical from their 
type perspective to variables declared of the int * type.

Types introduced with typedef are synonyms for the type embodied in the type-
def declaration, for example:

integer n;     // n is a variable of type int
int *p = &n;   // p is a pointer to int,
               // initialized with the address of n
intptr q = &n; // q is a pointer to int, that points to n

Enumeration declaration. Provides a type for a set of literal values, for example:

enum temperature_unit { // temperature_unit is a type
    FAHRENHEIT = 0,
    CELSIUS = 1,
    KELVIN = 2
};
temperature_unit tu;    // tu is a variable of that type

Aggregate type declarations. These can be struct or union declarations, e.g.:

struct person {         // person is a type
    int age;
    byte name[128];
};
person p;               // p is a variable of person type

A union overlays its fields such that the memory that they use is shared:

union int_bytes {       // int_bytes is a type
    int i;
    byte b[4];
};
int_bytes x;            // x is a variable of int_bytes type

The only kind of declarations that can occur within a struct or union is the dec-
laration of its fields, such as age and name above. Field declarations are syntactically 
the same as variable declarations, though initialization of them at declaration time is 
not allowed. No other form of declaration (i.e. literal, type, aggregates, enumerations, 
functions, or classes) are allowed within a struct or union declaration.
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2.9   Order of declarations

In CLEAN variable, type, enum, and aggregate declarations must precede their use, 
when CLEAN code is used as C code forward declarations and prototypes are placed 
in a header file, see §C.1.

The order of declarations, at the global level, does not matter in COOGL , for 
example, a function can reference a global variable declared after the function's dec-
laration:

int genid() {             // genid is a global function
    id = id + 1;          // invalid in CLEAN, valid in COOGL
    return id;
}
int id = 0;               // id is a global variable

The declaration of local non-static variables must precede their use:

int random() {
    static int old = 1;// declaration must precede use in CLEAN
    int v;             // v declaration must precede its
    v = (old * 168071 + 71111111) & 0x7FFFffff; // use here
    old = v;
    return v;
}

In COOGL, within a class or function, the order of entities other than non static lo-
cal variables does not matter, for example, random() would still be valid if the old 
static variable declaration was moved to the end of the function.

2.10   Statements within functions and classes

The body of a function, i.e. the code that implements the function is either a possi-
bly empty sequence of code within curly braces; or a single return statement, with-
out curly braces, not part of CLEAN.

The code of a function or class body within the curly braces is a possibly empty se-
quence of constructs, which belong to one of these groups:

 Member declaration: pub, prot, or priv, not part of CLEAN.

 Local declaration.

 Compound statement.

 Expression statement.

 Selection statement: if, if else, and switch.

 Iteration statement: for, while, do while, not in CLEAN:: loop and on.

 Control flow altering statement: return, break, continue, and goto.
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Any statement might be preceded by one or more labels of the form label: where 
label is a user defined identifier which must be unique within a function.

A brief introduction to some of the control flow statements follows, they are pre-
sented first to allow the subsequent presentation of expressions to contain more inter-
esting examples. Nonetheless, a very brief introduction to expressions follows this 
section to allow the control flow statement examples to be understood.

Subsequent sections present the various types and the expressions that can operate 
on objects of those types, explaining through them the various ways in which expres-
sions are formed and their meanings.

2.11   Introduction to operators and expressions

The following sections make use of  some of  COOGL's operators,  operators are 
fully covered in section §2.16 - §2.26. The operators used in the following sections 
are: 

 addition, subtraction, multiplication, and division: +, -, *, and /.

 assignment, equality, and inequality: =, ==, and !=.

 less than, less or equals to, greater than, and greater or equals to: < , <=, >, 
and >=.

These operators function as they function in other programming languages, tra-
ditional mathematical operator precedence applies. Parenthesis,  ( and ), can be 
used when required. Example expressions follow:

void example() {
    int n;
    n = 1 + 2 * 3;    // value of n is 7
    n = (1 + 2) * 3;  // value of n is 9
    n = 9 - 5 - 2;    // value of n is 2
    n = 9 - (5 - 2);  // value of n is 6
    n = 8 / 4 / 2;    // value of n is 1
    n = 8 / (4 / 2);  // value of n is 4
    bool b;
    b = 4 > 1;        // value of b is true
    b = 4 < 1;        // value of b is false
    b = 4 == 4;       // value of b is true
    b = 4 != 4;       // value of b is false
}

2.12   Compound statement

A compound statement is a list of statements enclosed within curly braces:

{ possibly_empty_statement_list }
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For example:

{ f = f * n; n = n - 1; }

2.13   assert() function and ... statement

The COOGL library function (a #define in C) assert(expression), does noth-
ing if expression is a non-zero value (i.e. a truth value), otherwise it causes an ex-
ception, which if not handled, causes the program to terminate with an error message 
that includes the file name, line number, and the text of the argument expression. See  
§4.17 for an implementation of  assert().  The  ... statement,  only available in 
COOGL is used to indicate that there is missing code, it causes an exception to be  
raised if control flow reaches it, if unhandled the file and line number are reported to-
gether with a message that indicates that unimplemented code was attempted to be 
executed.

2.14   if and if else selection statements

The if statement:

if (expression) statement

Controls the execution of its subordinate  statement, which is only executed if the 
controlling expression is true (i.e. non-zero). The if else statement:

if (expression) statement else statement2

Provides a second subordinate  statement2, after the else keyword, which is exe-
cuted if the controlling expression is false (i.e. zero). For example:

void check(int n) {
    if (n == 0) { puts("n == 0"); return; }
    if (n < 0) puts("n < 0");
    else puts("n > 0");
}

2.15   while and for iteration statements

The while iteration statement provides controlled iteration of a statement:

while (expression) statement

The while statement evaluates its controlling expression, if it is false, its execution 
is complete and its subordinate statement is not executed, if it is true, the subordinate 
statement is executed and after its execution the control flow proceeds to the while 
statement where the expression is reevaluated, the process repeating until the expres-
sion is false.
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The following function computes the factorial of its argument iteratively:

int factorial(int n) {
    assert(n >= 1);
    int f = 1;
    while (n >= 2) {
        f = f * n;
        n = n - 1; 
    }
    return f;
}

The for statement:

for (expression1; expression2; expression3) statement

Has three optional expressions.  Expression1,  also known as the  initialization ex-
pression, is invoked once when the for statement execution starts. Expression2, the 
controlling expression, is evaluated on each iteration, if it is false, the for statement 
execution is complete; if true, the subordinate statement is executed, after which ex-
pression3, the stepping expression, is executed and the process repeats itself with the 
re-evaluation of  expression2.

An alternative form of for statement is:

for (local_declaration_statement; expression2; expression3) statement

Where instead of  expression1 a local declaration statement is used. The  power() 
function uses this for statement form to raise v to the nth power, i.e. to compute vn:

int power(int v, int n) {
    assert(n >= 0);
    int p = 1;
    for (int i = 1; i <= n; i = i + 1) p = p * v;
    return p;
}

2.16   Operators and expressions

The C programming language is rich in operators, COOGL has the same operators. 
The basic binary arithmetic operators: addition, subtraction, multiplication, and divi-
sion, respectively: +, -, *, and /; and the unary arithmetic negation operator, -, can 
be used with both integer and floating point operands. Integer division between two 
integers results in an integer value, the remainder of the division is ignored. The re-
mainder operator,  %, which can only be used with integer values, provides the re-
mainder of integer division.
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Expression Result Expression Result

7 + 3
7 - 3
7 * 3

10
 4
21

7 / 3
7 % 3

 2
 1

When one or both of the operands of the division operator is a floating point value 
the result is also a floating point value with a possibly non-zero fractional part, i.e. 
the remainder is not dropped, it is used to produce the fractional part of the result.

Both K&R C, and C89 allowed the behavior of integer division, /, and the remain-
der  operator,  %,  to  be  implementation  dependent  when  negative  numbers  are  in-
volved. The C99 language removed that relaxation and mandated the well defined 
behavior of FORTRAN. COOGL adopts that behavior as well, this is the behavior in 
all modern hardware.

C99 standard: 6th paragraph under section 6.5.5 and its 78 footnote:

"When integers are divided, the result of the / operator is the al-
gebraic quotient with any fractional part discarded.78) If the quo-
tient a/b is representable, the expression (a/b)*b + a%b  shall 
equal a."

"78) This is often called “truncation towards zero”."

The obsolete behavior allowed by K&R C and C89 could lead to results such as -
7/3 equal to  -3 as long as  -7%3 was equal to  2,  even though those results are 
against the mathematical expected results. The allowance for such strange behavior 
was to accommodate computer systems that have long since been obsolete.

The allowed behavior of C99, FORTRAN and COOGL mandates these results:

Division Result Remainder Result

 7 / 3
-7 / 3
  7 / -3
 -7 / -3

 2
-2
-2
 2

 7 % 3
-7 % 3
  7 % -3
 -7 % -3

 1
-1
 1
-1

The logical bitwise operators: bitwise and, bitwise or, bitwise exclusive or, shift left, 
and shift right operators,  &,  |,  ^,  <<, and >> respectively, together with the unary 
bitwise negation operator ~ must be used with integer operands. Examples of these 
operators follow, literal values preceded by 0x are in hexadecimal notation:
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Expression Result

6 | 3
6 & 3
6 ^ 3
6 << 1
6 >> 1

0xABCD << 8 
0xABCD >> 8
~0xFFFF

~0

 7
 2
 5
12
 3

  0xABCD00
      0xAB
0xFFFF0000
0xFFFFFFFF

The last two results depend on the int type being a 32 bit type, if it had been a 64 
bit type those two expressions would have been:

Expression Result

~0xFFFF
~0

0xFFFFFFFFFFFF0000
0xFFFFFFFFFFFFFFFF

2.17   Controlling expressions, relational operators, and truth values

The values of the various comparison and relational operators:  ==,  !=,  <,  <=,  >, 
and >= is either true or false. The tokens true and false are literals of the bool 
type, when used as integer values these literals have the values 1 and 0 respectively.

The value of expressions within conditional contexts, e.g. the controlling expres-
sion of an if or a while statement, is compared with zero. A zero value means that 
the expression is false, a non-zero value means that the expression is true. For exam-
ple:

int main() {
    if (-7) puts("-7 is true"); else puts("-7 is false");
    if (0)  puts(" 0 is true"); else puts(" 0 is false");
    if (1)  puts(" 1 is true"); else puts(" 1 is false");
}

Its output is:

-7 is true
 0 is false
 1 is true

2.18   Logical operators

There are two binary logical operators: and  &&, and or ||. They evaluate their first 
operand, and if it can be determined the truth value of the operator from the value of 
the first expression, i.e. if the value is zero for  &&, and non-zero for  ||, then their 
second operand is not evaluated; otherwise the second operand is evaluated and its 
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truth value (i.e. zero or non-zero) determines the value of the operator. The result of 
these operators is 1 for truth, and 0 for false. The unary logical not operator, !, per-
forms the logical negation of its operand, i.e. if the operand is zero its result is 1, if 
the operand is non-zero its result is 0.

2.19   Assignment and assignment-op operators

The assignment operator, =, and the assignment-op operators +=, -=, /=, %=, |=, 
&=, ^=, <<=, and >>= combine binary operators with assignment, for example:

x is 7 in each 
expression

value in x after 
expression

x += 1 
x -= 3 
x /= 3 
x %= 3 
x |= 8 
x <<= 2
x >>= 1

 8
 4
 2
 1
15
28
 3

they perform the operation specified by corresponding binary operator and assign the 
result to the left operand.

The value of an assignment or an assignment-op operator is the value assigned to 
its first operator, for example:

void example() {
    int i, j, k;
    i = j = k = 8;   // i, j, and k have the value 8 
    k /= j -= 4;     // j is 4 (i.e. 8 - 4)
}                    // k is 2 (i.e. 8 / 4)

Beware of confusion between the equality comparison ==, and the assignment op-
erator =, particularly in the controlling expressions of various control statements:

bool is_one(int v) {
    if (v = 1)       // wrong: assignment =, not comparison ==,
        return true; // always returns true!
    return false;    // this statement is never reached
}

The incorrect is_one() function always returns true, because it assigns the value 
1 to v and then tests that value to see if it is non-zero, it always is non-zero.

2.20   Increment and decrement operators

The increment and decrement, ++ and --, operators cause the value in a variable to 
be incremented or decremented by one. There is a prefix and a postfix forms of these 
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operators. There is no difference between the prefix and the postfix form in the effect 
on the variable, the difference is in the value of the expression. The value of the pre-
fix operators as an expression is the value of the variable after the operation, the 
value of the postfix operators is the value of the variable before the operation, e.g.:

void example() {
    int p = 1, q = 1, r = 1;
    int a = p++;      // p is 2, a is 1
    int b = ++q;      // q is 2, b is 2
    int c = r += 1;   // r is 2, c is 2
}

The factorial() function, from §2.15, is shown below using *= and --:

int factorial(int n) {
    assert(n >= 1);
    int f = 1;
    while (n >= 2) {
        f *= n;
        --n;
    }
    return f;
}

2.21   Ternary selection ?: operator and the comma operator

The operator exp1 ? exp2 : exp3 is the ternary selection operator, it evaluates 
exp1 and if its value is non-zero, then the value of the ?: expression is the exp1, 
otherwise the value is exp3.

The binary comma operator  exp1, exp2 evaluates  exp1 fully, including its side 
effects, then it evaluates exp2, the vale of the comma operator is  exp2. If  exp1 is 
also a comma operator expression, i.e. if its form was:  exp1_1, exp1_2, exp2 its 
implicit parenthesis are left to right, i.e. as if it were (exp1_1, exp1_2), exp2  and 
the value of the whole expression is exp2, similarly for 4 expressions separated by 
commas, etc.

2.22   C array types, operators and expressions

There are two kinds of arrays in COOGL, traditional C arrays, whose dimensions 
are known at declaration time, and variable length arrays, whose dimensions are de-
termined at run time, additionally there are array descriptors used to refer to arrays, 
used when passing an array as an argument to a function, among other uses, see §3. 
This section deals with C array types, variable length arrays are presented in chapter 
§13.

The declaration syntax of arrays allows for the declaration of unidimensional ar-
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rays. The declaration of multidimensional arrays results form the declaration of ar-
rays of arrays by applying the syntax repeatedly. For example:

int table[10];      // array of 10 int
int matrix[50][80]; // array of 50 arrays of 80 int
int d3[10][20][30]; // array of 10 arrays of 20 arrays of 30 int

The [] operator is the array indexing operator. The first element in an array is at in-
dex  zero,  all  arrays  are  zero  based.  Array  access  uses  expressions  of  the  form 
table[i] and  d3[i][j][k], the syntax  d3[i,j,k] does not correspond to 3 di-
mensional array indexing, it is an invalid expression. An example of the traditional 
multi-level iterative access of all the integers in the d3 array is shown below:

void initd3() {
    for (int i = 0; i < 10; ++i)
        for (int j = 0; j < 20; ++j)
            for (int k = 0; k < 30; ++k)
                d3[i][j][k] = random();
}

The order of the underlying elements of a multidimensional array are a reflection of 
the declaration itself, for example:

int d[2][3];  // d is an array of 2 arrays of 3 integers
void initd() {
    int n = 0;
    for (int i = 0; i < 2; ++i)
        for (int j = 0; j < 3; ++j)
            d[i][j] = n++;
}

The integer entries within d, after the execution of initd(), have these values:

d[0][0]: 0 d[0][1]: 1 d[0][2]: 2  

d[1][0]: 3 d[1][1]: 4 d[1][2]: 5

The underlying int sized words, in increasing memory address order, are:

d[0][0]: 0

d[0][1]: 1

d[0][2]: 2

d[1][0]: 3

d[1][1]: 4

d[1][2]: 5

The iterative array access in the nested for loops shown above for  d and d3 are 
the fastest forms of iterative array access because the memory accesses are to sequen-
tial memory addresses, which allows the hardware caches and memory subsystem to 
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perform optimally. Of course, those considerations matter when dealing with large ar-
rays, not tiny ones like d and d3.

Most array indexing occurs in iterative loops that walk all or part of an array. The 
index variable is usually declared in the first expression of a for statement, declaring 
indexes with type int is correct unless the number of elements in the indexed dimen-
sion is larger than the positive value range minus one supported by  int. Indexing 
into memory mapped files or arrays whose dimension size is unknown at compile 
time should done with variables of type index, which uses 64 bits in systems with 
64 bit pointers. Indexing variables are usually just local variables held in registers, 
declaring them with type  index instead of  int doesn’t cause any extra overhead. 
The compiler will produce a compile time error if array indexing is attempted with 
variables whose value range is smaller than the value range of index if the compiler 
can not guarantee at compile time that its value range is large enough be used cor-
rectly as an index.

2.23   Pointers: types, operators, and expressions

The C programming language approach to memory manipulation allows direct ma-
nipulation of memory that is very close to assembler level programming, but in a 
typed, structured, and portable manner.

There are various language aspects related to pointers:

 declaration of pointer variables;

 access of the entity referred by expressions of pointer type;

 expressions  based  on  the  pointer  values  themselves,  for  example through 
arithmetic operations on pointers to refer to other nearby entities.

The underlying type of entity that a pointer refers to can be a built in type or a user 
defined type, i.e. one defined using: struct, union, class, arrays, or pointers. Ex-
ample declarations of pointer variables:

byte *bp;            // bp is a pointer to byte
byte **bpp;          // bpp is a pointer to a pointer to a byte
stack *stk;          // stk is a pointer to a stack
int *tab[4];         // tab is an array of 4 pointers to int
typedef int array_of_8_int[8];
array_of_8_int *tp;  // tp is a pointer to an array of 8 int
//int (*tp)[8]; C ONLY: tp is a pointer to an array of 8 int

There are several operators that can be used with most kinds of pointer variables,  
the exception being pointers to functions which are discussed later.

The unary * operator is the dereference operator. It is used with an expression of 
pointer type, it dereferences the pointer value to refer to the object whose address is 
the value of the pointer expression.
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The unary & operator is the address-of operator. It can be used on variables of any 
type, it is used to obtain the address of a variable, usually to assign it to a pointer  
variable, or to pass it as an argument to a function, or to use it in pointer arithmetic or 
pointer comparison expressions.

void swap(int *a, int *b) {
    int t = *a;
    *a = *b;
    *b = t;
}
int p = 1, q = 2;
void example() { swap(&p, &q); }

A common use of the & and * operators is in argument passing where a value is to 
be returned through the memory that the pointer argument refers to. For example the 
swap() function above exchanges the values that its two arguments point to.

Pointer arithmetic operators are the binary addition and subtraction, + and -, opera-
tors and their related forms: ++, --, +=, and -=. Use of the unary negation operator, 
-, is invalid with a pointer expression.

Pointer addition is between a pointer and an integer, not between two pointers. The 
expression p+n, where p is a pointer value and n is a positive integer, or the equiva-
lent expression n+p, results in a pointer value that refers to the n th entity after the en-
tity that p points to. The expression p+n, where p is a pointer value and n is negative 
integer, results in a pointer value that refers to the n th entity before the entity that p 
points to. The expression p-n, where p is a pointer value is equivalent to  p+(-n), 
i.e. the addition of p and the integer -n.

Pointer arithmetic can only be performed when the programmer provides compile 
time or run time proof that the arithmetic is valid and that the underlying object that 
the pointer refers to is of a type that does not result in a type violation that could re-
sult in unsafe programming. The concepts of safe and unsafe programming are ex-
plained in chapter §14. One of the ways by which the programmer provides run time 
proof that pointer arithmetic is valid, subject to run time checks, is by specifying the 
pointer with the syntax: type name[], which indicates that name refers to an array 
descriptor in a way such that the elements within the array can be accessed through 
pointer arithmetic in a safe manner.

Examples of pointer arithmetic are shown in exchange() below, it exchanges the 
values at p+i and p+j:

void exchange(int p[], index i, index j) {
    int t = *(p + i);
    *(p + i) = *(p + j);
    *(p + j) = t;
}
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If the p argument had been declared as: int *p, then the expressions p+i and p+j 
would result in a compile time error. The pointer plus integer expression *(p+i) is 
equivalent to the expression p[i], thus exchange() could be written as:

void exchange(int p[], index i, index j) {
    int t = p[i];
    p[i] = p[j];
    p[j] = t;
}

The  exchange() function is used in the  sort() function, below which does its 
work by finding the smallest element and exchanging it with the first element, and 
then sorting the rest of the array by the same means.

void sort(int array[], index count) {
    assert(count <= array.max[0]);
    if (count <= 1) return;
    int *rest = array;
    for (; count >= 2; ++rest, --count) {
        int min = rest[0];
        index min_index = 0;
        for (index i = 1; i < count; ++i) {
            int v = rest[i];
            if (v < min) {
                min = v;
                min_index = i;
            }
        }
        exchange(rest, 0, min_index);
    }
}

Pointer arithmetic, ++rest above, is allowed in this code, even though rest was 
declared int *rest , because the value of  rest was based on an array descriptor, 
array[]. The array descriptor is used by the compiler to validate the pointer arith-
metic at run time, or invariants proven at compile time, as is the case in this example, 
given the assert(count <= array.max[0]) and that count >= 2 inside the for.

The variable  rest can be used as an array descriptor argument to  exchange() 
even though it is just a pointer to int, the compiler converts the value of rest and 
the value of the array descriptor on which its value was based on,  array[] in this 
case, into an array descriptor converting rest into the exchange() argument p[]. 
A version of sort() that uses pointers instead of indexes:
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void sort(int array[], index count) {
    assert(count <= array.max[0]);
    if (count <= 1) return;
    int *first = array, *last = array + count - 1;
    for (; first < last; ++first) {
        int min = *first, *minptr = first;
        for (int *p = first; ++p <= last;) {
            int v = *p;
            if (v < min) {
                min = v;
                minptr = p;
            }
        }
        swap(first, minptr);
    }
}

The subtraction of two pointers, which must be of the same type,  n=p2-p1 pro-
duces an integer result, n in this case, such that p1+n==p2, n is the number of times 
that p1 should be incremented (if n is positive) or decremented (if n is negative) so 
that  it  becomes  equals  to  p2.  The  type  of  the  result  of  pointer  subtraction  is 
ptrdiff_t which is an implementation dependent type capable of holding the dif-
ference between two pointers, e.g. it is 64 bits when pointers are 64 bits and 32 bits  
when pointers are 32 bits. Subtraction of pointers is only valid if the programmer pro-
vides compile time or run-time proof that both pointers are within the same array de-
scriptor. Safe pointer subtraction is required to ensure that the programmer does not 
use pointer subtraction between a valid pointer and a NULL pointer as a means to ob-
tain a value from which the pointer integer value could be obtained. Obtaining the 
value of pointers is prevented to ensure that garbage collection libraries and other 
memory management schemes can be written without concerns about pointer value 
changes affecting the program, for example when pointer values are used as hash val-
ues, which would no longer be valid if the object the pointer refers to was relocated.

The addition of two pointer values makes no sense, it is invalid.

Pointer arithmetic of pointers to types with sizes other than 1 byte imply hidden 
scaling of the pointer values in ways that might result in multiplication and division 
instructions that involve the size of the type that the pointer refers to. For example:
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struct name {    // variables of type name use 40 bytes
    byte b[40];
};
void exchange_names(name p[], index n) {
    name t = *p;
    *p = *(p + n);
    *(p + n) = t;
}
name name_tab[100];
void example() {
    exchange_names(&name_tab[0], 30);
    name *p = &name_tab[random() % 100];
    name *q = &name_tab[random() % 100];
    size_t n = p - q;
}

The  arithmetic  expression  p+n within  exchange_names() is  translated  by  the 
compiler into these integer instructions integer_value_of_p + n * 40 , of the ap-
propriate width, e.g. 32 or 64 bit instructions. Similarly, the expression p-q is trans-
lated into (integer_value_of_p - integer_value_of_q) / 40.

Pointer arithmetic of pointers that refer to types whose sizes are a power of two 
have those underlying multiplication and division operations reduced to shift opera-
tions, in which case the computational cost of the scaling of values by the size of the 
underlying pointed type is negligible. All built-in types and pointer types have sizes 
that are powers of two, thus pointer arithmetic of pointers that refer to those types al-
ways benefit from the use of shift instructions instead of multiplication and division 
instructions. Because the compiler knows about the size of the underlying object, the 
underlying multiplication and divisions are  against  a  constant  value,  which many 
compilers can optimize into simpler instructions, for example to multiply by 40, a 
compiler might choose to translate n * 40 into:

((n << 5) + (n << 3))      // n * 32 + n * 8

Array indexing also involves scaling of indexes by the size of array elements, thus 
nametab[n] involves an underlying multiplication by 40.

Walking arrays with ++ and -- operators on pointer values never involves multipli-
cation, those are translated into the addition or subtraction of the size of the type that 
the pointer refers to. For example:
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lit size_t NAMELEN = 40;
struct name {
    byte b[NAMELEN];
};
lit size_t TABLEN = 100;
name name_tab[TABLEN];
// search name_tab for n, return -1 if not found
index indexof(name *n) {
    name *start = &name_tab[0];
    name *end = &name_tab[TABLEN];
    for (name *p = start; p < end; ++p)
        if (name_equals(p, n))
            return p - start;
    return -1;
}

Thus the ++p expression is translated to integer_value_of_p += 40.

As can be seen above, there is an order relationship between pointer values that fol-
lows the underlying order of memory addresses. For example when pointer p above 
is used to walk the name_tab array starting with its first element, &name_tab[0], its 
value will be smaller than  &name_tab[TABLEN],  the value of  end.  End does not 
point to the last element of name_tab, that element is name_tab[TABLEN-1],  end 
points instead to the memory location immediately after that element, a memory loca-
tion that contains some other unknown information, unrelated to the elements of the 
name_tab array. Both languages, C and COOGL, allow such expressions and the id-
iomatic walking of arrays shown above, both languages make the program behavior 
of  dereferencing  the  end pointer  invalid,  just  as  it  would  be  if  the 
name_tab[TABLEN] invalid array entry was accessed. In C the dereferencing of end 
would cause the underlying memory to be accessed, COOGL causes an exception to 
be raised and the memory that end points to is not accessed.

Pointer arithmetic with the p variable is valid because the value of  p is based on 
the address of an element within an array, thus it is run-time safe for the pointer arith-
metic operations to be performed, the compiler knows the underlying memory of the 
name_tab array and can ensure, at compile time in this case, that all the accesses are 
within bounds. To be able to have a common subset between C and COOGL the abil-
ity to perform pointer arithmetic on variables declared with the type *name syntax 
is  required.  C  only  allows  for  the  declaration  of  pointers  with  the  syntax  type 
name[] in the declaration of function arguments. Safe programming in  COOGL is 
presented in chapter  §14, this section only touched on some of its aspects to allow 
pointer arithmetic to be explained.
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2.24   Aggregate types and their operators

The struct and union keywords are used to declare types for an aggregation of 
data declarations, for example:

struct person {      // person is a type
    int age;
    byte name[128];
};

Variables  of  person type  have  two  fields,  age and  name,  they  are  accessed 
through the dot . and arrow -> operators, depending if the expression used to refer-
ence them is of the type of the aggregate or the type is pointer to the aggregate, re -
spectively. For example:

void example() {
    person p;          // p is a variable of person type
    p.age = 33;
    p.name[0] = 'A';
    p.name[1] = 'n';
    p.name[2] = 'n';
    p.name[3] = 0;     // 0 terminates C strings
    p.age++;           // one year older
    --p.age;           // one year younger
    person *pp;        // pp is a pointer to person
    pp = &p;           // it now points to p
    pp->age *= 2;      // double the age
    pp->name[2] = 'a'; // now the name is Ana
}

A union declaration overlays its fields so that the memory that they use is shared:

union ubytes_of_uint { // ubytes_of_uint is a type
    uint u;
    ubyte b[4];
};

A union declaration can not contain member variables that are of a class type or 
that refer to other data (pointers, array descriptors,  index, or  uindex), see §14.7. 
This is a restriction required for safe programming. The ubytes_of_uint union can 
be used to implement a byte swapping function:

uint byte_swap(uint u) {
    ubytes_of_int u;
    u.i = i;
    ubyte t;
    t = u.b[0];   u.b[0] = u.b[3];    u.b[3] = t;
    t = u.b[1];   u.b[1] = u.b[2];    u.b[2] = t;
    return u.i;
}
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Use of  ubytes_of_uint can be used to access the 4 bytes within an  uint on a 
system with 32 bit uint, for example to swap its bytes, is better done with bitwise 
operators than with a union:

uint byte_swap(uint u) {
    return (u >> 24) | (u << 24) |
           ((u & 0xff00) << 8) | ((u & 0xff0000) >> 8);
}

2.25   Expressions

Expressions are used by themselves, for example an assignment or a function call,  
or as parts of other statements:

 As the initial value given to a variable at declaration time.

 Declarations to specify number of elements in arrays, or bits in a bit field.

 The value returned by a function through the return statement.

 In the expression list of the on statement.

 Initialization, controlling, and iteration expressions of:  if,  for,  loop, and 
while.

 In a switch statement, described further below.

 The value of case labels, described further below.

Examples of expressions in various contexts are shown below:

index find_last(int value, int array[], index count) {
    index ix = count - 1;
    while (ix >= 0) {
        if (ix == array[ix]) return ix;
        --ix;
    }
    return -1;
}

2.26   Expression statements

An expression statement is alone by itself, it is not a part of another statement, e.g.:

void example(int a, int b) {
    int i = a + b;        // expression in declaration
    while (i < 10) {      // expression in conditional context
        factorial(i);     // expression statement
        ++i;              // expression statement
    }
}
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Expression statements must be function calls or assignments, including ++ and --, 
they must do something with the value they produce, it can not just be ignored:

void example(int a, int b) {
    a + b;          // error: invalid expression statement
    a == b;         // error: invalid expression statement
    a < b || a > b; // error: invalid expression statement
    factorial(a);   // expression statement, ok to ignore value
}

2.27   Default value returned by main()

In C and COOGL the signature of main can be declared in any of these ways:

int main();
int main(int argc, char *argv[]);
int main(int argc, char *argv[], char *envp);

The third forms is only valid in what the C standard defines as hosted environ-
ments, e.g. supported by an operating system. In C  main() is special in that even 
though main() is supposed to return a value, if execution control reaches the trailing 
curly brace the compilation doesn’t cause a compilation error, instead a default zero 
value is returned, which must be handled with special purpose code by the compiler 
and is needlessly obscure.

Omitting the trailing return in main() only has value in reducing the number of 
lines of code in  small  C examples,  and keeping C compatible  with the historical 
“hello, world!” program in the K&R C book, and many programs that copied it and 
exit without a trailing return 0;.

2.28   if and if else selection statements and indentation errors

The if and if else  statements were presented above. The else keyword is asso-
ciated with the nearest  if statement that precedes it. Incorrect indentation can vis-
ually mislead the programmer about the actual if statement that an else statement 
is associated with, for example:

int worker() {
    int error;
    if (!too_many_workers())
        for (;;)
            if (error = get_and_do_work())
                return error;
    else                    // error: misleading indentation
        puts("too many workers");
    return 0;
}
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In worker() above, the else is associated with the if within the for statement, 
instead of the first if of the function. COOGL produces a compilation error as a re-
sult  of  this  misleading  indentation.  This  is  the  only  circumstance  under  which 
COOGL pays attention to whitespace characters other than for token delineation. To 
avoid having to understand how tab characters are expanded, the indentation check-
ing expects that the whitespace characters that precede the if keyword must be ex-
actly the same characters that precede the else keyword, i.e. the same sequence of 
spaces and tabs. For programmers that have trouble making up their minds about the 
use of tabs or spaces, or that simply hate this COOGL feature, it can be turned off, 
see XXX.

Appropriate indentation removes the compilation error,  which makes the logical 
coding error clear:

int worker() {
    int error;
    if (!too_many_workers())
        for (;;)
            if (error = get_and_do_work())
                return error;
            else
                puts("too many workers");
    return 0;
}

Curly braces can be used to force the appropriate association:

int worker() {
    int error;
    if (!too_many_workers()) {
        for (;;)
            if (error = get_and_do_work())
                return error;
    } else
        puts("too many workers");
    return 0;
}

Better code organization makes the code clearer. The idiomatic use of an empty 
block, {}, to indicate that the body of the while statement is an empty statement:
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int worker() {
    if (too_many_workers()) {
        puts("too many workers");
        return 0;
    }
    int error;
    while (!(error = get_and_do_work()) {}
    return error;
}

The else if indentation style shown below does not cause an error, nor does an 
error occur when the if and its matching else are on the same line, as shown be-
low:

int match_work(int k, int a, int b, int c) {
    start_work(k);
    if (k == a) a_work(a);
    else if (k == b) b_work(b);
    else if (k == c) c_work(c); 
    else if (k < 0) negative_work(k) else positive_work(k);
    return final_work(k);
}

2.29   goto statement

The goto label; statement allows execution control to be transferred:

size_t merge(int src[], size_t n, int src2[], size_t n2,
             int dest[], size_t nd) 
        require(n <= src.max[0] && n2 <= src2.max[0]
                && nd <= dest.max[0] && !(n1 ?+ n2)) {
    assert(nd >= n + n2);
    int *d = dest, *s = src, *end = s + n
    int *s2 = src2, *end2 = s2 + n2;
    if (n > 0 && n2 > 0)
        for (;;)
            if (*s < *s2) {
                *d++ = *s++;
                if (s1 == end1) goto end;
            } else {
                *d++ = *s2++;
                if (s2 == end2) goto end;
            }
end:
    while (s < end) *d++ = *s++;
    while (s2 < end2) *d++ = *s2++;
}

The only restriction on the goto label statement is that it can not jump over local 
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variable declarations that remain in scope, i.e. that are still accessible at label. In the 
merge() function above the goto end; could be replaced by break, see §2.32.

2.30   switch statement

The switch statement:

switch (expression) compound_statement

The switch statement evaluates an integer valued expression and compares the 
value with the case constant_expression: labels within the compound_state-
ment, if the value of the expression is equals to the value of one of the constant 
expressions in the case labels, execution continues with the statements with that la-
bel, as if a  goto statement to that label had occurred. If no  case constant_ex-
pression: is equals to expression, execution continues at the default: label, if 
there is one, otherwise execution continues after the  switch’s  compound_state-
ment.

Any statement within the  compound_statement or its sub-statements can be la-
beled with one or more case constant_expression: labels or with the default: 
label. The constant_expression values must all be different, the default: label 
can be used at most once. An example of the switch statement follows:

bool is_white_space(byte b) {
    switch (b) {
    case ' ':                   // space
    case '\t':                  // tab
    case '\n':                  // newline
    case '\r':                  // carriage return
        return true;
    default:
        return false;
    }
}

The order of the default: and case constant_expression: labels is immate-
rial, execution proceeds to the default: label if the value of the switch expression 
is not equals to any of the  case  constant_expression: labels,  irrespective of 
their order. Sometimes for brevity when multiple case apply to the same statement 
they are placed in a single line.

Execution continues down the statement list, uninterrupted, as other labels are en-
countered, for example in the zero_memory_small() function shown below, which 
is a specialized function that zeros up to 7 bytes of memory.
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void zero_memory_small(ubyte mem[], size_t size) {
    assert(size <= 7);
    switch (size) {
    case 7: *mem++ = 0;
    case 6: *mem++ = 0;
    case 5: *mem++ = 0;
    case 4: *mem++ = 0;
    case 3: *mem++ = 0;
    case 2: *mem++ = 0;
    case 1: *mem   = 0;
    }
}

For example, if the value of size is 5 then 5 sequential assignments are executed. 
The purpose of this form of zeroing memory is to unroll the zeroing of small memory 
regions for performance purposes.

The  zero_memory_small() function is used by the  zero_memory() function to 
deal with the zeroing of small memory areas of up to 7 bytes in various circum-
stances. Number 7 corresponds to the value of  sizeof(ularge) - 1  on systems 
whose native types are 64 bits wide, or less.

void zero_memory(ubyte mem[], size_t size) {
    if (size < sizeof(ularge)) {
        zero_memory_small(mem, size);
        return;
    }
    size_t x = cast(size_t) mem % sizeof(ularge);
    if (x != 0) {
        x = sizeof(ularge) - x;
        zero_memory_small(mem, x);
        mem += x;
        size -= x;
    }
    if (size >= sizeof(ularge)) {
        ularge *m = try_cast(ularge *, mem, NULL) mem; //§14.12
        ularge *endm = m + size / sizeof(ularge);
        while (m < endm) *m++ = 0;
        size %= sizeof(ularge);
        mem = cast(ubyte *) endm;
    }
    zero_memory_small(mem, size);
}

The more complicated case corresponds to zeroing bytes until a  ularge aligned 
boundary is encountered, then zeroing memory in units of ularge sized words, and 
then zeroing the leftover bytes.

The break statement causes control to be transferred after the switch statement:
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bool is_white_space(byte b) {
    bool result;
    switch (b) {
    case ' ': case '\t': case '\n': case '\r':
        result = true;
        break;
    default:
        result = false;
        break;
    }
    return result;
}

2.31   do while iteration statement

The do while statement has this syntax:

do statement while (expression)

The statement is always executed once. Then the expression is evaluated, and 
if its value is non-zero, the statement is executed again, this process is repeated un-
til the expression if false. For example:

bool prompt(char question[]) {
    char answer;
    do {
        prompt_user_y_or_n(question);
        answer = get_answer();
    } while (answer != 'y' && answer != 'n');
    return answer == 'y';
}

2.32   break and continue statements

The continue statement is used to cause control flow to be transferred to the con-
trolling part  of  the closest  surrounding iteration statement.  The use of  continue 
within the while on the left is is equivalent to the code on the right:

while (expression) {
    some_statements;
    if (expression)
        continue;
    other_statements;

}

while (expression) {
    some_statements;
    if (expression)
        goto cont;
    other_statements;
cont: ;
}

The use of continue within the for statement in the left is equivalent to the code 
one the right:
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for (initialization_expression;
     expression;
     iteration_expression) {
    some_statements;
    if (expression)
        continue;
    other_statements;

}

for (initialization_expression;
     expression;
     iteration_expression) {
    some_statements;
    if (expression)
        goto cont;
    other_statements;
cont: ;
}

The break statement is used to cause control flow to be transferred after the closest 
surrounding  iteration  statement  or  switch statement.  The  use  of  break within 
switch and  while statements  on  the  left  is  equivalent  to  the  goto based  code 
shown on the right:

switch (expression) {
case constant_expression:
    statements;
    break;
case constant_expression:
    while (expression) {
        statements;
        if (expression)
            break;
        statements;
        switch (expression) {
        case constant_expression:
            statements;
            break;
        case constant_expression:
            statements;
            break;
        }
        statements;
    }
    statements;
    break;
default:
    statements;
    break;
}

switch (expression) {
case constant_expression:
    statements;
    goto switch_end;
case constant_expression:
    while (expression) {
        statements;
        if (expression)
            goto while_end;
        statements;
        switch (expression) { //2
        case constant_expression:
            statements;
            goto switch_2_end;
        case constant_expression:
            statements;
            goto switch_2_end;
        }
        switch_2_end: statements;
    }
    while_end: statements;
    goto switch_end;
default:
    statements;
    goto switch_end;
}
switch_end:



3 - Array descriptors, tuples, and literals

“There are two ways of constructing a software design: 
one way is to make it so simple that there are obviously  
no deficiencies, and the other way is to make it so 
complicated that there are no obvious deficiencies.  
The first method is far more difficult.”

-- C. A. R. Hoare

Array descriptors are a built-in data type, they are a building block 
for the safe programming nature of COOGL. Variable length and dy-
namically allocated arrays are described in §13. Tuples are a light-
weight data structuring construct whose principal use is by functions 
that return more than one value. Literals are compile time constants.

3.1   Array descriptors

An array descriptor is a compiler implemented data type that is used to describe a  
contiguous area of memory organized as an array. The following sections introduce 
various concepts related to array descriptors and safe programming. Variable length 
arrays and other details about array descriptors are presented in chapter §13.

Traditional C arrays, variable length arrays, and array descriptors have these mem-
bers:  start,  end, and  max[N],  start points to the first element of the array and 
end points immediately after the last element of the array. The number of elements 
for the ith dimension of the array, counting from zero and numbered left to right, is  
max[i]. These members don't exist in memory at run time for traditional C arrays, 
because their values are known at compile time. An example showing some invari-
ants:

void f() {
    int a[2][3];
    assert(a.max[0] == 2 && a.max[1] == 3 &&
           a.start == &a[0][0] && a.end == &a[1][2] + 1);
    assert(a.end - a.start == a.max[0] * a.max[1]);
}

A declaration that uses the [] declarator, without a size between the square brack-
ets, specifies an array descriptor, for example:

int tab[10];
void f() { int desc[] = tab; }
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The use of [] in C, where it is used as an alternative syntax to declare an argument 
of pointer type, is source code compatible when COOGL, see §S.6.

For source code compatibility with C, assuming a unidimensional array (a tradi-
tional C array, or a variable length array, or an array descriptor), the array name is the 
same as the array’s  start value. The name of a multidimensional array is not the 
same as its start value. For example:

int tab[10];
void f() { int desc[] = tab; increment(desc); }
void increment(int *p) { (*p)++; }

The last element of tab is tab[9], desc.end points to memory that is not part of 
tab. The range of memory described by an array descriptor is the open ended range: 
[start,  end) starting with start and up to, but excluding, end. Array descriptors 
are capable of describing empty arrays, i.e. when start is equals to end. For every 
array descriptor it is always the case that start <= end.

An array descriptor can also describe a sub-array within another array or another ar-
ray descriptor, for example:

int tab[10];
int desc[] = tab;
int last5[] = &tab[5];
int same_last5[] = &desc[5];

Both, last5 and same_last5, refer to the last 5 elements of tab[10]. The sub-ar-
ray descriptor is specified by the address of the starting element, and extends to the  
last element of the array.

An array descriptor that refers to elements within an array that doesn't extend to the 
last element of the array can be specified with two indexes separated by a colon, i.e. 
[first : after], first is the index of the first element, and after is the index 
of the element after the last element that is to be included in the array descriptor. The 
number of elements included is after - first. For example:

int tab[10];
void example() {
    int first5[] = &tab[0 : 5];     // tab[0] ... tab[4]
    int last5[] = &tab[5 : 10];     // tab[5] ... tab[9]
    int last2[] = &last5[3 : 5];    // tab[8] ... tab[9]
    int cut = 3;                    // cut in 1 ... 8
    int low[] = &tab[0 : cut];      // tab[0] ... tab[cut-1]
    int high[] = &tab[cut : 10];    // tab[cut] ... tab[9]
    int empty[] = tab[4 : 4];       // empty array descriptor
}

The creation of an array descriptor with indexes that are out of bounds or where the 
first index is greater than the after index causes a run time exception, see §14.28. 
Note that the range specified in &tab[5 : 10]  does not specify an out of bounds in-
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dex by specifying 10, it doesn’t raise an exception, because the index of the last ele-
ment to be included in the array descriptor is 9 (i.e. 10 - 1) which is a valid element 
within the array. 

Array descriptors can be walked with various iteration loops, even if they describe 
an empty range:

void work(int desc[]) {
    for (index i = 0; i < desc.max[0]; i++) use(desc[i]);
    for (index i = desc.max[0]; --i >= 0;) use(desc[i]);
    for (int *p = desc.start; p < desc.end; ++p) use(*p);
    for (int *p = desc.end; --p >= desc.start;) use(*p);
}

Walking the array backwards with pointers, as shown above in the last for loop, is 
correct, the equivalent code in C is supposed to be undefined behavior in C89 and its 
descendants (even though on modern systems the generated code does what is ex-
pected) because the value of  p, when it is decremented so that it is not greater or 
equals to desc.start, undefined behavior in the C standard in this area is to accom-
modate hardware that uses segment based addressing. Idiomatically this kind of code 
does occur in practice, and because it only has trouble with obsolete segmented archi-
tectures, this C89 restriction is not imposed by COOGL, which is not supported on 
those obsolete segment based systems.

3.2   Multi dimensional array descriptors

Multi-dimensional array descriptors are declared with multiple empty square brack-
ets. An example declaration and use of a multi-dimensional array descriptor:

void work(int m[][][]) {
    for (index i = 0; i < m.max[0]; i++)
        for (index j = 0; j < m.max[1]; j++)
            for (index k = 0; k < m.max[2]; k++)
                use(m[i][j][k]);   // walk array with indexes
    for (int *p = m.start; p < m.end; ++p)
        use(*p);                   // walk array with pointer
}

The array int d[4][2], is initialized to have sequential values from 0 to 7:

int d[4][2];
void work() {
    for (index i = 0, n = 0; i < 4; i++)
        for (index j = 0; j < 2; j++)
            d[i][j] = n++;
    int sub3by2[][] = &d[1];        // same as &d[1 : 4]
    int middle2by2[][] = &d[1 : 3];
    int tab[] = &d[1][0];           // same as &d[1][0 : 2]
}
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Shown below in increasing address order:

d[0][0]: 0

d[0][1]: 1

d[1][0]: 2

d[1][1]: 3

d[2][0]: 4

d[2][1]: 5

d[3][0]: 6

d[3][1]: 7

The memory layout of the sub3by2[][] sub-array is:

sub3by2[0][0]: 2

sub3by2[0][1]: 3

sub3by2[1][0]: 4

sub3by2[1][1]: 5

sub3by2[2][0]: 6

sub3by2[2][1]: 7

The layout of the middle2by2[][] sub-array is:

middle2by2[0][0]: 2

middle2by2[0][1]: 3

middle2by2[1][0]: 4

middle2by2[1][1]: 5

The first two sub-arrays above have the same number of dimensions as their base 
array. The tab[] subarray has a single dimension:

tab[0]: 2

tab[1]: 3

3.3   Array descriptor access restrictions

Array descriptors are value like objects, almost as if they were addresses, but in-
stead of specifying a single object in memory, they describe multiple objects and their 
organization in memory, i.e. the indexing structure through which they are accessed.

The address of an array descriptor can not be obtained by using the address-of oper-
ator, &, with an array descriptor, such use obtains the address of the data that the ar-
ray descriptor refers to, i.e. the underlying array entries.
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Array descriptors that are not initialized explicitly are initialized by the language to 
a zero element array. Array descriptors can be declared in any context, other than as a 
member of a structure or a union. Array descriptors can only be changed in a con-
trolled way. Their start, end, and max[] members can not be changed individually.

3.4   Restricted array descriptors

The array elements that the array descriptor refers to,  and its  start,  end,  and 
max[N] members can only be accessed when the array descriptor is a local non-static 
variable of a function. All other array descriptors: members of an object, static local 
variables, or global array descriptors are restricted array descriptors. The only opera-
tions that can be performed on restricted array descriptors are:

 use as an argument to a function

 use as the return value of a function

 use as the source value in an assignment to another array descriptor

 use as the target of an assignment from another array descriptor

Copying a restricted array descriptor to a local non-static variable ensures that the 
copy of the array descriptor can not be changed concurrently by another thread, or 
even another function invoked by the same thread, because its address can not be ob-
tained. Forcing all accesses to occur through a non-static local array descriptor vari-
able allows for compiler optimization without concern for address aliases or concur-
rency aspects related to the array descriptor itself.

3.5   Restricted array descriptor accesses are atomic

Assignment to non-local array descriptors is performed in such a way that it occurs  
atomically. Concurrent code referencing the array descriptor sees all of the old values 
of its members, or all of their new values, not a combination of them.

The implementation of the atomicity of assignment and of fetching of restricted ar-
ray descriptors is platform dependent, see §1L.3 for the Intel/AMD x86/64, ARM 64 
bit, and IBM POWER implementations. The performance characteristic of these op-
erations can be assumed to be highly optimized by the compiler, and is very close to 
the performance of the memory operations that would be required if the operations 
where not atomic, see §1L.3 for performance measurements.

The performance of fetching or storing local array descriptors with  N dimensions 
corresponds to the inline memory load or store operations of their underlying mem-
bers: start, end, max[0], … max[N].

Atomicity of non-local array descriptor accesses do not lead to deadlocks in their 
implementations, for example, when two global array descriptors, a[] and b[], are 
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assigned concurrently in separate threads as: a = b and b = a deadlock never oc-
curs, what is atomic is the individual fetching and storing of them, not the whole 
combined fetch and store operations. The implementation of a = b;  can be consid-
ered to be equivalent to the following pseudo code, without any function call over-
head, where t is a temporary local array descriptor:

t = b.atomic_fetch();
a.atomic_store(t);

3.6   Array and array descriptor indexing is checked

Indexed accesses to arrays and array descriptors are checked, either at run-time, or 
at compile time. The example functions, above, have their indexed accesses checked 
at compile time, invariants about the values of i, j, and k are used to determine, at 
compile time, that all the array element accesses are safe.

Run time checks are performed when it is impossible to determine, at compile time, 
under global compilation, if the array element accesses are safe. The compiler pro-
duces a warning when it generates run time checks as a reminder to the programmers 
that they have not provided evidence that the access is always valid. For example in:

int rand_val(int array[][]) {
    return array[random_index()][random_index()];
}

An out of bounds memory access attempt causes an out of bounds exception. The 
behavior of run time exceptions is explained in §14.33.

3.7   Arrays of arrays vs multidimensional arrays

Conceptually, C does not have multidimensional arrays, what it has is unidimen-
sional arrays. When multiple dimensions are required in an array, what is technically 
declared are arrays of arrays. For example, int a[2][4] , declares a to be an array 
with two elements, each one of those two elements is an array of four elements. This 
technical and conceptual view is completely proper for C and it is the simplest way to 
support multi-dimensional arrays in the C programming language.

It is important to emphasize that in COOGL the declaration int a[2][4], declares 
a multidimensional array, in this case a two dimensional array. It behaves exactly as a 
C array, for example the expression a[1] refers to the second subarray of 4 elements 
within the a array. For all practical purposes there is no difference between both lan-
guages, the only difference is that in the context of array descriptors, a concept that 
does not exist in C, when a is used in a context that requires an array descriptor to be 
created by the compiler, for example to pass it as an argument to a function that re-
quires an array descriptor, the array is considered as a whole to derive and produce a 
multidimensional array descriptor.
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It is important also to indicate that there is no such thing as array descriptors of ar-
ray descriptors. Multidimensional array descriptors are not implemented as arrays of 
array descriptors. Jagged arrays, can be simulated in C with arrays of pointers that 
point to arrays of various sizes, for example:

int a0[11], a1[22], *a[2] = {a0, a1};

Where accesses like a[0][10] and a[1][20] are valid and look like a two dimen-
sional array reference. Apart from an intellectual curiosity jagged arrays are not used 
often. Syntactically they could be declared in COOGL as an array of array descrip-
tors:

int a0[11], a1[22], a[2][] = {a0, a1};

Note that unless a was a non-static local declaration array indexing expressions 
such a[1][20] would cause a compilation error because the array descriptor a[1] is 
a restricted array descriptor and can not be used in such an expression.

3.8   Array descriptor use in expressions

A non-static local array descriptor can be used in expressions to refer to sub-arrays 
of fewer dimensions. For example:

int example(int a[], int u[][], int x[][][]) {
    int *b = a;        // a stands for &a[0]
    int v[] = u[0];    // u[0] is a unidimensional sub-array
    int y[][] = x[0];  // x[0] is a two dimensional sub-array
    int z[] = x[0][0]; // x[0][0] is a unidimensional sub-array
}

3.9   Pointer arithmetic and array descriptors

Pointer arithmetic is only allowed if it is known, at compile time, that the pointer  
points within an array, for this knowledge to be available, the compiler must be able 
to determine, at compile time, that the pointer is associated with a specific array de-
scriptor. For example, the following code, which is unsafe C code, is safe  COOGL 
code because the bound check to avoid accesses past the array is inserted by the com-
piler:

large total_until_zero(int a[]) {
    large sum = 0; // add all values until a zero value is seen
    int *p = a;
    int v;
    while (v = *p++)
        sum += v;
    return sum;
}

The bound checking C11 code generated by the compiler is shown below. If the 
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bound check fails a run-time exception is raised, see §14.33:

large total_until_zero(int *a, size_t a__max0) {
    int *auto__a__end = a + a__max0;
    large sum = 0; // add all values until a zero value is seen
    int *p = a;
    int v;
    while (v = (lang__bound_check(p, auto__a__end), *p++))
        sum += v;
    return sum;
}

If it is possible that a pointer at a specific code location, could refer to array ele-
ments within more than one array, a compilation error is produced, for example:

int example(bool use_a, int a[], int b[]) {
    int sum = 0;
    int *p = use_a ? a : b;
    int v;
    while (v = *p++)  // error: unknown array bounds
        sum += v;
    return sum;
}

All such code can be corrected by using an additional local array descriptor to sat-
isfy this requirement, this simplifies the compiler and doesn't seem to be too burden-
some to require the programmer to address this.

3.10   Use of pointers based on array descriptors is always safe

Use of pointers based on an array descriptor are always safe, see  §14, run time 
checks are performed when it is impossible to determine, at compile time, if a pointer 
is safe, as shown above.

Iterating over the array elements within an array or array descriptor, walking it for-
wards or backwards, through pointers or indexes (e.g. walking from 0 to  max[0]), 
does not introduce run time checks. For example:

large total(int a[]) {
    large sum = 0;
    for (int *p = a, *end = a.end; p < end; ++p)
        sum += *p;
    return sum;
}

Run-time checks are not required in this case because the array descriptor can not 
be affected by any other code path.  By construction array descriptors always refer-
ence valid memory, or if the array descriptor has not been initialized, it refers to a 
dummy zero element array.
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There is always an array element before and another one after every array, with the 
exception of arrays within a  struct,  union, or a  class struct see  §7.6, which 
must follow the structure layout of the C compiler. An array within a struct can not 
have its address used to form an array descriptor unless the array descriptor is for a  
subset of the array that guarantees that there is at least one extra element prior to the 
array descriptor described sub-array and another one after it. In consequence, for ev-
ery array descriptor, objects at  start-1,  and at  end always exist, they are either 
properly constructed objects or uninitialized objects set to their deconstructed values, 
see  §14.22, dereferencing pointers whose values are  start-1 or  end is not unde-
fined behavior, it could be a programming error or it could be what the programmer 
intended depending on what they are doing.

3.11   Functions that return array descriptors

Functions that return array descriptors, for example trim_space() receives an ar-
ray descriptor for a character array, and returns an array descriptor that refers to the 
same memory but excluding and leading or trailing spaces. Note that the array de-
scriptor declarator for the unidimensional array descriptor,  [], for the return value 
goes to the right of the function’s argument list:

char trim_space(char buf[])[] {
    index first = 0, max = buf.max[0], last = max;
    for (; first < max; ++first)
        if (!libc.isspace(buf[first])) break;
    while (last > first)
        if (!libc.isspace(buf[--last])) break;
    return &buf[first : last + 1];
}

A function that returns a two dimensional array descriptor:

int d[4][2];
int middle2by2()[][] { return &d[1 : 3]; }

3.12   Implicit array descriptor for string literals

When a pointer to a character type is initialized to point to a string literal, an im-
plicit  array  descriptor  is  associated  with  the  pointer,  allowing  pointer  arithmetic 
within the string literal according to the array descriptor:

char g() { char *p = "dog"; p += 2; return *p; }

3.13   Tuples

Tuples are a lightweight data aggregation construct, their principal use is in func-
tions that return multiple values. Functions that return a tuple value, variables that are 
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tuples, and type definitions for tuple types are allowed. Tuple expressions are used to 
form tuples and to extract values from tuples. Tuple declarations allow for the tuple 
members to be initialized. A function that returns a tuple value, whether the tuple is 
declared by a typedef or declared as part of the function declaration itself has the 
members of the tuple as local variables that are used to built the value returned byt 
the function. The value of a tuple is the value of its last member. All of this is shown 
in the following example.

typedef tuple [int fd = -1, error_t err = libc.EINVAL] fderr_t;

fderr_t topen(char name[], int mode) {
    if (!name) return;            // same as: return [fd, err];
    if (name[0] == '\0') return [-1, libc.ESRCH];
    if ((fd = libc.open(name, mode)) == -1)
        return [-1, libc.errno];
    return [fd, 0];
}

tuple [ int fd = -1, error_t err = libc.EINVAL]
    topen2(char name[], int mode) return topen(name, mode);

void use() {
    tuple [int fd, error_t e] r = topen("file", libc.O_RDONLY);
    fderr_t fe = topen("file", libc.O_RDONLY);
    if (fe.error == -1) return;
    int x;
    error_t e;
    if ([x, e] = topen("file", libc.O_RDONLY)) return;
    fe = [x, e];
    assert(fe.fd == x && fe.err == e);
    [x, e] = [-2, 0];
    assert(x == -2 && e == 0);
    int a = 1, b = 2;
    [a, b] = [b, a];  // result unspecified, values not swapped
}

A function can be invoked with tuple values as part of the argument list, the func-
tion itself can specify its arguments with, or without tuples, the only requirement is 
that all the arguments be passed and that the types match. For example:

void f(int x, error_t e){ ... }
void g(fderr_t fe){ ... }
void use() {
    fderr_t fe;
    f(fe); f(-1, libc.EINVAL);
    g(fe); g(-2, libc.ENOENT);
}
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3.14   Literals

A literal declaration is a declaration of a compile time constant,  its initialization ex-
pression must be a constant expression

lit int N = 100;
lit int NBPB = 8;             // number of bits per byte
lit ularge ULARGE_MSB = 1uLL << (sizeof(ularge) * NBPB - 1);
lit double PI = 3.1415926535897932384626433832;

Note that in C const is used to indicate that a data item can not be modified, it is 
not used to declare constants.
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[ This page left blank to work around issue in LibreOffice that is causing an empty  
blank page to be created in the next chapter in between its pages ]



4 - Classes and inheritance

“The fundamental mechanism for decomposition in ALGOL 
60 is the block concept. As far as local quantities are 
concerned, a block is completely independent of the rest of 
the program. … A block is a formal decomposition, or 
“pattern”, of an aggregated data structure and associated 
algorithms and actions. …”

“The notion of block instances leads to the possibility of 
generating several instances of a given block which may co-
exist and interact, such as, for example, instances of a 
recursive procedure. This further leads to the concept of a 
block as a “class” of “objects”, each being a dynamic 
instance of the block, and therefore conforming to the same 
pattern.”

“An extended block concept is introduced through a “class” 
declaration and associated interaction mechanism such as 
“object references” (pointers), “remote accessing”, “quasi-
parallel” operation, and block “concatenation.”

-- Ole-Johan Dahl, Bjørn Myhrhaug, and Kristen Nygaard

COOGL unifies the notions of class and function. A class is a func-
tion,  and a  function is  a  class.  Member functions are  a  simplified 
form of nested functions.

4.1   Contract specification: vital, require(), and promise()

A class declared vital indicates that every object that could be created by the lan-
guage specification must be created, without any object being removed because of 
various optimizations related to value objects. A function declared  vital indicates 
that its value must always be used, it can not simply be ignored, see §9.10 and §9.11. 
If vital is used, it must immediately follow the functions declaration and prior to its 
body or defer or redef keywords, see §4.6, §6.4, and §6.6.

A function, or a class, can include in its declaration a contract specification, an idea  
borrowed from the Eiffel programming language. The requirements for the function 
to be called appropriately, i.e. the requirements on the function's caller, can be option-
ally specified in a require(expression) specification, immediately following the 
function's declaration (or vital if that is specified) and prior to the function's prom-
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ise() specification, if any, or otherwise prior to its body (or defer or redef key-
words). The promises made by the function or class to its caller can be optionally  
specified in a  promise(expression) specification after the  require() specifica-
tion, if any, or otherwise after the function's declaration (or  vital if that is speci-
fied), and prior to the functions body (or  defer or  redef keywords). The require-
ments and promises are the pre-conditions and post-conditions to the function invoca-
tion, or to the construction of an object. The expression must be true for a correct 
execution, if they are not true a run-time exception is raised, see §4.2 for an example. 
A compile time error might occur if it can be determined that the expression is al-
ways false. See  §4.8 for contract specification details that relate to inheritance and 
member function redefinitions.

4.2   Class declarations are function declarations

The  class keyword is used for the declaration of a class. The fundamental data 
structure abstraction mechanism in  COOGL is the  class. Use of  struct is for C 
language interfacing and traditional C style programming in COOGL.

A class declaration provides the data content of objects of the class type, and it is 
also the function used to construct such objects. Class stack, shown below, allows 
its user to pass the maximum stack capacity as an argument to the constructor, this is  
an improvement over the earlier version shown in §1.3. The constructor sets *error 
to a non-zero error value if the stack construction failed.

class stack(size_t max, int *error) promise(empty()) {
    priv int entries[];
    entries.create(max);        // allocate space for stack §13.8
    priv int *sp = entries;
    *error = !sp ? libc.ENOMEM : 0; // ENOMEM error if no space
    return;

    pub void deinit() { entries.destroy(); }  // free space §13.8
    pub bool empty() { return sp == entries; }
    pub bool full() { return sp == entries.end; }
    pub void push(int v) require(!full())
                         promise(!empty()) { *sp++ = v; }
    pub int pop() require(!empty()) { return *--sp; }
    pub int top() require(!empty()) { return sp[-1]; }
    pub int count() { return sp - entries; }
}

4.3   Accessibility modifiers and member declarations

Variables declared with an accessibility modifier, i.e. pub, priv, or prot, are data 
members of the class. Data members declared without static, are  non-static data  
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members, i.e. they are per object data. Data members declared with static are static 
members of the class, a single instance of the static member data exists, irrespective 
of the number of objects of the class that exist. Both entries and sp are non-static  
data members of  stack.  Their  lifetime is the lifetime of the object  that contains 
them. Local variables and arguments of the constructor function, such as  max and 
error, are not members of the object being constructed, they are not members be-
cause they were declared without an accessibility modifier. 

A function argument can also be declared as a member, this allows for the common 
case of matching constructor arguments and members to be unified as shown below 
for this modified stack and its new member max. 

class stack(priv size_t max, int *error) promise(empty()) {
    // ... rest unchanged ...
}

A public member is declared with the  pub accessibility modifier, which makes it 
accessible from outside of the class, the member is part of the class specification, 
code that isn't part of the class code can access pub members. A private member is 
declared with the  priv accessibility modifier, which renders it inaccessible by any 
code other than the class constructor and its member functions, priv members exist 
only to implement the class functionality, for example  entries and  sp in  stack 
above. See §6.7 and §6.8 for more on accessibility modifiers. The bytes static data 
member added to stack below:

class stack(size_t max, int *error) promise(empty()) {
    priv int entries[];
    entries.create(max);
    priv int *sp = entries.start;
    *error = sp ? libc.ENOMEM :
                  (bytes += max * sizeof(int), 0);
    return;

    priv static size_t bytes = 0;
    pub void deinit() {
        if (entries.start != entries.end) {
            bytes -= entries.max[0] * sizeof(int);
            entries.destroy();
        |
    }
    pub static void info() {
        on ("memory used: "; bytes; '\n') print();
    }
    // ... rest unchanged ...
}

Total memory allocated internally for the entries of all stack objects is tracked in 
bytes. The lifetime of the priv static bytes  member is the lifetime of the class 
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itself, which is the lifetime of the program execution, unless stack is in a dynami-
cally loaded module, in that case its lifetime starts at module load time and ends at 
module unload time. The ability to have members is not a special feature of classes,  
non-class functions can have them as well, this is explained in §4.15.

Members must be declared within the outermost block of a function or class decla-
ration, i.e. they must be declared within the block that is the class or function body; 
member variables can also be declared as arguments. Members can not be declared 
within compound statements, or within statements subordinate to other statements, 
for example, within the statement that is executed subordinate to an if statement.

The notions of members and member declarations have complementary notions, lo-
cal entities and local declarations, also known as non-member entities and non-mem-
ber declarations. Local entities are the arguments and other entities that were declared 
within a class, or a function, without pub, priv, or prot.

Access to a static member does not require an object of the type of the class to be 
provided because the member is global to the class, it is not a member that is per ob-
ject. A static member can be accessed through the class type name or through an ob-
ject. Like any other member, access to static members is subject to its accessibility  
modifier.

4.4   Object declarations and decl

An object declaration and its construction is a combination of the declaration syntax 
and the function invocation syntax, as shown below for s. Note that when the con-
struction function requires arguments at object declaration time, the declaration must 
be preceded by the  decl keyword or by an accessibility modifier  (if  declaring a 
member), to make it clear that it is a declaration, and not just a function invocation:

void test() {
    int error;
    decl stack(100, &error) s;
    if (error) libc.abort("s construction failed");
    s.push(1);
    assert(!s.empty());
    int v = s.pop();
    assert(s.empty() && v == 1);
    s.info();
    stack.info();
}

4.5   Member functions

A member function does not have access to non-member entities of the class con-
structor, for example, the  error argument of the  stack constructor function. The 
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lifetime of  local variables ends when the constructor function returns, whereas the 
object, i.e. the entity formed by the members, continues to exist until the object is de-
structed, at a later time.

A non-static member function of a class can access all of its members, irrespective 
of whether they are static or non-static. Non-static member functions operate on ob-
jects of the class type, they implicitly refer to the object's members. Non-static mem-
ber functions can only be invoked on objects.

Static member functions can only access static members of the class. When a static 
member function is invoked from a function that is not one of its member functions, 
it can be invoked using the class name or an object of the class. For example, in 
test(), above,  s.info() uses the  s object to invoke the static member function 
info() which makes that invocation indistinguishable from s.pop(), it doesn't syn-
tactically reveal that what is being invoked is a static member function. The second 
invocation stack.info() uses the class name stack, instead of an object name.

The classname.member form of member access can only be used to access static 
members. To access non-static members an object has to be specified. For example:

void test() { stack.pop() } // error: pop() requires an object

An object on which to pop()was not specified, resulting in a compilation error.

4.6   Introduction to inheritance and member function redefinition

Inheritance declarations in  COOGL are member declarations with the  inherit 
modifier, the member is usually unnamed. For example, polar inherits from point:

class point(priv double x, priv double y) {
    pub int print() { 
        int n = on ("x="; x; " y="; y) print();
        return lang.on_int_count_result(n, 4);     // see §9.2
    }
}
class polar(double x, double y) {
    pub inherit point(x, y);
    priv double ro = libm.sqrt(x * x + y * y);
    priv double teta = libm.atan2(y, x);
    return;

     pub int print() redef {
        int n = point.print();
        if (n <= 0) return n;
        n = on (" ro="; ro; " teta="; teta) print();
        return lang.on_int_count_result(n, 4);     // see §9.2
    }
}
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The polar class, inherits from point, it adds polar representation in radians. The 
print() member is redefined to show both representations, note the redef above.

Use of point and polar:

int main() {
    decl point(1.0, 0.0) p1;
    decl polar(1.0, 1.0) p2;
    on ("p1: "; p1; "   p2: "; p2; "\n") print();
}

The output is:

p1: x=1 y=0   p2: x=1 y=1 ro=1.414214 teta=0.785398

The term named inheritance refers to inheritance declarations that include an iden-
tifier, polar uses unnamed inheritance in its inheritance of point. Use of named in-
heritance is usually not required unless the inheritance causes name clashes. When-
ever there are name clashes, name disambiguation is required, named inheritance can 
be used to resolve these ambiguities, as shown later in §6.13.

4.7   Access to redefined member functions

Note, above, that the redefined print() member function in polar is allowed to 
access  the  original  print() member  function  of  point by  specifying  the  class 
name,  point,  and  using  the  dot  operator  on  it  to  select  point(),  i.e. 
point.print().  Only  member  functions of  the  class  that  redefined  the member 
function are allowed to use this syntax, it can not be used to access redefinitions 
made earlier by its ancestor classes. For example,  colored_polar can not access 
point.print():

class colored_polar(double x, double y, priv rgb_t color) {
    pub inherit polar(x, y);
    return;
     pub void print() redef {
        //point.print(); // error: point.print() inaccessible
        int n = polar.print();
        if (n <= 0) return n;
        n = on (" color="; color) print();
        return lang.on_int_count_result(n, 2);     // see §9.2
    }
    pub void print_base() { polar.print(); }  // valid
}

4.8   Contract specifications and member function redefinitions

The contract specification of a member function applies also to redefinitions of the 
member function. A contract specification can only be specified for a member func-
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tion within the class declaration where the function was first declared, not in redefini-
tions of the functions in classes that descend from it. If a member function is de-
clared, deferred or not, without a contract specification, then subsequent redefinitions 
of the member function can not specify a contract for them. This restriction in con-
tract specifications makes them very simple, it might be tempting to allow relaxing 
the requirements and strengthening the promises of a redefined function, as in Eiffel,  
but it is too complex to allow choosing which contracts to honor and which to ignore.

4.9   Restrictions on constructor calls to non-static member functions

While an object is being constructed, non-static member functions can not be in-
voked on it, with one exception, a void priv non-static member function can be in-
voked as part of the final return statement of the constructor, an exception made to 
allow constructor related code to be in other functions see  §4.11.  The void priv 
non-static member function can not reference explicitly  this, see  §4.13, within its 
code and can not call other non-static member functions on the object with the excep-
tion of other  priv non-static member functions that follow these same restrictions. 
This  restriction exists  to  ensure that  member functions always operate  on a fully 
formed object, not a partially constructed object.

For the same reason, member functions can not be invoked from the destructor,  
with a related exception for modularization of a large destructor, see §5.4. Also see 
§6.14 for additional technical details about these restrictions and their relationship to 
inheritance and when pre and post-conditions are evaluated.

This  restriction on the constructor is relaxed for  member functions of non-class 
functions, a non-class function can invoke it's non-static member functions as long as 
they do not access members that have not yet been constructed at the time the mem-
ber function is invoked, they are allowed to call other non-static member functions 
that follow this same restriction.

4.10   Constructor organization

To facilitate reading a class declaration, its data members are, by convention, de-
clared towards the beginning of the  class,  unless intervening local variables and 
other code are required for the efficient construction of the members.

Another style convention is for member functions to be declared towards the end of 
the class, after a final return statement in the class constructor, which indicates 
the end of executable code and its non-static data members. Any code or non-static 
data members after the final  return statement are thus unreachable and result in a 
compilation error. Thus this final  return is a reliable indication that no additional 
constructor code follows after it, this stylistic convention assumes that there are no 
goto statements that target labels beyond that final return. If such a baroque con-
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structor is required, the label ought to immediately follow the return which could 
otherwise have been perceived as the final return statement. A better approach is to 
move the bulk of the construction work to a void priv non-static member function, 
as explained in section §4.11.

4.11   Complicated constructor and the ini() programming idiom

Classes with complicated constructors should declare a non-static member function 
and invoke it  from the class constructor to do within it  most of the construction, 
which can make the class declarations easier to read. As a convention such a member 
function is named ini(). The actual construction of the non-static members of such 
a class can not be deferred to the ini() function, thus there usually is some minimal 
construction that occurs within the constructor function itself. For example:

class stack(size_t max, int *error) promise(empty()) {
    priv int entries[];
    priv int *sp;
    return ini(max, error); // use priv void non-static member
                            // function, only allowed here §4.9
    priv void ini(size_t max, int *error) inline {
        entries.create(max);
        sp = entries.start;
        *error = !sp ? 0 : libc.ENOMEM;
    }
    // ... rest unchanged …
}

4.12   Member declarations and initialization are unified

The unification of class and function declarations allows for member declaration 
and initialization to occur in one place, which reduces errors that occur in other lan-
guages where declaration and construction must be in separate places (e.g. C++).

The  following Hanoi Towers class,  towers,  has three members of type  stack, 
which are declared and constructed based on towers ' n argument.

class towers(pub lit int n, int *error) {
    int e, e2, e3;
    priv stack(n, &e) left;
    priv stack(n, &e2) middle;
    priv stack(n, &e3) right;
    if (!e && !(e = e2)) e = e3;
    *error = e;
    if (e) return;
    for (int i = n; --i >= 0; ) left.push(i);
    // ... some other code  …
}
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Syntactically, when an object is being declared the argument list is specified as the 
argument list of the constructor function, not as an argument list associated with the 
name of the entity being declared (as is done in C++). Assuming the modified version 
of class stack, below, which only sets *error if an error occurred:

class stack(size_t max, int *error) promise(empty()) {
    priv int entries[];
    entries.create(max);
    priv int *sp = entries.start;
    if (!sp) *error = libc.ENOMEM; // only set *error on error
    return;
    // ... rest unchanged ...
}

Then the towers class, which also only sets *error on errors, is more succinct:

class towers(pub lit int n, int *error) {
    priv stack(n, error) tower[3];
    if (*error) return;
    for (int i = n; --i >= 0; ) tower[0].push(i);
}

When a declaration, such as the declaration of tower[3] above, declares more than 
one object, the constructor function is invoked multiple times, once for each object, 3 
times in this case. The expressions used as arguments to the constructor are also eval-
uated multiple times, once per invocation. In the play() function, below, variables 
toy and world had to be declared in separate declaration statements because the ar-
guments for their construction are different. The ++x expression in the declaration of 
the 7 towers, bunch[7], is evaluated once for each, so bunch[0] has 3 stacks of 1 
element each, and bunch[6] has 3 stacks of 7 elements each. When constructing the 
bunch[] array the constructor is invoked 7 times.

int play(int *e) {
    int x = 0;
    decl towers(7, &e) toy;
    decl towers(64, &e) world; // world end when solved at 1m/s
    decl towers(++x, &e) seven[7];
}                              

4.13   Object pointer:  this

Each object  has  its  own instance  of  the  non-static  class  members.  A non-static 
member function operates on a specific object, the object on which it was invoked. 
From a language implementation perspective a pointer to the object is passed as the 
first argument to the non-static member functions. A member function can access the 
members of its containing class directly, as if they were its local variables, which of 
course they are not. Sometimes access to the implicit object pointer argument is re-
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quired, the keyword  this is used to refer to it, it can be used as any other pointer 
variable with the exception that its value can not be changed. The type of  this is 
constant pointer to the class type.

For example, some buggy code is invoking  pop() on some empty stack,  stack 
has been changed, temporarily, to print this when that happens:

class stack(size_t max, int *error) promise(empty()) {
    // ... rest unchanged ...
    pub int pop() {
        if (empty())
            on ("pop() on empty() stack: this==0x"; 
                (cast(uintptr_t)this).hex(); "\n") print();
        assert(!empty());
        return *--sp;
    }
    // ... rest unchanged ...
}

The type of this within the non-static member functions of stack() is:

stack *const this

Assignment to this or taking its address is invalid, it causes a compilation error.

4.14   A stack iterator and the use of this in the class constructor

The class constructor, i.e. the class function, is not a member function of itself. A 
class constructor can be a member function of a different class, i.e. when a class is 
declared  within  another  class.  Nonetheless,  when the  class  constructor  invokes  a 
member function (see §4.9 and §4.11), the member function is invoked on the object 
that the constructor is in the process of constructing.

A class constructor does not have a this variable that refers to the object that is be-
ing constructed. A class constructor only has a this variable when the class is a non-
static member function of another class, in that case this does not refer to the object 
being constructed, it refers to another object on which the constructor was invoked as  
a member function. For example, in class iterator, a non-static member of stack:
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class stack(size_t max, int *error) promise(empty()) {
    // ... rest unchanged ...
    pub int get(size_t i) require(i < entries.max[0])
        { return sp[i]; }
    pub class iterator {
        priv size_t ix = count();
        priv stack *stk = this; // this' type is: stack *const
        pub bool end() { return ix == 0; }
        pub int get() { return stk->get(--ix); }
    }
}

The iterator constructor requires a stack object to be invoked on, as shown in 
the declaration of itor below:

int average(stack *s) {
    int count = s->count();
    if (count == 0) return 0;
    large sum = 0;
    decl s->iterator itor;
    while (!itor.end())
        sum += itor.get();
    return cast(int) (sum / count);
}

The type iterator, a member class of stack, is invoked on the *s object to con-
struct the  itor object, during  itor 's declaration:  decl s->iterator itor; .  A 
stack object  must be provided to invoke  iterator on,  because it  is a non-static 
member function of stack, iterator needs access to this to keep a copy of it in 
its stk member variable for later use by iterator 's members.

The mandatory use of decl in the declaration of itor makes it easier to identify it 
as a declaration than if the decl keyword was not required. Particularly if the expres-
sion that resulted in the stack object on which iterator was invoked was a much 
more complicated expression.

In C, the name of a function stands for a function pointer to it, using the function 
name, by itself, i.e. without parentheses, does not result in the invocation of the func-
tion, it results in the address of the function, a value. For non class functions the same 
rule applies in COOGL. For class function invocations, i.e. the invocation that is part 
of an object declaration, the use of parenthesis is not required, unless the constructor 
invocation requires arguments. Thus, the declaration of itor did not require paren-
theses to indicate that iterator was a function to be invoked to construct the object. 
In contexts other than the type used in a declaration, the class name stands for a class 
literal value, a value that refers to a type that can be used for generic programming. 
For example, when type arguments are used, the class name stands for a type, see 
§11.3.
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4.15   Functions as degenerate types and nested member functions

The fundamental difference between a class as a function and a traditional func-
tion, is that a class as a function defines a new named type, a type that can be used 
to declare variables or dynamically allocate objects. A traditional function does not 
introduce a new named type that can be used in such a way. Nonetheless, a traditional 
function does introduce a new named scope, its  static and  lit members can be 
referenced from outside the function, see §7.8. A traditional function can be thought 
of as a degenerate type for a short lived object that doesn't need to exist beyond the  
time of its construction. The type is made from the member fields declared within the 
function, just as if it were a class. When a traditional function is invoked it can be 
thought of as if the memory for the object was allocated on the run-time stack, at  
function return time the object is destroyed and the memory on the run-time stack be-
comes available for reuse.

The non-static member functions of a non-class function don’t have access to the 
underlying object through a this variable. A pointer to the object is passed to them 
with the same calling convention as when non-static member functions of a class are 
invoked, but the object itself is not accessible explicitly through this.

A member function declared within another function (i.e. nested within it) can ac-
cess  the  outer  function's  members.  Thus member functions  nested  within another 
function, in COOGL, are no different than regular member functions. Member func-
tions of other functions are  similar to nested member functions in other languages. 
Member functions of another function are allowed access only to members of the 
function that directly contains them. In this respect they are very different than the ar-
bitrarily nested functions of ALGOL68 and Pascal, where any variable or function in 
scope can be accessed, whether the variable or function is within the immediately en-
closing function or within another function that directly or indirectly encloses that 
function.

Support for arbitrarily nested functions with access to all the state of all of the en-
closing functions is of questionable value, it can make the amount of code that might  
alter the local state of a function much larger than the function's code, verifying the 
correctness  of  the function  requires  a  careful  examination  of  all  of  the functions 
nested within it to determine their hidden shared state dependencies.

The nested member functions of COOGL are simpler than nested functions in those 
languages, shared state is restricted to the function's members, and only one level of 
nested functions can access them. Their implementation is also much simpler, it is 
identical to the class member function implementation.

A common use of nested member functions is to hide functions used only to aid in 
the implementation of a function, even when no data is shared through members be-
tween them, for example:  
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void rotate(byte a[], size_t n) { // rotate n bytes to the end
    size_t size = a.max[0];
    assert(n <= size);
    priv void reverse(byte b[]) {
        for (byte t, *first = b, *last = b.end - 1;
             first < last; ++first, --last)
                 t = *first, *first = *last, *last = t;
    }
    reverse(a, n);
    reverse(a + n, size - n);
    reverse(a, size);
}

The constrained lifetime of a function call makes its object allocation and dealloca-
tion no different than the run time stack management required to allocate and free 
space  for  local  variables.  The  overheads  of  local  variables  whose  addresses  are 
passed to a function, and of function objects on which member functions are invoked, 
is the same. If more than one local variable needs to be modified by another function 
it is more efficient to make them members instead of passing multiple pointer argu-
ments.

Passing a few small (e.g. pointers, integers, floating point values, etc.) variables by 
value and returning their new values in a tuple can be faster in some circumstances, 
particularly on modern systems with their large register and dedicated register sets 
(integer registers versus floating point registers) and their calling conventions that al-
low passing several values in registers and returning several values in registers. From 
a programming cleanliness perspective, functions are more easily understood, when 
arguments and tuples are used, instead of arguments that contain pointers where val-
ues are to be returned or when members are used.

4.16   Functions with default argument expressions

Function argument declarations can include an initialization expression, a default 
argument value, used if the argument is not provided at function invocation time. The 
expression is not restricted to a compile time constant expression, it can make use of 
the values of arguments that appear before it in the argument list. For example,  a 
memory allocation function that returns an array descriptor that refers to the memory. 
The  memget() function allows for optional specification of an alignment require-
ment, its default value is computed based on the the size argument:

char memget(size_t size, bool cached = true, align =
             size >= sizeof(large) ? sizeof(large) :
             size >= sizeof(int)   ? sizeof(int)   :
             size >= sizeof(short) ? sizeof(short) : 1)[] {...}

The order of evaluation of argument expressions is not specified by the language, 
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with the exception of omitted optional arguments and the default argument expres-
sion, only in that case are the depended upon argument expressions evaluated prior to 
the omitted default argument expressions that depend on it. Invocations of a function 
that have more than one default argument can only omit the arguments from right to  
left, for example:

char p[] = memget(16, true);
char q[] = memget(16, , 1);        // error: syntax error

See §11.3 for optional arguments and generic programming.

4.17   Stringify operator #

The  #argument expression can be used to direct the compiler to create a string 
with the text representation of the expression that produce the value of  argument, 
stringifying can only occur in the default argument of a function. For example:

void assert(bool expr, char msg[] = #expr,
            char file[] = lang.file, int line = lang.line) {
    if (!expr) assert_failed(msg, file, line);
}

For another example,  puts_if(expr), see §17.



5 - Construction, assignment, and destruction

“A data structure, its internal linkings, accessing 
procedures and modifying procedures are part of a 
single module. … The formats of control blocks used in  
queues in operating systems and similar programs 
must be hidden within a control block module. It is 
conventional to make such formats the interfaces 
between various modules. Because design evolution 
forces frequent changes on control block formats such 
a decision often proves extremely costly. ... It is almost 
always incorrect to begin the decomposition of a 
system into modules on the basis of a flowchart. We 
propose instead that one begins with a list of difficult 
design decisions or design decisions which are likely 
to change. Each module is then designed to hide such 
a decision from the others. Since, in most cases, design  
decisions transcend time of execution, modules will not  
correspond to steps in the processing.”

-- D. L. Parnas, December 1972

COOGL provides  execution  control,  through  member  functions, 
when an object is constructed, initialized from another object, initial-
ized by default, assigned, and destructed. The relevant member func-
tions are introduced briefly in the first sections of this chapter, the fi-
nal sections of this chapter revisit these member functions in the con-
text  of  a  string class  example  while  describing  other  details  of 
them.

5.1   Value like objects

A value-like object is an object that is both initializable and reinitializable. An ob-
ject that can be initialized at declaration time from another object of the same type is 
said to be initializable. Initialization is a complementary form of construction. An ob-
ject that has been previously constructed that can be reinitialized, i.e. assigned, from 
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another object of the same type is said to be reinitializable.

Initialization of an object from another object also occurs when:

 an argument to a function is initialized from another object of the same type;

 the value returned by a function is initialized from a return expression.

The fundamental types (e.g. char, int, float, etc.) are value like, for example:

int factorial(int n) {
    assert(n >= 0);
    int v = n;      // v initialized with value of n
    while (--n >= 2)
        v = v * n;  // v reinitialized with value of v * n
    return v;       // return value initialized with value of v
}
void use(int x) {
    // f initialized to value returned by factorial(x)
    // argument n of factorial initialized with x
    int f = factorial(x);
}

Structures and unions are also value like, irrespective of the type of their members, 
they can be initialized and reinitialized.

Arrays are not value-like, an array can not be: initialized from another array, passed 
by value, returned as a function value, or assigned to another array. But an array that 
is a member of a structure or union is initialized and reinitialized as part of the initial -
ization and reinitialization of a structure or union that contains them.

Pointers and array descriptors are value like. For pointers the value that is value-
like is the pointer not the memory that the pointer points to. Similarly, for array de-
scriptors, the value that is value-like is the description and organization of the mem-
ory that the array descriptor refers to, not the memory itself, so when an array de-
scriptor is assigned to another one, or when passed as an argument to a function, etc. 
the underlying memory that the array descriptor refers to doesn't change. For exam-
ple:

void example(int a[]) {
    int v = 0;
    decl int(++v) positive[10];
    v = 0;
    decl int(--v) negative[10];
    negative = positive;  // error: array assignment is invalid
    int p[] = positive;
    int n[] = negative;
    n = p;                // n and p both refer to positive[],
}                         // negative[]’s values don’t change 
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5.2   Abstract classes, interfaces and deferred member functions

The following concepts are introduced informally in this section. They are used in 
subsequent sections, they are explained in detail in chapter §6, the following brief de-
scriptions are adequate for now.

An abstract class is a class that is not allowed to be used to declare objects of 
its type, pointers to objects of its type are allowed, it is meant to be used as the base  
class for other classes, see §6.1. Inheritance from a class, abstract or not, is specified 
with an inherit declaration.

An interface is a collection of member functions, very similar to a class declara-
tion, other interfaces and classes can choose to provide the interface, see §6.2. An in-
terface can not declare non-static data members. The declaration that a class, or an in-
terface, provides the functionality of an interface is specified with an is declaration. 
The use of inherit and is is not interchangeable, this makes clear at the declara-
tion location the nature of the entity being inherited, i.e. a class (abstract or other-
wise), or an interface, respectively. An interface can not be used used to declare 
objects of its type, pointers to objects of its type are allowed to be declared. A class or  
an interface that specifies another interface with an is declaration is said to provide 
the interface.

Interfaces and abstract classes are a specialized form of class declaration, with vari-
ous restrictions for the purpose of preventing the complexity that arises from uncon-
strained multiple-inheritance as occurs in C++.

A  deferred member function is a member function whose implementation is not 
provided, defer; is specified instead of the function’s body, see §6.4. A class with 
deferred member functions must be declared as an  abstract class. The deferred 
member function might be declared within it, or inherited by it from another abstract 
class, or the deferred member function being a member of the class because it was 
part of an interface that the class provides, directly, or indirectly by providing an in-
terface. If all the deferred member functions were obtained by the class through in-
heritance or by providing an interface, and they are all actually implemented by the 
class, then the class doesn't have to be declared as an abstract class.

5.3   Destructor, the deinit() member function

Inheritance is presented fully in  chapter  §6. Inheritance is used informally in the 
following  sections.  Object  deinitialization  is  provided  by  implementing the 
deinit() member function.  All  classes that don’t explicitly  inherit  from another 
class inherit implicitly from class void, the signature for deinit() comes from it:

pub abstract class void {
    pub void deinit() defer;
}
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The deinit() member function is special, if it is not implemented by the program-
mer, it is generated by the compiler automatically, and even if implemented by the 
programmer, some additional code might still be generated at the end of it by the 
compiler, see §5.12.

5.4   Destructor can not call non-static member functions

The destructor is not allowed to make use of non-static member functions, with the 
exception of single call to a priv void non-static member function which must be 
invoked as the first statement of the destructor. The priv void non-static member 
function can not reference explicitly this within its code, and can not call other non-
static member functions with the exception of priv non-static member functions that 
follow these same restrictions. The relaxation of the restriction is to allow for the 
deinit() member function to have some of its code modularized into various non-
static member functions that might be required for other destruction purposes. These 
restrictions also apply to init_deinit() and to reinit_deinit(), see §5.8.

The  promise(expression) post-condition of the constructor is allowed to call 
member functions because the object is fully formed when the constructor returns, 
which  is  the  time  at  which  the  promise() expression is  evaluated.  The  re-
quire(expression) pre-condition expression of the destructor is allowed to in-
voke member functions because the object is still well formed prior to its destruction.

See §6.14 for additional technical details about these restrictions, and their relation-
ship to inheritance and when pre and post-conditions are evaluated.

5.5   Brief introduction to namespaces

A namespace is an outermost declaration of a named scope within which other dec-
larations can be made, its purpose is to reduce the number of names introduced into 
the global name space. Namespaces are open in the sense that declarations can be 
added to a namespace from different locations in a source code file and from multiple 
source code files with the extend namespace , see §8.7, syntax shown below. In the 
code that follows, in §5.6, various interfaces are declared within the lang namespace 
which is where language related declarations are located.

5.6   Default construction, init_default() static member function

Classes that support the ability of being initialized by default, i.e. without a value 
being  specified,  must  provide  the  defaultable() interface  and  implement  the 
init_default() static member function:
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extend namespace lang {
    pub interface defaultable(genre void type) {
        pub static void init_default(type raw *to) defer;
    }
}

This interface is a generic interface, see §11, its member function’s arguments are 
based on a type specified as an argument to the interface. The type of the to argu-
ment of init_default() is type raw *, is a pointer to the raw object. A pointer 
to raw memory is a pointer that refers to memory that has not yet been initialized, it  
does not refer to a fully formed object. Calling non static member functions through 
the to pointer is invalid. Section §5.13 describes pointers to raw memory. 

5.7   Value classes, init() and reinit() and member functions

Objects of a type that implement the interface  initializable are almost value-
like in so far as initialization from other objects is concerned. For an object to be 
reinitializable (i.e. assignable), they also need to implement the  reinitializable 
interface.

extend namespace lang {
    pub interface initializable(genre void type) {
        pub void init(type raw *to) defer; // init to from this
        pub void init_deinit(type raw *to){// redef to optimize
            this->init(to);
            this->deinit();
        }
    }
}

These interface are generic interfaces see §11, its member function’s arguments are 
based on a type specified as an argument to the interface.

extend namespace lang {
    pub interface reinitializable(genre initializable type) {
        pub void reinit(type *to) defer;
        pub void reinit_deinit(type *to) { // redef to optimize
           if (this == to) return;
           this->reinit(to);
           this->deinit();
        }
    }
}

5.8   Optimization with init_deinit() and reinit_deinit()

The  compiler  invokes  the  compound  member  functions  init_deinit() and 
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reinit_deinit() whenever  possible  instead  of  invoking  init() followed  by 
deinit() or reinit() followed by deinit(), respectively. The implementations 
of init_deinit() and reinit_deinit() are shown above. The programmer can 
redefine these member functions for optimization purposes, if required.

5.9   The lang.value interface

The interface, lang.value, is used by value-like classes:

extend namespace lang {
    pub interface value(genre void type) {
        pub is initializable(type);
        pub is reinitializable(type);
        pub is defaultable(type);
    }
}

Class point, a point in 2 dimensional space, is a value-like type:

class point(pub float x, pub float y) {
    pub is lang.value(point);
    pub void init(point raw *to) redef { to->x = x; to->y = y;}
    pub void reinit(point *to) redef { to->x = x; to->y = y; }
    pub static void init_default(point raw *to) redef {
        to->x = to->y = 0.0;
    }
}

As described in §6.6, the redef keyword must be used when an inherited member 
function is redefined, as shown above in the redefinitions of init(), reinit(), and 
init_default().

5.10   Member functions specified by lang.value

The member functions specified by lang.value are summarized below for refer-
ence (after expanding in place the interfaces that lang.value is based on):

pub interface value(genre void type) {
    pub static void init_default(type raw *to) defer;
    pub void init(type raw *to) defer;
    pub void init_deinit(type raw *to) defer;
    pub void reinit(type *to) defer;
    pub void reinit_deinit(type *to) defer;
}

Note that classes get deinit() from class void, not from lang.value.
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5.11   A string class example

The following sections implement a simple  string class, it  doesn't use generic 
programming for the type of its characters to support strings of either char or unic 
characters. See §1L.6 for a similar class, str, the COOGL library generic string.

class string(char cstr[]) {
    pub is lang.value(string);     // strings are values
    index size = cstr.max[0];
    if (size > 0 && !cstr[size - 1)) --size; // don't copy '\0'
    priv index base = 0;           // [base, base+len) is value
    priv index len = size;
    priv char buf[];
    if (size > 0) {
       buf.create(size);
       assert(buf.start);          // no error handling for now
       libc.memcpy(buf, cstr, size);
    }
    return;                                       // continued below

5.12   Object deinitialization: deinit()

 The function void deinit() is the class destructor, string 's deinit() is:

    pub void deinit() redef { buf.destroy(); }   // continued below

Object deinitialization occurs, i.e. the deinit() function is invoked, when:

 A scope where a non-static object was declared as a local variable is exited. 
This includes objects passed by value as arguments to functions, which are 
deinitialized when the function returns.

 An object is a member of another object and that object is being deinitial-
ized.

 The execution of an expression that includes objects returned as the values of 
functions has been fully evaluated, these temporary value objects are deini-
tialized after the full evaluation of the expression.

 Functions are classes, thus regular non class functions can also have have a 
deinit() member  function.  When  a  non  class  function,  that  has  a 
deinit() member function returns, its  deinit() member function is in-
voked.  The  object  implied by the non class  function's  non-static  member 
variables is destroyed at function return time. For more about the role of a 
non class function's deinit() see §5.23.

 Invoked explicitly, this usually only occurs when an object that was allocated 
from a memory heap is being destroyed, e.g. internally as part of the imple-
mentation of the destroy() member function.
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 The destructor can also be invoked explicitly for a member object of a class. 
This is only valid from the destructor of the class whose member is being deini-
tialized, in that case, the compiler omits the compiler generated object destruc-
tion that it would otherwise generate as part of the destructor of a class. Com-
piler generated deinit() invocations are done in the reverse order of the mem-
bers construction, this is an order determinable at compile time, i.e. an order that 
is not affected by the flow of control within the constructor. A constructor can 
not return leaving some of its members unconstructed, doing so causes a compi-
lation error.

 If the object is a global or static variable, when the program terminates normally, 
i.e. through a return from main() or an invocation of libc.exit().

 At module unload time, if the object is a global or a static variable, when the 
module that declared it is unloaded.

The compiler synthesizes the deinit() function if an implementation is not pro-
vided and if any data member of the class needs to be deinitialized. The synthesized 
deinit() deinitializes its members in the reverse order of the order in which they 
were declared. If the deinit() function is provided, but it doesn't explicitly deini-
tialize some of its non-static members, then the ones that were not explicitly deinitial-
ized have their deinitialization synthesized, the synthesized deinitialization occurs af-
ter all user provided code in the deinit() function has been executed.

5.13   Pointer to raw memory

A pointer to raw memory, for example the to argument of init_default() (see 
§5.6) is a pointer to the raw memory of an object, prior to being initialized, it does 
not refer to a fully formed object. Calling non static member functions on a pointer to 
a raw objects is not allowed.

5.14   Some string operations

String operations shown below can be used to: obtain its length; trim n characters 
from the start or the end; find the first occurrence of a character, from the start or  
from a specified start index, or the last occurrence backwards from the end or from 
a specified  last index; and relationally compare against another  string. To effi-
ciently support trimming, and later other operations such as appending and prepend-
ing, a subset of the buf[] array descriptor is described by [base, base + len), it 
specifies the current value of the string.



5.14 Some string operations          107

    pub index length() { return len; }                 // string
    pub index trim(index n) {
        if (n < len) return base += n, len -= n;
        return base = len = 0;
    }
    pub index trim_end(index n) {
        if (n < len) return len -= n;
        return base = len = 0;
    }
    pub int compare(string *other) { // this vs other <0, 0, >0
        size_t min = len < other->len ? len : other->len;
        int result = libc.memcmp(&buf[base],
                                &other->buf[other->base], min);
        if (result != 0 || len == other->len) return result;
        return len < other->len ? -1 : 1;
    }
    pub index find(char c, index start = 0) {
        string(&buf[base : base + len], /*contruct on:*/ to);
        if (start >= len) return -1;
        if (start < 0) start = 0;
        for (index i = base + start; i < len; ++i)
            if (buf[i] == c) return i - base;
        return -1;
    }
    pub index find_last(char c, index last = len - 1) {
        if (last < 0) return -1;
        if (last >= len) last = len - 1;
        for (index i = base + last; i >= base; --i)
            if (buf[i] == c) return i - base;
        return -1;
    }                                             // continued below

5.15   Initialization constructor: init()

The init() member function's purpose is to allow the value of an existing object, 
this, to be used to initialize an unconstructed object, whose address is provided in 
the to argument. The implementation of init() for the string class follows:

    pub void init(string raw *to) redef {                // string
        string(&buf[base : base + len], /*contruct on:*/ to);
    }                                             // continued below

The init() member function is invoked implicitly when:

 an existing object is used to initialize another object at declaration time, this 
includes the case of function argument initialization at function call time; or

an existing object is returned as the value of a function and it is used to initialize an-
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other object, possibly a temporary object managed by the compiler.

The  string() constructor is invoked explicitly by  init() to do its work, note 
that an additional argument to string() is specified, the string declaration only has 
one argument, but two arguments are specified, the second one, to, is used to specify 
the memory that is to be used by string() to construct the object on.

The type of to is string raw *, raw means that the memory for the object has 
not been initialized, the object can't be used as an initialized object until all of its data 
members have been initialized, if a function needs to be invoked to aid in the initial-
ization, then the argument of that function must also be a pointer to the  raw type. 
Non static member functions can not be invoked on a raw object pointer.

To ensure safety, the compiler prevents the memory that to references from being 
treated as an initialized object, for example by preventing the pointer to be given to 
other functions through a non-raw pointer, unless it can prove that the object at that 
point has become fully initialized. Access to the object's non-static data members 
within init() is controlled, they can not be accessed unless the compiler can deter-
mine that they have already been initialized. Non-static data members can be explic-
itly initialized by invoking, init(), or init_default() on them. Similarly, mem-
bers that are pointers or array descriptors can not be dereferenced or copied unless 
they have been initialized.

When an object's declaration has an initializer expression the class constructor in-
vocation can not specify constructor arguments, for example:

void example() {
   decl string("hello") s;         // string() invoked
   string t = s;                   // s->init(&t) invoked
   decl string("wrong") e = s;     // error
}

5.16   Brief preview of strings of generic value types

Generic classes are presented in §11. Briefly, a generic class, interface, or function, 
has an argument list that consists of two sub-lists. The first sublist is a list of type ar -
guments, i.e. arguments declared starting with the genre keyword; the second sublist 
is the traditional argument list of the class constructor or function.

A generic string class, for example str below, that allows the base character type 
to be specified when an object is declared, and that allows an object to be initialized 
from another object, must specify the generic type arguments when an object is ini-
tialized from another object, it must not specify non-generic constructor arguments 
(as shown in the incorrect declaration of e in example() below).

The first argument, type, of the generic str class is a type argument, it must im-
plement the lang.value interface, i.e. it must be value-like:
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class str(genre lang.value type, type val[]) { ... }
void example() {
    decl str(char, "hello") s;      // str() invoked
    decl str(char) t = s;           // s->init(&t) invoked
    decl str(char, "wrong") e = s;  // error
}

5.17   Object slicing along incorrect type boundaries is not allowed

Initialization of an object is allowed only if init() exists, and only from another 
object of the same exact type. Initialization from an object whose type inherits from 
the object's type is not allowed. If the type is not knowable at compile time, the com-
pilation fails. There is no notion of object slicing along incorrect type boundaries in 
COOGL. Object slicing (for example in C++) occurs when an object whose type de-
scends from another type is used to initialize, or to be assigned to, an object of an an-
cestor type. If such operations were allowed information would be lost, at a mini-
mum, and even worse, the information that is not lost might be invalid.

In general, objects are not passed by value or returned as the value of functions, in-
stead pointers to them are passed, preventing object slicing is not particularly burden-
some. Most objects that are passed and returned by value are simple value objects or 
handle objects for which this restriction doesn’t pose a problem.

5.18   Pseudo constructors

The integer() function, together with an implicit invocation of  init(), can be 
used as a pseudo-constructor to construct a  string from an  int, as shown in the 
example() function below:

    pub static string integer(int i) {                   // string
        char m[sizeof(int) * 3], *p = m + sizeof(m);
        do
            *--p = i % 10;
        while (i /= 10);
        return string(p);
    }                                             // continued below

Code that makes use of init():

void example() {
    string("hello") s;            // string("hello") invoked
    string t = s;                 // init() invoked
    string u = string.integer(7); // init() might be invoked
}

When  integer(7) is  invoked, it  returns as  its  value the object  constructed by 
string(p). Then init() is invoked on that object to perform the initialization of 



110        Construction, assignment, and destruction Chapter 5

u, the temporary object returned by integer(7) is then destroyed. That object con-
struction and its immediate destruction is wasteful. The compiler is allowed, by the 
language definition, to remove temporary objects that are used to initialize another 
object and are then immediately destructed. A class whose objects are precious and 
should not be subject to this optimization should be declared vital, see §9.11.

When a function returns an object of a user defined class by value, the location 
where the object is to be placed is given as a hidden argument to the function. In this  
case the address of u is given to integer() which then uses that address as the raw 
memory onto which to construct the object constructed by the return string(p) 
statement. Thus, in example() above, init() is not actually invoked to initialize u.

5.19   Default construction

Default construction for string:

    pub static void init_default(string raw *to) redef { // string
        char empty[];
        string(empty, to);
    }                                             // continued below

The declaration of empty uses init_default():

string empty;        // init_default()
string("hi") hi;     // constructor, string(), invoked
string ciao = hi;    // init() invoked

5.20   Object reinitialization: reinit()

The function void reinit(type *to), is invoked on an object when it is to be 
assigned to another object that has been previously initialized. Continuing with the 
string example:

    pub void reinit(string *to) redef {                  // string
        if (this == to) return;   // Assigning to itself.
        to->deinit();             // This code is incorrect 
        init(to);                 // for assignment to itself.
    }                                             // continued below

Assignment to another object is an operation on the source object, the argument to  
reinit() is the destination object, the object being assigned to. This makes the sig-
nature of reinit() similar to the signature of init(). An example use of init():

void example() {
    string("hello") h; // initialized by: string()
    string("world") w; // initialized by: string()
    string t = h;      // initialized by: h->init(&t)
    t = w;             // reinitialized by: w->reinit(&t) 
}
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Assignment to an object is allowed only if void reinit()  exists, and only if both 
objects are of the same exact type. If the type is not knowable at compile time, the 
compilation fails. There is no notion of object slicing in COOGL.

5.21   Optimizing assignment of returned values: reinit_deinit()

In the assignment to pin, below, example() passes the address of the raw memory 
for a temporary object where number() is to store the object returned by it. The as-
signment of that temporary object to pin, is immediately followed by the destruction 
of the temporary object:

string number(int n) {
    lit size_t N = sizeof(int) * 8 / 3 + 5;    // overestimated
    char buf[N], *p = &buf[N];
    uint u = n > 0 ? n : -n;
    *--p = 0;
    // not assert(p >= &buf[1]), 1 digit + 1 '-' (if n < 0)
    for (; assert(p >= &buf[2]), u > 0; u /= 10) {
        *--p = u % 10;
    if (n < 0) *--p = '-';
    return string(buf);
}
string pin;
void example(int n) { pin = number(n); }

The construction of the temporary object, its use as the source of the assignment to 
pin, and its immediate destruction is a source of overhead that can be minimized, if 
required,  by  implementing  reinit_deinit().  The  reinit_deinit() member 
function  will  be  invoked,  if  present,  when  it  would  have  invoked  from-
>reinit(to) immediately followed by from->deinit(). For string, below, it is 
faster to take over the source value being assigned than to make a copy of it followed 
by the destruction of the source object:

    pub void reinit_deinit(string *to) redef {           // string
        to->base = base;
        to->len = len;
        to->buf = buf;
    }                                             // continued below

5.22   Optimizing initialization from returned values: init_deinit()

In the initialization of x, below, example() passes the address of the raw memory 
for a temporary object where string.integer(n) is to store the object returned by 
it. The assignment of that temporary object to x, is immediately followed by the de-
struction of the temporary object:

void example(int n) { string key = numer(n); }
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The construction of the temporary object, its use as the source of the assignment, 
and its immediate destruction is a source of overhead that can be minimized, if re-
quired, by implementing reinit_deinit(). The reinit_deinit() member func-
tion will be invoked, if present, when it would have invoked  from->reinit(to) 
immediately followed by  from->deinit(). For string, below, it is faster to take 
over the source value being assigned than, to make a copy of it followed by the de -
struction of the source object:

    pub void reinit_deinit(string *to) redef {           // string
        to->base = base;
        to->len = len;
        to->buf = buf;
    }                                             // continued below

5.23   Regular function's deinit() and retval

Regular functions (i.e. non-class functions) can also have a deinitialization func-
tion, i.e. a deinit() member function, which is a convenient place for cleanup code 
common to various return paths, it is invoked when the function returns.

The  retval keyword is a compiler managed local variable, accessible within the 
deinit() member function of a non-void regular function, and within a  prom-
ise() contract of the function. It is a pointer to the value returned by the function. 
Its type depends on the type of the value returned by the function. For example:

error_t work() {
    pub void deinit() {
        // the type of retval here is: error_t *retval;
    }
}

Extending the class stack with a trypush() function:

extend class stack {
    pub bool trypush(priv int value) {
        priv int cnt = count();
        priv stack *stk = this;
        if (full()) return false;
        push(value);
        return true;
        priv void deinit() { assert(!stk->empty() &&
                                    (!*retval && stk->full() &&
                                     cnt == stk->count() ||
                                     value == stk->top() &&
                                     cnt + 1 == stk->count()));
        }
    }
}
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The retval keyword is similar to the this keyword in the sense that it is known 
and managed by the compiler. The value of retval can not be changed, e.g. to make 
it point to something else, nor can its address be obtained through  &retval.  The 
trypush() function, below, pushes value if there is space on the stack. It returns 
true to indicate that the value was pushed, false otherwise.

The deinit() of trypush(), above, does various postcondition checks to test the 
operation. For deinit() to be able to reference stk, cnt, and value, they must be 
members of  trypush().  For  deinit() to reference the  stack object that  try-
push() operates on it is saved in the stk member. Nested functions, including their 
promise() post conditions, can only access the members of their directly enclosing 
function.

The retval keyword refers to the address of the value being returned by the func-
tion, the value being returned should not be affected because that usually makes the 
code obscure and hard to follow, but the language doesn’t mandate that it not be 
changed. The value returned might be an object, it is possible to further affect the ob-
ject. Affecting the returned value is discouraged, it should only be done for sound 
systematic reasons, for example error injection testing.

5.24   Object arguments and return values

C allows struct and union variables to be: assigned, initialized, passed by value 
as arguments, and returned as the value of a function. The meaning of these opera-
tions is very simple, the underlying memory is copied, it makes the C type system 
more orthogonal. Copying structures through raw memory copies can make no logi-
cal sense, for example a structure that can be within a list with previous and next 
pointers as part of the structure.

Performing raw memory copies by default on objects of a user defined class type, 
is inappropriate. Object copying related to these operations is under programmer con-
trol, by implementing the  lang.value interface, and providing the member func-
tions init() and reinit(). If raw copying is appropriate, it can be implemented in 
those functions, but COOGL does not make that the default behavior.

5.25   Literal members

A literal member, i.e. a literal declared within a class as a member, is implicitly a 
static member. Literal members can not be redefined through redef.
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6 - Abstract classes, interfaces, and inheritance

“The class concept … is a remodeling of the record 
class concept proposed by Hoare. ... A prefix notation 
is introduced to define subclasses organized in a 
hierarchical tree structure. The members of a class are  
called objects. Objects belonging to the same class 
have similar data structures. The members of a 
subclass are compound objects, which have a prefix 
part and a main part. The prefix part of a compound 
object has a structure similar to objects belonging to 
some higher level class. It can itself be a compound 
object.”

-- Ole-Johan Dahl and Kristen Nygaard

Inheritance declarations are member variable declarations with the 
modifier  inherit, the name of the variable can be omitted. Named 
inheritance allows for name clash resolution when required. Accessi-
bility modifiers dictate the set of classes that are aware of the inheri-
tance. The pub and priv modifiers lead to fully public or completely 
private inheritance. Accessibility modifiers allow inheritance relation-
ships to be visible to subsets of classes, a form of partial revelation.

An interface is a specialized class declaration that doesn’t have 
non-static data members. A class can inherit from a single class, it can 
only have a single base class. A class can implement any number of 
interfaces.

6.1   Abstract classes and concrete classes

An abstract class is a class declared with abstract class, abstract class declara-
tions can inherit from other classes. If a class contains deferred member functions, 
then it must be declared as an abstract class.

A concrete class is a class that is not an abstract class, a concrete class is a class that 
is declared with class, not with abstract class, furthermore all of the member 
functions of a concrete class must specify their code, none of them can be a deferred 
member function.
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6.2   Interfaces

An interface is a specialized class that uses interface instead of class, interface 
declarations are not allowed to have non-static data members. Interfaces specify a set 
of operations that can be implemented by unrelated classes that provide the function-
ality specified by the interface. Usually all the member functions declared by an in-
terface are deferred member functions, but they don’t have to be.

Conventionally most interfaces have names that end in able. Interfaces usually con-
vey an ability, something that a class that implements the interface is capable of do-
ing, for example: allocatable, serializable, readwritable, seekable, initializable, reini-
tializable, etc.

Interfaces can have literal data members. Specifically, literal data members that are 
arguments to the interface function allow choosing of variations or customization 
of an implementation obtained through the interface at the time the use of the inter-
face is specified. For example, see the arguments to lib.creatable for run-time ar-
ray creation support in §13.8.

6.3   Single inheritance and multiple interfaces

A class can inherit from up to one class, whether concrete or abstract, and can im-
plement any number of interfaces. An  interface can only implement other inter-
faces, it can not inherit from a class. These restrictions make the language very sim-
ple and the object memory layout trivial, the complexity morass of multiple inheri-
tance in C++ is avoided, while allowing objects to provide multiple unrelated inter-
faces while being part of an inheritance hierarchy. See §XXX about preclass, and 
prefix class inheritance, a limited form of multiple inheritance that is used to imple-
ment cross-cutting functionality across many types, used to implement various as-
pects of language safety and various polymorphic dispatch mechanisms.

Inheritance from a class is specified with the inherit modifier. Inheritance from 
an interface is specified with the is modifier. For example:

class polar(double xx, double yy) { // changes to polar, §4.6 
    pub inherit point(xx, yy);      // point declared in §4.6
    pub is lib.creatable(polar);    // provides creatable APIs
    ... // rest unchanged
}

The class polar inherits from point and provides the lib.creatable interface, 
which allows polar objects to be allocated dynamically at run time:

int main() {
    point *p = polar.create(-1.0, -1.0);
    p->print();
}
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The object created is of  polar type even if its address is stored in a pointer to 
point. Polymorphic invocation of print() ensures that polar 's print() member 
function is invoked, instead of invoking point 's print(). The output is:

x=-1 y=-1 ro=1.414214 teta=-2.356194

6.4   The defer and redef function modifiers

 Abstract classes and interfaces usually don't  implement their member functions. 
Unimplemented member functions use the defer keyword followed by a semicolon, 
instead of the function body. The defer keyword only applies to member functions 
and member class declarations. Global functions and non-member nested functions 
can not defer their implementations.

An example of member function redefinition follows, total_stack inherits from 
stack,  it keeps the total sum of the values stored on the stack:

class total_stack(size_t max, int *error) {
    pub inherit stack(max, error);
    pub large tot = 0;
    return;

    pub large total() { return tot; }
    pub void push(int v) redef {
        stack.push(v);
        tot += v;
    }
    pub int pop() redef {
        int v = stack.pop();
        tot -= v;
        return v;
    }
}

Type  total_stack inherits  from  stack,  thus  &s is  a  valid  argument  to 
pop_all() even though s is of type total_stack:

void pop_all(stack *s) {
    while (!s->empty()) s->pop();
}
void work() {
    int error;
    total_stack(10, &error) s;
    assert(!error);
    s.push(1); s.push(2); s.push(3); s.push(4); s.pop();
    assert(s.total() == 6);
    pop_all(&s);
}
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6.5   Single inheritance and multiple interfaces example

A larger example follows, it uses both interfaces and a class hierarchy as part of the 
design of the file system type independent layer in a UNIX-like operating system, it 
uses these interfaces: node, dir, file, fifo, bdev, cdev, rdwr, and rdwrat.

The rdwr interface specifies the notion of being able to be read and written se-
quentially:

interface rdwr {
    pub size_t read(byte buf[], size_t n) defer;
    pub size_t write(byte buf[], size_t n) defer;
}

The rdwrat interface specifies the notion of being able to be read and written 
sequentially, or read written at a specific file offset location:

interface rdwrat {
    pub is rdwr;
    pub size_t readat(byte buf[], size_t n, off_t off) defer;
    pub size_t writeat(byte buf[], size_t n, off_t off) defer;
}

The node interface has several deferred member functions:

interface node {
    pub enum flag_t { exec=1, write=2, read=4, trunc=8, ... };
    pub file *is_file() { return NIL; }
    pub dir  *is_dir()  { return NIL; }
    pub fifo *is_fifo() { return NIL; }
    pub bdev *is_bdev() { return NIL; }
    pub cdev *is_cdev() { return NIL; }
    pub err_t open(flag_t flag, cred_t *cred) defer;
    pub void  release() defer;
}

A member function, whether deferred or not, of an inherited class (or provided by 
an interface in an is declaration), can be redefined in a descendant class. To ensure 
that the programmer knows that the function is being redefined, a plain function re-
definition causes a compilation error, the redef modifier must be used as part of the 
function declaration, as shown below for is_dir():

interface dir {
    pub is node;
    pub dir *is_dir() redef { return this; }
    pub err_t remove(name_t *name) defer;
    pub file *create_file(name_t *name, cred_t *cred) defer;
    pub dir  *create_dir (name_t *name, cred_t *cred) defer;
    pub fifo *create_fifo(name_t *name, cred_t *cred) defer;
    pub node *lookup(name_t *name) defer;
}
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A previously defined function might be redefined to be deferred in a descendant 
class, in which case both redef and defer must be used.

A node provides the notion of a file system entity such as a file, a directory, a  
named pipe (also known as a fifo), a block device, or a character device, each of 
which is specified by a specialized interface : dir, file, fifo, bdev, and cdev. 

interface file {
    pub inherit node;
    pub file *is_file() redef { return this; }
    pub is rdwrat;
}
interface fifo {
    pub inherit node;
    pub fifo *is_fifo() redef { return this; }
    pub is rdwr;        // only sequentially read pr write
}
interface bdev {
    pub inherit node;
    pub bdev *is_bdev() redef { return this; }
    pub is rdwrat;
}
interface cdev {
    pub inherit node;
    pub cdev *is_cdev() redef { return this; }
    pub is rdwrat;
}

Operating systems include support for multiple file system types, for example, disk 
based file systems, network file systems, removable optical media file systems, flash 
file systems, etc. Each file system implementation would define a concrete class to 
represent its file system nodes, and would derive from it concrete classes to represent 
its directories, files, and so forth. For example a network file system, such as NFS, 
might define these classes:
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class nfs_node {
    prot nfs_handle_t handle;
    prot nfs_fs_t *fs;
    ...
}
class nfs_file {
    pub inherit nfs_node;
    pub is file;
}class nfs_dir {
    pub inherit nfs_node;
    pub is dir;
}
class nfs_fifo {
    pub inherit nfs_node;
    pub is fifo;
}

 From the perspective of the file system independent components of the operating 
system (high level file system system calls, program execution support, etc) any file 
system entity is accessed and manipulated through pointers to objects that provide 
certain interfaces (node, file, dir, etc.), without any knowledge of the underlying 
classes used by each file system type in its implementation.

6.6   Redefining static member functions

The defer and redef keywords serve the same role for static member functions.

6.7   Accessibility modifiers

There are three accessibility modifiers: pub,  priv, and prot. They are used with 
classes, functions, and interfaces, described in the following sections. They are also 
used with namespaces and modules, see §8. Access to members declared pub is un-
restricted. Members declared priv are only accessible by the members of the class or 
interface, priv is used to hide implementation details of the class or interface.

Members of a class or interface that are internal to it, but that must be accessible to  
classes that inherit from the class or that implement the interface are declared prot. 
For example assuming the class stack, from §4.2, with the entries and sp mem-
bers  changed from  priv to  prot,  and the  rest  of  the  class  unchanged,  users  of 
stack are unaffected by this change:

class stack(size_t max, int *error) promise(empty()) {
    prot int entries[];
    prot int *sp = entries.create(max);
    // ... rest unchanged …
}
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Class opstack, below, inherits from stack, it uses entries and sp to provide an 
operate()member function to provide fast access to at least 1 and at most 3 ele-
ments on the stack, it allows those top 3 stack entries to be accessed directly, it addi-
tionally allows a valid number of elements to be pop() 'd from an opstack in a sin-
gle operation. Assume that the performance of the  operate() member function is 
critical and that access of arbitrary memory is to be avoided. To make opstack as 
fast as possible, its operate() member function is inline, see §10.3, which would 
allow its function pointer argument to be expanded in line as well, when possible.

The  opstack implementation is simplified by allocating three extra entries in the 
stack and then adjusting the number of entries to the number that the user actually  
specified, thus ensuring that extra dummy memory is always addressable at  sp-1, 
sp-2, and sp-3, even if the opstack is empty:

class opstack(size_t max, int *error) {
    pub inherit stack(max + 3, error);
    if (*error) return;
    entries[0] = entries[1] = entries[2] = 0;
    sp += 3;
    return;

    pub size_t count() redef { return stack.count() - 3; }
    pub bool empty() redef { count() == 0; }
    pub typedef size_t (*operation)(int cnt, int *first,
                                    int *second, int *third);
    pub void operate(operation op) inline {
        size_t cnt = count();
        size_t n = op(cnt, sp - 1, sp - 2, sp - 3);
        assert(n >= 0 && n <= cnt);
        sp -= n;
        assert(sp >= entries.start + 3 && sp <= entries.end);
    }
}

The  count() and  empty() non-static member functions were redefined to com-
pensate for the extra 3 entries. The evaluation of the  promise(empty()) made by 
class stack only occurs after the construction of  class opstack is complete. 
The  empty() member function invoked in the  promise() is the one redefined by 
class opstack, see §6.14.

6.8   Accessibility modifiers versus inherit and is declarations

Members inherited from the base class are visible outside of the derived class with 
the most restrictive access that results from combining the accessibility modifiers of 
the members of the base class and the accessibility modifier of the member through 
which the inheritance is expressed.
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Similarly, members provided by an interface specified in an is declaration are visi-
ble outside of the entity that implements the interface, a class or another interface,  
with the most restrictive access that results from combining the accessibility modi-
fiers of the members of the interface specified in the is declaration and the accessi-
bility modifier of the is declaration.

The syntax: pub !inherit can be used to declare a static member function that is 
not to be inherited by a class that inherits from the class, see §11.11 for an example.

6.9   Member access aliases

The  following declaration  syntax,  where  .member2 through  .memberN are  op-
tional, indicates that name stands for the series of member accesses specified on the 
right hand side of the = operator. 

alias name = member1.member2 … .memberN;

These member accesses must be strictly contained members within the subordinate 
classes, structures, or unions, no hidden memory references are allowed. It is valid  
for a memberX to be an array indexed by a constant expression as long as it is a com-
pile time dimensioned array, not a pointer, nor an array descriptor, nor a variable 
length array, see §13. The xyz declaration is valid only if x and z are traditional C 
arrays:

alias xyz = x[0][3].y.z[7]

This construct is used to replace one of the uses of C #define, used to pretend that 
an inner structure or union member is an outer level member of an outer structure or 
union. Having alias in the language allows symbolic debuggers to receive cut and 
pasted source code, for example to print an expression, without the programmer hav-
ing to do the  #define expansion.  The  memberX fields themselves can also be de-
fined through other alias definitions.

An  alias declaration  doesn't  completely  address  the  whole  class  of  #define 
name substitution possibilities. If indirection through pointers and run time array in-
dexing was supported, then those would be addressed as well. The rationale for these 
restrictions and the prohibition against indirection is to force the programmer to be 
more careful about what they are doing. Any requirements beyond the ones met by 
alias are not supported, it is best to force the programmer to do the data structure 
splitting job completely, instead of hiding the required indirection through a hidden 
indirection behind an alias declaration. Allowing indirection would lead to hidden 
costs behind what would otherwise seem like plain member accesses. It is a bad idea 
to have something in the language whose cost cannot be trivially understood by look-
ing at its use. With the limitations imposed on alias, the cost of member references 
is always a compile time constant expression offset relative to a register, i.e. a cost 
that is no different than the cost of accessing a regular member.
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The scope of the identifier declared by  alias is the scope within which it is de-
clared. The scope within which the name is introduced must be such that the series of  
member accesses for which it stands corresponds to existing members and sub-mem-
bers accessible from the scope that declared the alias. If the scope is global then 
member1 must be a global variable, not a member.

An alias declaration introduces a new name for a member, the access to the un-
derlying member can be modified through an accessibility modifier, i.e. pub, priv, 
or prot. The alias accessibility modifier, can be used to allow access to members 
that the containing class can access, but that would otherwise not be accessible to 
code outside of the class.

An example of this is shown below. The queue class allows for insertion and re-
moval from its head and tail through  insert_at_head(),  remove_from_head(), 
insert_at_tail() and remove_from_tail(), it also provides access to the entry 
at the head or tail of the queue through head_value() and tail_value().

class queue(size_t max, int *error) require(max > 0)
                                    promise(empty()) {
    priv int entries[];
    entries.create(max);
    *error = entries ? 0 : libc.ENOMEM;
    priv size_t free = max;
    priv int *head = entries.end - 1, *tail = entries.start;
    return;

    pub void deinit() { entries.destroy(); }
    pub bool empty() { return free == entries.max[0]; }



124        Abstract classes, interfaces, and inheritance Chapter 6

    pub bool full() { return free == 0; }
    pub int head_value() require(!empty()) { return *head; }
    pub int tail_value() require(!empty()) { return *tail; }
    pub void insert_at_head(int v) require(!full()) {
        --free;
        if (++head >= entries.end) head = entries.start;
        *head = v;
    }
    pub int remove_from_head() require(!empty()) {
        ++free;
        int v = *head;
        if (head == entries.start) head = enries.end;
        --head;
        return v;
    }
    pub void insert_at_tail(int v) require(!full()) {
        --free;
        if (tail == entries.start) tail = entries.end;
        *--tail = v;
    }
    pub int remove_from_tail() require(!empty()) {
        ++free;
        int v = *tail++;
        if (tail == entries.end) tail = entries.start;
        return v;
    }
}

A stack class, functionally equivalent to the stack class from prior examples can 
be implemented with alias declarations, as shown below. Members of the q mem-
ber, are selectively renamed and made public by stack. A drawback from this is that 
the interface that stack exposes is not easily understood, the queue interface has to 
be examined for that.

class stack(size_t max, int *error) promise(empty()) {
    priv queue(count, error) q;
    return;
    pub alias empty = q.empty;
    pub alias full  = q.full;
    pub alias top   = q.head_value;
    pub alias push  = q.insert_at_head;
    pub alias pop   = q.remove_from_head;
}

The interface extraction option of the compiler, described in §2, produces the fol-
lowing output for the stack interface, which is easy to understand:
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class stack(size_t max, int *error) promise(empty()) {
    pub bool empty() { ... }
    pub bool full() { ... }
    pub void push(int v) { ... }
    pub int pop() { ... }
    pub int top() { ... }
}

6.10   Qualified accessibility modifier

An  accessibility modifier can also be used in a class, function, or an interface to 
give access of a member to named classes, functions, or interfaces, a comma sepa-
rated list of their names, within curly braces, that follows either the pub or prot ac-
cessibility modifiers is a qualified accessibility modifier. The use of a qualified acces-
sibility modifiers are only allowed after a mandatory non-qualified accessibility mod-
ifier, which must be a more restrictive accessibility modifier than the qualified ones. 
For example:

class c {
    priv pub {a, b} int p;       // a and b see p as pub
    prot pub {a} int q;          // a sees q as pub
    priv pub {a} prot {b} int r; // a sees r as pub
                                 // b sees r as prot
    pub prot {a} int s;          // error: prot constraints pub
}

For example, the stack class, below, gives access to its private members: entries 
and sp to the walk() function:

class stack(size_t max, int *error) promise(empty()) {
    priv pub {walk} int entries[];
    entries.create(max);
    priv pub {walk} int *sp = entries.start;
    // ... rest unchanged …
}

The walk() function can access the private members, as if they were public:

typedef void (*operation)(int v, ularge arg);
void walk(stack *s, operation function, ularge arg) {
     int *p = s->sp;
     int *base = s->entries;
     while (p > base)
         function(*--p, arg);
}

If access needs to be given to an unknown set of classes, access can be given to a  
dummy public interface, which is idiomatically called intrusive, the classes or 
functions that need access specify their intrusiveness with the stack.intrusive in-
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terface, for example:

class stack(size_t max, int *error) promise(empty()) {
    pub interface intrusive {};
    priv pub {intrusive} int entries[];
    entries.alloc(max);
    priv pub {intrusive} int *sp = entries.start;
    // ... rest unchanged ...
}

The modified walk() function provides the stack.intrusive:

typedef void (*operation)(int v, ularge arg);
void walk(stack *s, operation function, ularge arg) {
     priv is stack.intrusive;
     int *p = s->sp;
     int *base = s->entries;
     while (p > base)
         function(*--p, arg);
}

A class that allows access to its members through this mechanism will be harder to 
maintain, but at least the classes, functions, or interfaces that have access to it are 
easy to identify by searching for use of stack.intrusive. The open ended access 
to some of the internal details of a class might be seen as bad design, but it is up to  
the programmer to decide to provide the access or not, it can not be forced by other  
classes without cooperation of the entity whose internals are being exposed.

The qualified accessibility modifier mechanism can be used with inherit or with 
is to make class inheritance or the support for an interface visible to some entities 
and not visible to others. These forms of constrained member, inheritance, and inter-
face visibility are referred to as partial revelation.

6.11   Single inheritance example

The following subsections implement the io abstract class and several implementa-
tions of it. An io object is a form of sequential input output end point, implementa-
tions of the io interface provide:

 Sequential input from a file and sequential output to another file.

 Network input output over a network end point.

 Message queue input output.

 Shared memory based input output across processes.

 Input and output buffering of another io object.

Classes  that  derive  from  io implement  the  member  functions  read() and 
write() which are deferred member functions of io, a deferred member is an unim-
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plemented member of a class. Syntactically, the defer keyword must be used to in-
dicate that the implementation of the function is deferred.

abstract class io {
    return;
    pub err_t read(void *mem, size_t count,
                   size_t *nread) defer;
    pub err_t write(void *mem, size_t count,
                    size_t *nwritten) defer;
    pub err_t flush() defer;
    pub void deinit() defer;
}

The bio implementation of io, shown below, is a class meant to be used as a base 
class for other classes. It provides support for  read() and  write() buffering for 
other implementations of io to use.

The arguments to the bio class include a pair of possibly NIL buf pointers used 
for buffering. If buffering of reads or writes is required, the buffer is provided exter-
nally. It is not managed by the bio class because the entity itself that makes use of a 
bio class would have better knowledge about what memory should be used. For ex-
ample, a memory mapped file, a shared memory segment, memory contiguously allo-
cated to the bio object itself, etc. Inheritance of bio from io:

class bio(priv io *other, priv buf *readbuf,
          priv buf *writebuf) {
    pub inherit io;
    priv err_t readerr = 0;
    return;
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    pub err_t write(void *mem, size_t count,
                    size_t *nwritten) redef {
        buf_t *bp = writebuf;
        if (bp) {
            if (count > bp->avail()) {
                err_t err = flush();
                if (err) {
                    *nwritten = 0;
                    return err;
                }
            }
            if (count <= bp->avail()) {
                bp->add(mem, count);
                *nwritten = count;
                return 0;
            }
        }
        // not buffered or it didn't fit after flushing
        return other->write(mem, count, nwritten);
    }                                            // continued below

The bio.write() function, above, buffers the writes if its  writebuf member is 
non-NIL. If the data to be written doesn't fit in the space available in the write buffer,  
the write buffer is flushed first. If the data still doesn't fit, the write buffer is bypassed 
and the write is performed directly, i.e. without buffering.

The flush() member function of bio follows:

    pub err_t flush() redef {                         // class bio
        buf *bp = writebuf;
        if (bp)
            while (bp->used() > 0) {
                size_t nwritten;
                err_t e = other->write(bp->base(), bp->used(),
                                       &nwritten);
                bp->buf_trim(nwritten);
                if (e || (e = other->flush())
                    return e;
            }
        return 0;
    }                                            // continued below

The internal  flush() from the  require in  deinit() is an extra safety net to 
avoid data loss when flush() was not invoked prior to the destructor invocation, the 
assert() on the error from this flush() is an additional safety net to ensure that 
those flush() errors are not ignored. Delayed read errors are ignored because con-
ceptually they occurred for data that was never asked to be read. The other pointer 
to the underlying io object buffered by bio, is not deinitialized by deinit() it is 
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not it’s responsibility.

    pub redef void deinit() {                         // class bio
        if (readbuf) readbuf->deinit();
        if (writebuf) {
            err_t error = flush();
            assert(!error);
            writebuf->deinit();
        }
    }                                            // continued below

The bio.read() member function, below:

    pub err_t read(void *mem, size_t count,           // class bio
                   size_t *nread) redef {
        char *m = mem;
        err_t err;
        size_t rd;
        *nread = 0;
        buf *bp = readbuf;
        if (bp)
            for (;;) {
                size_t used = bp->used();
                if (used > count) used = count;
                if (used) {
                    bp->remove(m, used);
                    count -= used;
                    m += used;
                }
                *nread += used;
                if (count == 0) return 0;
                assert(bp->empty());
                if (readerr) return readerr;
                if (count > bp->capacity()) break;
                rd = 0;
                err = other->read(bp->base(),
                                  bp->capacity(), &rd);
                bp->setsize(rd);
                readerr = err;
            }
        // not buffered; or after emptying it, what is
        // leftover to read is bigger than its capacity
        rd = 0;
        err = other->read(m, count, &rd);
        *nread += rd;
        return readerr = err;
    }
}                                                     // class bio
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The  bio.read() function satisfies as much of the read as possible from what is  
buffered, if any, and if what remains to be read is larger than what can be read ahead 
in the read buffer, it is read directly into the user's memory bypassing the read buffer.  
If what remains is smaller than the read ahead buffer, the read ahead buffer is filled to 
its buffering capacity, and what remains to be moved to the user's buffer is extracted 
from it.

Bio.read() does read ahead if the  readbuf is non-NIL, it is more complicated 
than  bio.write() because it deals with partial buffer reads and delayed error re-
porting to the caller. While data remains to be read the error won't be returned. The 
error will only be returned when the read ahead buffer is drained. It also deals with 
non error partial reads that don't fill the read ahead buffer to its capacity.

The UNIX file descriptor based  io implementation,  fdio, performs input output 
on a pair of UNIX file descriptors:

class fdio(priv int rdfd, priv int wrfd) {
    pub inherit io;
    return;                                      // continued below

The  fdio.read() function  is  not  shown,  it  is  similar  to  fdio.write() and 
fdio.flush() are:

    pub err_t write(void *mem, size_t count,          // class fdio
                    size_t size_t *nwritten) redef {
        size_t nw = unix.write(wrfd, mem, count);
        return nw >= 0 ? *nwritten = nw, 0 :
                         *nwritten = 0, errno;
    }
    pub void flush() redef { unix.fsync(wrfd); }
}

The bfdio derived class is a compound class that makes use of both fdio and bio 
to implement buffered UNIX file descriptor I/O. It simply compounds these other 
two while allowing its user to choose the underlying buffering memory.

class bfdio(int rdfd, int wrfd,
            buf_t *readbuf, buf_t *writebuf) {
    priv fdio(rdfd, wrfd) fdinout;
    pub inherit bio(&fdinout, readbuf, writebuf);
    return;
}

The read() and write() member functions that bfdio inherits from bio do all 
the work. A custom destructor is not required either, the destructor that is generated 
by the compiler is equivalent to the following one, destruction of members is gener-
ated in the reverse order of their construction:
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    pub void deinit() redef {      // generated by compiler for class bfdio
        bio.deinit();
        fdinout.deinit();
    }

6.12   Pointers and inheritance

A pointer to an ancestor class can be assigned a pointer to a publicly derived class. 
A pointer to an interface can be assigned a pointer to a class or another interface that  
publicly provides the interface. Assuming the classes shown in section §6.11:

err_t copy(io *src, io *dest) {
    size_t nr, nw;
    err_t err;
    byte mem[1024];
    while (!(err = src->read(mem, sizeofex mem, &nr)))
        for (; nr > 0; nr -= nw)
            if (err = dest->write(mem, nr, &nw))
                return err;
    err_t ferr = dest->flush();
    return err ? err : ferr;
}

Derived  class  pointers  are  compatible  with  the  base  class  pointer  arguments  in 
copy(), thus s and d both of bfdio type can be passed as if they were pointers to 
io:

err_t copy3into1(bfdio *s1, bfdio *s2, bfdio *s3, bfdio *d) {
    err_t e;
    if (e = copy(s1, d)) return e;
    if (e = copy(s2, d)) return e;
    return copy(s3, d);
}

6.13   Duplicate member names

COOGL has no support for any form of name overloading. A member inherited 
from a base class whose name is the same as the name of a member in the derived 
class causes a compilation error. A member of the base that is not accessible by the 
derived class, i.e. because it is priv, doesn't result in name collisions. The same oc-
curs for members of an interface that a class or another interface provides through an 
is declaration.

Duplicate  member  names  can  be  easily  addressed  by  using  named  inheritance. 
Names that are not duplicate continue to be accessible directly, duplicate members 
are not directly accessible. An  alias declaration can be used to make a duplicate 
name accessible with a different name. For example:
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class base { pub int i, pub int j; }
class derived {
    pub int i;
    pub inherit base b;      // named inheritance
    pub alias bi = b.i;
    i = bi = 17;
}
int example() {
    derived d;
    return d.i + d.bi + d.j;
}

Even though named inheritance of base occurs in derived, the j member of de-
rived is directly accessible, because it is not a subject of name collision.

Similar to the duplicate names that can occur with inheritance, providing one or 
more interfaces with or without inheritance can also cause name collisions between 
the accessible members of the interfaces themselves or the base class. Name collision 
can be addressed through named inheritance or by naming the interfaces provided in 
the  is declarations, and the names disambiguated appropriately with alias declara-
tions.

Repeated implementation of the same interface, with multiple is declarations is not 
allowed, irrespective of whether the repeated is declarations occur directly or indi-
rectly through inheritance or through intermediate interfaces. This restriction simpli-
fies the language semantics. An object either implements an interface, or not, but if it 
does there is no question about the single implementation of it, there is no need to 
choose between multiple equivalent interfaces.

6.14   Constructor and destructor restrictions and contracts

As explained in §4.9 and §5.4, non-static member functions can not be called from 
the constructor or from the destructor, other than a single call under very restricted 
circumstances.

The technical rationale for not allowing non static member functions to be invoked 
while an object is being constructed or destructed is that an object that is not fully 
formed is not an appropriate object to be operated upon by a non-static member func-
tion, particularly if the member function has been redefined, or could be redefined in 
the future, the amount of confusion and incorrect code that this can lead to is tremen-
dous. Simple questions such as the type of the object while it is being partially con-
structed would require potentially different answers at different times, which is the 
case in more complex languages such as C++. The type of objects is fixed from the  
start of their outermost constructor until it is finally destructed, in COOGL the types 
of objects never change dynamically.
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Furthermore, because of inheritance and redefinition of member functions, the post-
conditions of a constructor can not be guaranteed until the outermost object has been 
constructed.

Similarly the pre-conditions of a base class destructor can not be guaranteed while 
the destructor of the descendant class has already begun to deconstruct the object, be-
cause its invariants might no longer hold, and its implementations and redefinitions 
might have rendered the base class out of its own invariants at this time.

A base class can not ensure its post-condition, its promise(), is met if the member 
functions it depends on have been redefined. Not allowing calls to member functions 
from the constructor makes sense. Allowing calls to member functions from prom-
ise(expression) makes sense only if the expression is verified at the end of the 
construction of the outermost object, i.e. after the outermost object is fully formed, 
which is the time when the  promise() expression is evaluated, irrespective of 
which constructor defined it.

A base class can not ensure its pre-condition, its require(), is met if the member 
functions it depends on have been redefined. Not allowing calls to member functions 
from the  destructor  makes  sense.  Allowing  calls  to  member  functions  from  re-
quire(expression) makes sense only if the  expression is verified prior to the 
start of the destruction of the outermost object, i.e. before the object is began to be 
deformed from its outermost perspective, which is the time when the  require() 
expression is evaluated, irrespective of which destructor defined it.
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7 - Extension, continuation, and other class topics

“How can one check a large routine in the sense of 
making sure that it is right? In order that the man   
who checks may not have too difficult a task, the 
programmer should make a number of definite 
assertions which can be checked individually, and  
from which the correctness of the whole program  
easily follows.”

-- Alan Turing, June 24th 1950

This chapter covers miscellaneous topics about classes. A class can 
be extended independently of its declaration through the extend key-
word. The declaration of a class can be continued elsewhere, through 
the use of the continue keyword, for example to split the class code 
into multiple source code files. The  sizeofex operator can not be 
used unless the compiler can determine at compile time its value. The 
memory layout of objects is chosen by the compiler, independent of 
the declaration order of its members (unless it is a class struct). 
Declarations can not hide symbols other  than global  symbols.  The 
name lookup operator ^ looks up names within the scope of a function 
when it is used in an expression that is an argument to the function. 
Various aspects of class and array initializers are presented. Object 
oriented callbacks are supported by delegate functions.

7.1   Class extension: extend class

A class must be declared once in the set of source code files that make the compiled 
program. A class can be extended, through the extend syntax, for example, assum-
ing the stack class shown in §4.2 a popall() member function can be added:

extend class stack {
    pub void popall() { while (!empty()) pop(); }
}

The declarations within an  extend declaration are limited to member functions, 
lit, enum and static data members. The body of an extend declaration does not 
contain executable code, i.e. no additional constructor code can be added.

A class extension cannot add non-static  data  members.  Static  data  and member 
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functions can be added but only if they don't redefine anything inherited by the class. 
For  example  adding  print() to  int is  valid.  Redefining  the  write() member 
function of an io object, from §6.11, is not.

7.2   Class declaration continuation: continue class

The declaration of a class can be continued elsewhere, usually in another source 
code file, through the use of the  continue class syntax. The  continue class 
declaration can not add executable code to the class constructor, nor can it add non-
static data members to it, it is similar to an extend class declaration, but it is al-
lowed to redefine member functions inherited by the class. For example the class 
opstack can have its declaration from §6.7 continued in a separate file where both 
push() and pop() are redefined to maintain a static count of each operation:

continue class opstack {
    pub static size_t pops = 0, pushes = 0;
    pub int pop() redef { ++pops; return stack.pop(); }
    pub void push(int v) redef { ++pushes; stack.push(v); }
}

A continue class declaration is pure syntactic sugar, a continue class decla-
ration must be the only declaration within the file that contains it, unless it is located 
in the same source file that contains the class declaration. The file scope visible to the  
continue class  declaration is the same file scope that is visible to the class decla-
ration, thus from a compilation perspective this syntactic sugar could be implemented 
by appending the contents of the each  continue class declaration to the end of 
their corresponding class declaration, prior to their closing curly brace.

The purposes for the continue class syntax are two, one to allow very large classes 
to have their code split into multiple files, and to support turning regular pointer dec-
larations into smart pointer declarations, described in  §Error: Reference source not
found.

7.3   Class of pointers and array descriptors implicit declaration location

When a class is declared, the class of pointers to the class is considered to be im-
plicitly declared in the same source file. Recursively, the class of pointers to pointers 
to the class, etc, is thus also considered to be declared in the same source file. The  
same occurs for arrays and array descriptors based on the class declaration, and the 
arbitrary compounding of their declarations, for example, pointers to arrays of point-
ers to array descriptors of a class, their implicit declaration location is the file where 
the class is declared.
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7.4   Pointer arithmetic

Walking arrays passed as a pointer argument, instead of as an array descriptor, is 
not allowed, even though it is idiomatic in C. Inheritance makes such walking poten-
tially incorrect because the type of the underlying object might be different than the  
static type of the pointer used to access the object. If the indexing or pointer arith-
metic were to be correct it would require that the  sizeofex of the objects (or an 
equivalent internal operation) used to perform pointer arithmetic and array indexing 
to produce the size of the dynamic type, not of of the static type.

Instead of adding complexity to the language, use of the sizeofex operator causes 
a compilation error when the compiler can not reliably determine, at compile time, 
the types involved. The same occurs with pointer arithmetic or indexing of arrays 
when the compiler can not guarantee that the operation is correct. Variable length ar-
rays, and array descriptors, can be reliably walked with indexes, or pointers, without 
these problems, see §13 for more on this subject.

7.5   sizeof and sizeofex operators

The grammar of COOGL is context free, a COOGL program can be parsed without 
the aid of a symbol table. The grammar of C is not context free, in various places the 
parser can not determine if a name corresponds to a type or not, and the parsing can 
not progress without that determination. COOGL restricts the use of  sizeof to be 
used with types, not with expressions. To determine the size of the result of an ex-
pression the  sizeofex operator should be used.  For code meant to used both as 
COOGL and as C code (i.e. CLEAN code) the  sizeofex can be  #defined to be 
sizeof when the code is compiled as C code. The sizeofex of an array with zero 
elements, the sizeof of an empty class, and the sizeof(void) are all zero.

7.6   Layout control of class objects: class struct

Layout control of the memory of objects is completely under the control of the 
compiler which can ensure that the object's data is organized in the most memory ef-
ficient order irrespective of the declaration order of its members. The compiler is able 
to commingle data from various members, for example by using the pad space avail-
able because of data alignment constraints within a member to store in that pad space  
the data of another member. This is something that can not be done with most pro-
gramming languages without destroying the modularity of the code.

Sometimes layout control is required by the programmer a class can be declared 
with both keywords: class struct. See §Error: Reference source not found for an-
other example: 
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class struct foo { pub char c; pub large l; pub short s; }
void test() { assert(sizeof(foo) == sizeof(large) * 3); }

The class will be laid out exactly in the order used by the programmer, any inheri-
tance must be the first non-static data member of the class struct  and arguments 
to the class constructor of a class struct can not be data members.

7.7   Only global declarations can be hidden

Function arguments, local variables, and members can not be hidden by declara-
tions in nested scopes. Nested scopes allow the introduction of new variables as long 
as their names are not the same as the names of the function’s arguments, its local 
variables, or its members. Only global declarations can be hidden by a declaration in 
a nested scope.

Hiding an existing declaration usually leads to confusion and bugs where it is as-
sumed that a single variable exists instead of multiple variables at different times. 
The restrictions against hiding symbols ensures that most such mistakes are caught.  
The reason to allow the hiding of global variables is that the introduction of a global 
declaration should not cause unbounded amounts of unrelated code to have compila-
tion errors. The number of global declarations is significantly reduced in  COOGL 
programs when compared to C programs, their hiding is not a significant source of 
problems.

7.8   Name lookup relative to the scope of a function

Function argument expressions can use the  ^ unary operator to indicate that an 
identifier should be interpreted relative to the scope of the function being invoked, in-
stead of the scope of the function invoking it. For example:

int fileopen(byte *name, int flag, int mode = 0644) {
    pub enum { READ = 1, WRITE = 2, TRUNC = 4, CREAT = 8 };
    ...
}
void use() {
    int fd = fileopen("/tmp/foo", ^READ | ^WRITE);
    ...
}

The use of the ^ name lookup unary operator is only valid in function argument ex-
pressions, an identical expressions elsewhere results in a compilation error. Normal 
access rules apply, the name's accessibility is checked against the calling context.

Typically the function whose scope is searched by a ^name reference in an expres-
sion is a member function, the name is usually not defined within the member func-
tion itself, but in the class that it is a member of. For example:



7.8 Name lookup relative to the scope of a function          139

class file(priv byte *name) {
    priv int fd = -1;
    pub enum flags {READ = 1, WRITE = 2, TRUNC = 4, CREAT = 8};
    pub error_t open(int flag, int mode = 0644) { ... }
}
void use() {
    decl file("/tmp/foo") f;
    error_t e = f.open(^READ | ^WRITE));
}

7.9   Structure and array initializers

C style structure initialization is part of the COOGL language:

struct person {
    char *name;
    int age;
};
person j = {"Jill", 29};
person k = {.name = "Ken", .age = 31};

Traditional  C  array initialization, i.e. with values in curly brace delimited lists is 
supported. An alternative array initialization syntax, from the Plan 9 C language, al-
lows specific  array entries  to  be initialized by specifying  an  index within square 
brackets before the initializer. Both forms of array initialization can be used together, 
an explicit index specifier sets the base for the subsequent entries that don't include 
an index specifier. This is similar to what occurs for explicit and implicit enumeration 
values.

For example a typical character classification table and interfaces to use it:

class cis {
    priv lit ubyte L = 0x01;  // lower case
    priv lit ubyte U = 0x02;  // upper case
    priv lit ubyte D = 0x04;  // decimal digit
    priv lit ubyte O = 0x08;  // octal digit
    priv lit ubyte X = 0x10;  // hexadecimal digit
    priv lit ubyte P = 0x20;  // punctuation
    priv lit ubyte S = 0x40;  // space

    priv lit uint N = 128; // must be power of two
    priv lit uint MASK = N - 1;
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    priv static ubyte map[N] = {   // Assumes ASCII
        ['A'] U|X, U|X, U|X, U|X, U|X, U|X,   //  6 = A-F
        ['G'] U, U, U, U, U, U, U, U, U, U,
              U, U, U, U, U, U, U, U, U, U,   // 20 = G-Z
        ['a'] L|X, L|X, L|X, L|X, L|X, L|X,   //  6 = a-f
        ['g'] L, L, L, L, L, L, L, L, L, L,
              L, L, L, L, L, L, L, L, L, L,   // 20 = g-z
        ['0'] D|X|O, D|X|O, D|X|O, D|X|O,
              D|X|O, D|X|O, D|X|O, D|X|O,     //  8 = 0-7
        ['8'] D|X, D|X,                       //  2 = 8-9
        [' '] S, ['\t'] S, ['\n'] S,
       ['\f'] S, ['\r'] S, ['\v'] S,          //  6
         [33] P, P, P, P, P, P, P, P,
              P, P, P, P, P, P, P,            // 15 = [33,47]
         [58] P, P, P, P, P, P, P,            //  7 = [58,64]
         [91] P, P, P, P, P, P,               //  6 = [91,96]
        [123] P, P, P, P,                     //  4 = [123,126]
    }
    priv static bool v(int c, ubyte m) inline {
        return map[MASK & c] & m;
    }                                            // continued below

Which allows for cis.alpha() style functions, similar to standard C library char-
acter classification functions (e.g. isalpha()):

    pub static bool alpha(int c) { return v(c, L|U); } // class cis
    pub static bool alnum(int c) { return v(c, L|U|D); }
    pub static bool digit(int c) { return v(c, D); }
    pub static bool xdigit(int c){ return v(c, X); }
    pub static bool odigit(int c){ return v(c, O); }
    pub static bool space(int c) { return v(c, S); }
    pub static bool punct(int c) { return v(c, P); }
    pub static bool print(int c) { return v(c, L|U|D|S|P); }
}

7.10   Delegate functions: deleg

The notion of delegates arises from the need to allow arbitrary code, together with a 
data context for it, to be invoked by unrelated code in a type safe manner, the invok-
ing code could have been compiled completely separate from the called code, for ex-
ample the calling code could be in a dynamically loadable module that was devel-
oped by a third party who had absolutely no knowledge about the type in question, 
e.g. the type in question might have been developed by others at a later time.

The stack class provides a member function, iterate(), below, that allows code 
to be passed to it such that the code can access the values stored on the stack, while 
restricting its knowledge and preventing direct access to the internal representation of 
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stack. For example to compute the sum of the values on the stack, an iterator class 
as shown in §4.14 could be used, alternatively a delegate function pointer argument 
to an iterate() function could be used:

extend class stack {
    pub void iterate(void work(int val) deleg) {
        for (int *p = sp; --p >= ent; ) work(*p);
    }
}

Calling code follows, a simpler version is shown further below.

void use() {
    int error;
    decl stack(100, &error) stk;
    assert(!error);
    fill(&stk);
    priv class sum {
        priv large total = 0;
        pub void add(int v) { total += v; }
        pub large result() { return total; }
    }
    sum s;
    stk.iterate(s.add);
    on ("sum = "; s.result(); "\n") print();
}

The  work argument is a delegate function pointer. Delegate function pointers are 
implemented by a pair of values: a C function pointer and an object pointer. For the 
s.add delegate function pointer argument the delegate function is add() and the ob-
ject pointer is &s.

To reduce code clutter in the caller, the notion that a function is a class that has its  
own members is used, resulting in this simpler idiomatic code:

void use() {
    int error;
    decl stack(100, &error) stk;
    assert(!error);
    fill(&stk);
    priv large total = 0;
    priv void add(int v) { total += v; }
    stk.iterate(add);
    on ("sum = "; total; "\n") print();
}

The object associated with the work delegate function pointer is the nameless ob-
ject associated with  use(), its members are  add() and total. When the delegate 
function is invoked the object pointer is provided transparently by the delegate invo-
cation mechanism. Because  add() is a member function being passed as an argu-
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ment within the scope of its class constructor, use() in this case, the pointer to the 
object in question is known implicitly and passed together with the function as the 
pair that makes the delegate function pointer value.

With the global compilation model, and in line code expansion performed by the 
compiler, no actual function call, nor does the add() function actually end up exist-
ing. The C code produced by the compiler is similar to the code shown below:

void use() {
    stack stk;
    large total = 0;
    { int *p = stk.sp; *end = stk.ent + stk.MAXENT;
      while (p < end) total += *p++; }
    char__pointer__print("sum = ");
    large__print(total);
    char__pointer__print("\n");
}

7.11   Other aspects of delegate function pointers

Regular function pointers and delegate function pointers are different. A function 
pointer is assigned the address of a function with a signature that matches the signa-
ture of the function pointer. A function pointer does not refer to any specific object. A 
delegate function pointer refers to an object and to a member function of the object.  
Comparisons between function pointers are well defined and have an easily under-
stood meaning. Comparison between delegate function pointers could have several 
possible interpretations depending on which values are compared: function, object 
pointer, or both. For the sake of language simplicity, comparison between delegate 
function pointers is invalid. Assignment of NIL, and comparison between a delegate 
function pointer and NIL are also invalid.

The memory layout of delegate function pointers is defined by the language as a 
class struct, its mandatory layout is required to allow completely unrelated and 
separately compiled code to interact through them. It is also defined for the obscure 
circumstances under which actual access to its fields are required. The address of a 
delegate function pointer can be taken and accessed through an  unsafe cast to a 
pointer to a lang.delegfp:

extend namespace lang {
    pub class struct delegfp {
        pub void (*function)(void *object);
        pub void *object;
    }
}



8 - Name spaces, modules, and initialization order

“Controlling complexity is the essence of computer 
programming.”

--  Brian Kernighan

A collection of entities can be grouped into a collection of names 
with a  namespace declaration.  Modularity  aspects  related to  inde-
pendently developed binaries, that are loaded together at run time to 
form a single program, are specified by the language, shared libraries 
and modules loaded and unloaded at run time have language speci-
fied semantics. Complicated static member initialization is done id-
iomatically through the construction of global objects. Construction 
order of global objects is under programmer control.

8.1   Modules and name spaces in C

Some programming languages have mechanisms that allow the name space of iden-
tifiers to be partitioned in such a way that the likelihood of name clashes between un-
related components is  significantly reduced. Name space partitioning together with 
information hiding are very important for large programs, particularly extensible pro-
grams whose development is not meant to end and are continuously adapted to new 
environments and requirements. These programs are usually developed by a large 
team of programmers, and sometimes independently by unrelated parties, their code 
bases brought together as part of a large system, either in source code form or in bi -
nary form. Extensible programs, such as operating systems, databases, transaction 
monitors, web servers, browsers, etc. all benefit from modules and name spaces.

The idiomatic way of avoiding name clashes in C, through naming conventions has 
been good enough for most programs, the identifier name space is partitioned by 
short prefixes or some other naming convention. For example the BSD UNIX operat-
ing system kernel uses these and many other prefixes: ufs_, vm_, net_, eth_, etc. 
The C89 standard reserved all names that start with _X where X is any uppercase let-
ter, for example C99 added the _Bool type without concern for name clashes.

Given that C symbols declared static have only file scope visibility, i.e. are hid-
den from other source code files, making it the natural mechanism in C for module 
support.  The  C  static symbol hiding feature is  sometimes  implemented by not 
placing static symbols in the symbol table of the compiled object file. As a conse-
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quence, the link editor doesn't see the static symbols, they are not visible for link 
time resolution if referenced from other C source files. The C symbol table based im-
plementation of modules is restrictive in that a function can not be expanded inline 
into a source code file if it refers to static symbols declared in another file. Such 
inline expansion would require that the  static symbols be placed in the object 
file's symbol table in a special way to make the symbol globally unique to account 
for the possible global name collisions that could otherwise occur, and for the symbol 
references in the location where the inline expansion was to occur to be adjusted ac-
cordingly.

Constraining a module to a single source file is too restrictive, modules end up be-
ing made of multiple files, which leads to entities being accessible needlessly, usually 
leading to tighter coupling of the software and making it harder to ascertain what the 
actual interfaces to the module are. Some projects don't use static to hide module 
internals and use instead naming conventions as a way to specify symbols that are not 
meant to be used outside of a module. For example, a trailing underscore, or a trailing 
_p, or another symbol prefix. Sometimes different conventions are used depending 
on the nature of the symbol, private fields might use a trailing underscore, and private 
functions might have a different function prefix, for example mod_ for public inter-
faces and  modp_ for private ones where  mod is some abbreviation of the module 
name. Because of the need to use header files in C, separate header files can be used 
to hide the internals of the module and not expose them in the header file through  
which the module interface is exposed, sometimes partial declarations are exposed 
without  exposing  the  full  declaration,  for  example  through  a  typedef struct 
mod_s mod; declaration where mod is used as part of the interface but mod_s is not 
exposed in the module interface header file, which works reasonably well but doesn't 
allow for the inline expansion of functions that reference fields of mod into code out-
side the module.

The fundamental problems with name spaces and module support in C is that there 
is no name space and no module support in the language, it is up to each project to 
come up with its own conventions to implement them, sometimes tools are imple-
mented to verify that the conventions are not being violated. When code bases of un-
related projects, with different conventions, are brought together into a single project 
the multiplicity of conventions makes the aggregate project even more complex.

Some C dynamic linking environments allow for all symbols in a program to be 
hidden from other modules. In those environments the notion of module is a sepa-
rately bound executable file, which could be a shared library (in UNIX or GNU/
Linux or a DLL in Windows) meant to be loaded at program start time, or a module  
meant to be loaded and unloaded dynamically at run time, usually as a means of ex-
tending a program. For example: device drivers for an operating system, graphics 
drivers for a window system, compiled stored procedures for a data base, language 
extensions for an interpreter, authentication modules for programs that use an exten-
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sible  authentication  infrastructure,  etc.  In  some environments  the  symbols  within 
these separately compiled C based modules are only visible to other modules if they 
are explicitly exported, for example, through export and import mechanisms that are 
outside of the language. These export / import mechanisms can be found in Microsoft 
Windows, IBM's AIX, the Linux kernel, and other systems.

8.2   Global declarations in C

Traditional C programs consist of global declarations with few if any nested or hid-
den declarations, other than local variables. In C information hiding is done through 
selected inclusion of header files and by using the  static keyword, which makes 
functions and global variables inaccessible from other files. In some C implementa-
tions, the use of static for global variables and functions interferes with the ability 
to debug the code, their names are not placed in the symbol table, not even for debug-
ging purposes, and are thus inaccessible to debuggers.

The legacy notion of C file based encapsulation is supported by COOGL with some 
differences described below. The following code shows the use of static to imple-
ment two C modules random.c and use.c, one provides a random number genera-
tor,  the other  uses it.  The  file  random.c hides its  implementation data  by  using 
static.

static int random_prev = 1;                  // C code in file random.c
void random_seed(int seed) { random_prev = seed; }
int random() {
    random_prev = random_prev * 168071 + 71111111;
    return random_prev & 0x7FFFffff;
}

File  use.c attempts to  access the  static variable  random_prev.  When  ran-
dom.c and use.c are compiled and linked into a program the link step fails because 
the random_prev symbol reference is use.c can not be resolved.

extern int random_prev;                         // C code in file use.c
int main() { random_prev = 0; }

In C the only declarations globally visible across files are those that are part of the 
program at run time, i.e. functions and variables. C does not make typedef, enum or 
struct declarations in a C file visible to other source files, because C source files 
are compiled separately, any such declaration sharing is done through header files 
and  #include preprocessing directives; thus  typedef,  enum and  struct declara-
tions are implicitly private when placed in a C source file, and selectively public 
when placed in a header file meant to be included via #include. Portions of header 
files can also be selectively hidden under the control of #if or #ifdef C preproces-
sor directives, which are mechanisms sometimes used for modularity purposes.
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8.3   Modules and accessibility modifiers

A module is a set of source files compiled and linked together into an executable, or  
into a program binary meant to be loaded at run time. At the operating system level 
modules are contained in dynamic libraries on macOS, shared libraries (aka as dy-
namic shared objects) in UNIX and GNU/Linux, or DLL files in Windows. Modules 
can be loaded at program startup, or dynamically at run time.

Accessibility modifiers, when used in global declarations, have a relationship to 
source file boundaries and modules. Global declarations that don't have an accessibil-
ity modifier or that use  prot are only accessible within the module, those that use 
priv are only accessible within the source file that contains them, and those that use 
pub are accessible by other modules.

Given that  COOGL doesn't have header files, declarations other than variables or 
functions, e.g.  typedef,  enum,  class,  struct, etc. are visible by default in other 
files within the same module, they are implicitly  prot by default. This behavior is 
different  from C's  behavior with respect  to  those declarations in  a  C source file,  
which  makes  them inaccessible  to  other  source  files.  Access  to  typedef,  enum, 
class, or struct declarations can be restricted to the source files that contains them 
by declaring them priv, or unrestricted so that they be can accessible to other mod-
ules by declaring them pub.

The use of static to support the C notion of file based symbol hiding is supported 
by COOGL, very similar, but better behavior is obtained by using priv. An impor-
tant difference between priv and static in global declarations is that,  priv func-
tions and data declarations have their names adjusted in a simple manner, see §2S.11, 
to include the file name and module name within the mangled name, thus making the 
symbols accessible to debuggers. Another difference is that inline functions that ac-
cess global static functions or data can not be expanded in line outside of the file  
that contains them, whereas inline functions that access global functions or data (de-
clared priv or prot) can be expanded into any invocation location.

Global declarations can make use of qualified accessibility modifiers to allow ac-
cess to a global declaration to specific classes, interfaces, functions, or namespace, 
independent of their source file locations.

8.4   Publicized and published declarations

Global declarations that are pub are said to have been publicized across modules. 
Global declarations that are not publicized but whose implementation details are used 
for the implementation of publicized entities,  directly or indirectly,  are said to be 
publicized indirectly. Declarations that are publicized directly or indirectly are said to 
have been published.
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The internal details of a published declaration are represented and implemented in a 
well specified way that is standard across compilers, data layout rules are followed 
strictly and function calling conventions are also followed without exception, no in-
tra-module optimizations are performed on them. The compiler is still free to create 
specialized versions of a function optimized for intra-module calls that can be opti-
mized because of global knowledge of all the calls within the function. For example,  
if for all the calls within a module an argument to the function is always the same 
constant value, then the code within the function can be specialized to take advantage 
of that fact, possibly causing a series of expressions to become compile time constant 
expressions and possibly leading to a series of run-time tests to be eliminated.

The compiler compiles each module independently, globally, as if it were compiled 
all at once, even if internally it compiles files only when required, thus the compiler 
can determine what are the declarations that have been published. Entities that have 
not been published can be compiled as aggressively as the compiler is capable of. For 
example member functions for a class that has not been published, and that are not 
called within the module, and whose address is not stored in a function pointer or a  
delegate function pointer, can be removed from the module without harm, members 
of the class that are only accessed by deleted member functions can also be removed 
from the class, for example a stack that is just declared but never used, even though 
its constructor and destructor are not completely trivial, the compiler can determine 
that the work that it does has no side effect so the object can be removed. Classes de-
clared vital never have objects of their type optimized this way.

Data within a struct, union, or class struct type are never optimized, i.e re-
moved, even if they are not published because the entity presumably exists to com-
municate through its memory layout in a way that requires the layout to be honored.

8.5   Module specification

A module is the result of compiling and linking together a set of source code files,  
the desired name of the module is specified as an argument:

$ coogl file1.cog file2.cog file3.cog -o name
$ coogl name    # equivalent, name.spec lists the source files
$ cat name.spec
file1.cog
file2.cog
file3.cog
$

The result of the compilation and linking is an executable or a dynamically loadable 
program file named with the module name and possibly with an extension depending 
on the underlying operating system (e.g. .exe or .dll on Windows; or without an 
extension or with .so on UNIX/Linux). A module specification file is also produced 
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with the .pubmod extension. A directory is created with the name of the module fol-
lowed by -out, inside of it there are 5 or more files for each source code file, their  
names are the same as the source code file name but with a different extension. There 
is a public specification file with .pub extension, a protected specification file with a 
.prot extension, a C source code file with a .c  extension, a header file with a .h 
extension, and an object file e.g. a .o or .obj file, there can be an assembly source 
code file with a .s extension if machine level assembler instructions were requested 
with the  -S compilation option.

The compilation of a module can specify module specification files for other mod-
ules (.pubmod files) as part of the source code file list, for example when the entities 
exposed publicly by the module are to be used by the module being compiled.

A module that has the main() function compiles into a module that can be invoked 
as a program, a module with the main() entry point is referred to a program module. 
Modules that are not a program module are meant to be loaded dynamically at run 
time, or automatically when another module that was built against it is loaded either 
at program startup time or when the other module is dynamically loaded.

Note that a module specification is extra-linguistic in the sense that it is not ex-
pressed within the source code of the module, it is expressed externally as an invoca-
tion of the compiler. Modules have no relationship with namespaces, modules and 
namespaces don’t have to be in a one-to-one relationship with each other, but some-
times they are when required by the programmer, for example by having the C stan-
dard library in a module that also contains all of its source code within the  libc 
namespace, and when there are no other namespaces declared within its source code.

Arguments  to  the  compiler  can  be  specified  in  the  command  line  or  in  the 
name.spec file, the arguments have to be consistent across recompilations of the 
module, the file  name.args is produced by the compiler to contain the arguments 
that were used in the prior compilation and it is used to decide if a full recompilation 
is required, or if incremental recompilation is appropriate.

A module might be compiled with various compilation arguments, for different in-
struction sets, various levels of optimization or debugging information, etc. To allow 
multiple such compilations to coexist with each other the  --target target argu-
ment can be specified, the output files of the compilation are then:  name-target, 
name-target-out, name-target.pubmod, and  name-target.args.

8.6   Controlling access to class as type vs as constructor

Sometimes it is required that objects of a given class type not be allowed to be de-
clared in a specific way, for example on the stack, globally, or as members of other 
classes, while still allowing objects to be manipulated through pointers to them. If the 
class is declared priv, then not even pointer variables that refer to the class type can 
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be declared. If the class is declared priv in the outer most scope, i.e. globally, then 
this restriction applies only to other source files, but it still allows declarations within  
the same source file to use it.

Use of a class as a type to declare objects or arrays of objects of that class, can be  
constrained independently from the use of the class to declare pointers to objects or 
array descriptors that refer to arrays of objects of that class. Objects and arrays of ob-
jects require that the constructor be invoked at declaration time. Pointers and array 
descriptors don’t require that the constructor be invoked at declaration time. 

An accessibility modifier can be placed immediately after the closing parenthesis of 
the class constructor argument list, or immediately after the class name for classes 
whose constructor doesn’t have an argument list. These accessibility modifiers, when 
present, control the use of the class: as a generic argument type, and as a constructor  
when it needs to be invoked to construct an object, i.e. when an object or an array of 
objects is declared. The declarations of xp , ip, and gp are valid, the declarations of 
x, i, and g are not:

pub class xval priv { pub int xx = 0; }
pub class ival(pub int ii = 0) priv {}
pub class gen(genre void type) { pub type tt; }
int f(xval xp[], ival *ip, decl gen(class ival *) gp) {}
xval x[10];                      // error: xval not accessible
decl ival(0) i;                  // error: ival not accessible
pub gen(class ival) g;           // error: ival not accessible

8.7   Name spaces

A collection of related entities can be declared with a namespace declaration:

pub namespace libc {                      // standard C library
    pub struct FILE { /*...*/ };
    priv FILE filetab[3];
    pub int lit EOF = -1;
    pub int fgetc(FILE *fp) inline ...;
    pub int fputc(int c, FILE *fp) inline ...;
}

A namespace declares a named scope in which other entities can be declared, enti-
ties declared within a namespace must be declared with an accessibility modifier, 
they are global declarations as if they were declared in the global name space, they 
are not member declarations as if they were members of a class. A namespace decla-
ration is not a class declaration, it doesn’t contain constructor code, a namespace is 
not a type declaration, the name of the namespace can not be used as a type.

COOGL language related compile time and run time support declarations are all in 
the  lang name space. The  COOGL library is defined within the  lib name space. 
The  standard C library is  defined within the  libc name space,  part  of  it  shown 
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above.

pub namespace lang { ... }// COOGL compile and run time support
pub namespace lib { ... } // COOGL library

Declarations can be added to a name space, in a source code location that is sepa-
rate from its declarations, with extend:

extend namespace libc {
    pub lit FILE *stdin  = &filetab[0]; 
    pub lit FILE *stdout = &filetab[1]; 
    pub lit FILE *stderr = &filetab[2]; 
    pub int getchar() inline return fgetc(stdin);
    pub int putchar(int c) inline return fputc(c, stdin);
}

The name of the namespace can be used to refer to entities declared within the 
namespace with the dot operator. For example, as shown below for libc:

int cat() {
    int c;
    while ((c = libc.getchar()) != libc.EOF)
        if (libc.putchar(c) == libc.EOF) return libc.EOF;
    return 0;
}

The cat() function, can import into its scope the libc namespace, allowing it to 
access entities declared within libc without the libc. prefix as shown below. The 
import statement must be in the outermost scope of a function, class, or interface, it 
can not be in a nested scope.

int cat() {
    import libc;
    int c;
    while ((c = getchar()) != EOF)
        if (putchar(c) == EOF) return EOF;
    return 0;
}

A namespace that has a very long name can be imported with a shorter name. Thus 
preventing the names from polluting the local name space while making their use less 
cumbersome. For example, assuming:

namespace C99_standard_library { ... };

The excessively long name can be shortened:
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int cat() {
    import C99_standard_library c99;
    int c;
    while ((c = c99.getchar()) != c99.EOF)
        if (putchar(c) == c99.EOF) return c99.EOF;
    return 0;
}

Use of import in the global scope is allowed. Legacy C code, on a file by file basis 
can be adjusted, as  COOGL code, to use the C library definitions as if they were a 
bunch of global symbols, for example:

import libc;
int cat() {
    int c;
    while ((c = getchar()) != EOF)
        if (putchar(c) == EOF) return EOF;
    return 0;
}

An alias declaration can be used to provide access to an individual symbol in the 
namespace without having to import the whole namespace.

int cat() {
    priv alias getchar = libc.getchar;
    priv alias EOF = libc.EOF;
    while ((c = getchar()) != EOF)
        if (putchar(c) == EOF) return EOF;
    return 0;
}

8.8   Modules and namespaces are independent concepts

Modules and namespace are unrelated facilities, a module might contain declara-
tions of entities within multiple namespaces, and a namespace might be defined in 
one module and extended within other modules. Sometimes programmers choose to 
place all the declarations for a namespace within a single module, and that module is  
made to contain only declarations within that namespace.

8.9   Class initialization

A class might have some data structures that need to be initialized before objects of 
its type are constructed. Declaring such data structures as static members is all that is 
needed, i.e. their construction causes the class data structures to be appropriately ini-
tialized. If the initialization is particularly complex, to the point that it is impossible 
through individual object constructions, then an auxiliary class can be declared and 
its constructor made to invoke a static member function of the original class to do the 
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complicated initialization. Thus the construction of a static object of the auxiliary 
class triggers the initialization. The class  keyword, below, uses the auxiliary class 
hinit() for its initialization which occurs when the object dohinit is constructed:

class keyword {
    return;
    priv static hash(str, int) h;
    priv static str("if") if_kw;
    priv static str("while") while_kw;
    // ... same for all COOGL keywords ...
    priv enum { IF, WHILE };
    priv static class hinit {
        h.insert(&if_kw, IF);
        h.insert(&while_kw, WHILE);
        // ... same for all COOGL keywords ...
    }
    priv static hinit dohinit;
}

8.10   Global construction order

Construction of global objects follows this order:

 Objects declared within classes are constructed in declaration order.

 Classes and namespace are sorted in a user specifiable class order, by de-
fault: pragma, lang, libc, and lib. Classes and namespace that are not in 
the user's list are added, sorted, to the end of the list, sorting uses the file-
name where the class is declared as the primary key and the class name as  
the secondary key. Note that the order of files is also specifiable by the user.

 Static objects are constructed according to the order of their call type in the 
order described above. All the static objects of a class type are constructed 
prior to the construction of the static objects of the next class in the order.

 Construction of global objects whose class is not in the class order proceed 
in file order. The order of the files is specifiable by the user.

 Unspecified files, if any, are sorted by their names, and follow the list of files 
specified by the user, if any.

Compilation fails if objects are used prior to their construction. A naming conven-
tion would be required to make name based sorting more usable, name based sorting 
is mostly for stability and determinism. The user specifiable lists are specified outside 
of the language syntax, the lists are specified in files as part of the command line to 
the compiler. To facilitate the maintenance of the lists, even though there are two log-
ical lists described above, the lists themselves can be composed from multiple files 
which are appended in order to form the two logical lists.



9 - More about control flow and input output

“At one point, I took BCPL from Martin Richards at 
MIT and converted it into what I thought was a fairly 
straight translation, but it turned out to be a different 
language so I called it B, and then Dennis took it and 
added types and called it C.”

--Ken Thompson

The COOGL control flow extensions to C are: function destructors, 
the  on statement, and the  loop statement which works in conjunc-
tion  with  loop member  function  that  encapsulate  iteration.  Goto 
statements can not jump ahead of an object declaration that would 
still be in scope at the target of the jump. The syntax  return ex-
pression; is valid within void functions. The value of vital func-
tions must be explicitly used, objects of a vital class can not be the 
subject of optimizations,  each and everyone of them must be con-
structed and the destructor invoked on it. Jump statements cause the 
destruction of objects that are no longer reachable. COOGL does not 
have nor does it need structured exception handling, because it does 
not have constructs such as operator overloading or conversion opera-
tors which are incapable of reporting errors other than by throwing 
exceptions.

9.1   Replacement of goto out idiom with deinit()

A function's  deinit() is invoked at function  return time, it can be used to re-
place uses of the goto out idiom. This idiom consists of one or more forward goto 
out statements where the out label is towards the end of the function. The code after 
the out label is where cleanup and resource releasing occurs for various paths that 
fall through it or that goto it. After the cleanup and release of resources the function 
returns, which is part of the idiom.

The goto out idiomatic code can be replaced with a deinit() function together 
with return statements replacing the goto out  statements. The C example below, 
is rewritten in COOGL using deinit(), it is as efficient as the C code shown. The 
reason for that is the compiler's single copy function in line expansion ability which 
makes the compiled COOGL version equivalent to the C version. 
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An example of the goto out idiom, written in C and with deinit() in COOGL:

void func() {       /* C code */
    char buf[1024];
    char *m = buf;
    bool open = false;
    file_t f;
    int error;
    error = file_open(&f, "a");
    if (error)
        goto out;
    open = true;
    size_t len = file_size(f);
    if (len > sizeof(buf)) {
        char *x = malloc(len);
        if (!x) {
            error = ENOMEM;
            goto out;
        }
        m = x;
    }
    error = file_read(&f, m, sz);
    if (error)
        goto out;
    work(m, sz);
    if (invalid_condition) {
        error = EINVAL;
        goto out;
    }
    final_work(m, sz);

out:
    if (open) file_close(f);
    if (m != buf) free(m);
    file_deinit(&f);
    return error;
}

void func() {    // COOGL code
    priv char buf[1024];
    priv char *m = buf;
    priv bool open = false;
    priv file f;
    int error
    error = f.open("a");
    if (error)
        return error;
    open = true;
    size_t len = f.size();
    if (len > sizeof(buf)) {
        char *x = malloc(len);
        if (!x)
            return ENOMEM;
        m = x;
    }
    error = f.read(m, sz);
    if (error)
        return error;
    work(m, sz);
    if (invalid_condition)
        return EINVAL;
    final_work(m, sz);
    return error;

    priv void deinit() {
        if (open) f.close();
        if (m != buf) free(m);
    }
}

9.2   on statement

Input and output that is terse, type safe, and extensible, requires a syntactical nota-
tion of some kind. The C printf() and scanf() functions are not type safe, they 
require that the type of each argument be specified in the format string. The format 
string is interpreted at run time, errors encountered at run time include: incorrect out-
put and invalid memory accesses. Even C compilers that support type checking of 
printf() and scanf() format strings, such as the GNU C compiler (gcc), are lim-
ited to the specific types and format options known by the compiler. Furthermore,  
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they can not type check format strings specified at run-time. The C printf() and 
scanf() functions are not extensible.

The on statement was added to COOGL to support extensible and type safe input 
output, but it has no knowledge about input output, and can be used for other pur -
poses unrelated to input output.  The  on statement specifies,  within parenthesis,  a 
semicolon separated list of expressions, followed by a function invocation expres-
sion. Each expression in the list is evaluated in left to right order, after each expres-
sion is evaluated the function invocation expression is invoked, as a member func-
tion, on the object that is the result of the expression evaluation.

In this example on is used to implement class point input output, it assumes the 
input output support on fundamental types provided by the COOGL library, the rea-
son why these member functions return  int will  become clear  shortly  when the 
value that on can produce is explained further below.

class point(priv int x, priv int y) {
    return;
    pub int print() return fprint(libc.stdout);
    pub int scan() return fscan(libc.stdin);
    pub int fprint(libc.FILE *f) {
        int n = on ("x="; x; " y="; y) fprint(f);
        return lang.on_int_count_result(n, 4);
    }
    pub int fscan(libc.FILE *f) {
        int n = on ("x="; x; " y="; y) fscan(f);
        return lang.on_int_count_result(n, 4);
    }
}

An example program that does input and output on point objects is:

int main() {
    point(1, 2) a;
    point(10, 11) b;
    on ("we have two points:\n";
        "  a is "; a; '\n';
        "  b is "; b; '\n';
        "using this form: x=4 y=5 x=14 y=15\n";
        "  enter new values for a and b: ") print();
    on (a; " "; b; '\n') scan();
    on ("new value of a: "; a; '\n';
        "new value of b: "; b; '\n') print();
}

For the examples above to work, the types  int,  strlit(class const char) , 
and char require print() and scan() member functions, COOGL allows types to 
be extended, to have member functions defined for them. A simple implementation of 
those members, using the C library, are shown further below.
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The objects in the expression list of the  on statement are of arbitrary types. The 
member function invocation follows after the parenthesized list of expressions. For 
the on statement to be valid, each expression in the list must have a member function 
whose name and signature matches the member invocation expression. The on syn-
tax is superficially similar to the for(expr1; expr2; expr3) syntax in the way in 
which the list of expressions is specified, i.e. a semicolon separated list within paren-
thesis.

9.3   on expression

The on statement can be used to produce a value through which results of multiple 
operations are reported, the value can be used to initialize a variable being declared, 
or in an outermost  assignment expression,  or  in  a return expression,  but  not  in  a 
nested assignment expression. This restriction simplifies the language, it also pre-
vents code from using multiple on statements in unboundedly complex expressions. 
When on is used in these circumstances it is called an on expression. Examples of on 
expressions producing a value follow:

int main() {
    point(1, 2) a;
    point(10, 11) b;
    int n = on ("we have two points:\n";
                "  a is "; a; '\n';
                "  b is "; b; '\n';
                "using this form: x=4 y=5 x=14 y=15\n";
                "  enter new values for a and b: ") print();
    assert(n >= 0 && n <= 9 || n == EOF);
    if (n != 9) libc.exit(1);

    n = on (a; " "; b; '\n') scan();
    assert(n >= 0 && n <= 4 || n == EOF);
    if (n != 4) libc.exit(2);

    n = on ("new value of a: "; a; '\n';
            "new value of b: "; b; '\n') print();
    assert(n >= 0 && n <= 6 || n == EOF);
    if (n != 6) libc.exit(3);
}

The member functions applied to the objects in an on statement all must have the 
same return value type. They must all be void, or if they are not, they must all return 
a signed integral type. The control flow aspects of the on statement are dictated by 
whether a value is returned or not, i.e. signed integral vs void, they are not affected 
by whether the value is used or not by the on statement. By definition the value is al-
ways used in an on expression.
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If a value is returned by the member function, this means that an error might have 
occurred as the result of invoking the member function on one of the expressions, in -
voking the member functions in subsequent expressions would only add to the confu-
sion, for example by producing confusing output or misreading values into the wrong 
variables, thus it is important to stop the processing when an error is reported.

The on syntax is a general purpose mechanism, it can not be tied intimately to the  
requirements of specific legacy C interfaces to the point that its generality is affected, 
but it is designed in such a way that the values they return can be produced by the on 
statement. For example, in C, printf() returns EOF or the number of bytes written, 
and scanf() returns EOF or the number of variables that were scanned successfully. 
For the purposes of this discussion, assume that EOF is a negative value, it is -1 in 
every platform ever encountered by the author. Certainly every platform currently 
supported or intended to be supported by COOGL defines it as a negative number.

When a negative value is returned from a member function invocation it means that 
an error occurred, and processing must stop. If a value of zero is returned, it means 
that the operation was not performed, and processing must also stop. A positive value 
means that the operation was performed and processing should continue.

If a positive value is returned by the first member function invocation of the  on 
statement or expression, that value and all subsequent positive values are accumu-
lated, i.e. added, and the accumulated value is the value of the on statement. This im-
plies that when at least one member function succeeded, the value of the  on state-
ment will never be negative, even if the processing of a subsequent member function 
call returned a negative value.

At this point a translation example will help the explanation of how an on that pro-
duces a values is translated, this code fragment:

n = on (a; " "; b; '\n') scan();

Is equivalent to this COOGL code:

{
    if ((n = a.scan()) > 0) {      // scanned something or EOF?
        int c;                     // same type as type of n
        if ((c = " ".scan()) > 0) {
            n += c;                 // accumulate scanned count
            if ((c = b.scan()) > 0) {
                n += c;
                if ((c = '\n'.scan()) > 0)
                    n += c;
            }
        }
    }
}

If the value returned by a scan() member function invocation is not positive, the 
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remaining scan() operations are skipped. If a negative value is returned by any of 
the scan() member function invocation, other than the first one, it doesn’t affect the 
value of n, thus the number of elements processed will be returned if a partial num-
ber of elements were processed. The individual  scan() operations could have re-
turned the number of bytes read, instead of the number of elements processed, the 
generated code would accumulate the number of bytes read or the number of ele-
ments processed irrespective of the meaning of the value returned. The return value 
convention  for  scan(),  fscan(),  print(),  and  fprint() is  based  on  the  C 
<stdio.h> interfaces, they are meant to be compatible and similar to them because 
they operate on open files based on the <stdio.h> FILE type. They return:

 EOF, a negative value, indicates end of file or some other error condition, the 
libc.feof(), libc.ferror(), and libc.clearerr() functions can be used 
to determine what actually happened and how to proceed.

 0,  value couldn’t be scanned or printed, for example an int was to be scanned 
but the next characters to be read did not form an integer value, i.e. not one or 
more digits possibly preceded by a + or - sign.

 1, value was successfully scanned or printed.

Which results in a return value convention for an on expression, with one or more 
objects being print() or  scan(), returning the number of elements processed, or 
EOF if an error occurred with the first element, thus proper error handling on these 
on expressions entails checking for the value being different than the number of ex-
pressions in the on expression, and if different, then doing whatever is appropriate, 
particularly interactive programs can re-prompt the user for valid input.

A helper function is provided to aid in producing the correct return value, its re-
sult argument is the value produced by an on expression used to implement the op-
eration,  wanted is the number that  result should be equals to if all the member 
functions in the on expression did their work, see §9.2 for example uses of it.

extend namespace lang {
    pub int on_int_count_result(int result, int wanted)
                promise(result > 0 && result <= wanted) inline
        return result == wanted ? 1 : result >= 0 ? 0 : result;
} 

The code shown above is for illustration purposes, the code generated might be 
similar to it, when the number of expressions in the on statement is small, but if it is 
large, a table of delegate function pointers is created and a run time helper function is 
invoked instead, which performs the work inside the first  if with a  for loop. The 
equivalent COOGL code would then be:
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{
    typedef int (*scandfp)() deleg;
    scanfp scantab[4] = {&a.scan, &" ".scan,
                         &c = b.scan, &'\n'.scan};
    n = lang.on_array(int, scantab);
}

The helper function is similar to the function that follows, but it uses generic types 
instead of the specific type int, see §1 for the actual generic helper function which, 
also handles argument passing to the member functions.

extend namespce lang {
    int on_array(on_array.delegate a[]) require(a.max[0] > 0) {
        pub typedef int (*delegate)() deleg;
        int n = a[0]();
        if (n > 0)
            for (delegate *dp = a; ++dp < a.end; ) {
                int c = (*dp)();
                if (c <= 0) break;
                n += c;
            }
        return n;
    }
}

String literal scan() and print(), their type is strlit(class const char) :

extend class const char[] {
    // type of this is: const char(*this)[]
    pub int print() return fprint(libc.stdout);
    pub int scan() return fscan(libc.stdin);
    pub int fprint(libc.FILE *f) {
        return libc.fputs(f, *this) != EOF ? 1 : EOF;
    }
    pub int fscan(libc.FILE *f) {     // matches chars doesn’t
        const char mem[] = *this;     // need to store them
        int c;
        for (const char *s = mem; s < mem.end; s++) {
            char e = *s;
            if ((c = libc.fgetc(f)) == e)
                continue;
            if (c == EOF) return EOF;
            libc.fungetc(f, c);       // unexpected character
            return 0;                 // didn’t match
        }
        return 1;                     // matched
    }
}

Support for int scan() and print():
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extend class int {
    // type of this is: int *this
    pub int print() return fprint(libc.stdout);
    pub int scan() return fscan(libc.stdin);
    pub int fprint(libc.FILE *f) {
        char buf[64];
        size_t len = lib.inttostr(*this, buf);
        return libc.fwrite(buf, len, 1, f);
    }
    pub int fscan(libc.FILE *f) {
        libc.flockfile(f);
        libc.fskipspace(f);
        char buf[64], *p = buf, *last = buf.end - 1;
        bool first = true;
        *p++ = '+';  // implicit sign
        int v = 0, ret = 1;    // assume int will be scanned ok
        for (;;) {
            int c = libc.getc_unlocked(f);
            if (c == EOF) {
                if (p == buf) ret = EOF;
                break;
            }
            if (first) {
                first = false;      // + or - can only be first
                if (c == '-' || c == '+') {
                    buf[0] = c;     // save explicit sign
                    continue;
                }
            }
            if (!libc.isdigit(c)) {
                libc.ungetc_unlocked(c, f);
                break;
            }
            if (p >= last) ret = 0; // too big, skip all digits
            else *p++ = c;
        }
        if (ret == 1 && p >= &buf[2]) { // sign and >= 1 digits
            assert(p < last);
            *p = 0;
            errno_t error;
            if ([v, error] = lib.strtoint(buf)) ret = 0;
        }
        libc.funlockfile(f);
        *this = v;
        return ret;
    }
}
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String literal scanning is used to do input format matching, it doesn't store the char-
acters anywhere, it is used to do string literal character matching, for example for the 
"x=" literal specified by point.scan() above.

This example uses the fmt(4,2) precision specification:

int main() {
    float f = 78;
    float c = ((f - 32) * 5) / 9;
    on ("temperature in Caracas: ";
        f; "(f) "; c.fmt(4,2); "(c)\n") print();
}

The native type float can be extended to support a fmt() member function used 
for printing with a precision specification, a set of auxiliary formatting classes are  
provided in the COOGL library. The invocation of fmt() causes the construction of 
an object of type fmt, then the print() member function is invoked on that object 
through the on statement.

A minimalist implementation of the  fmt formatting class for the  float type is 
shown below. It only supports  "%left.rightf" printf() equivalent formatting, 
where left and right specify the number of digits left and right of the decimal period. 
A trivial implementation based on libc follows:

extend class float {
    pub class fmt(priv int left, priv int right) {
        priv float value = *this;
        pub int print() return fprint(libc.stdout);
        pub int fprint(FILE *f) {
            char buf[128];
            lib.floattostr(value, left, right, buf);
            return libc.fputs(buf, f) == EOF ? EOF : 1; 
        }
    }
}

9.4   Arguments to on statement member function and str strings

The expressions in the argument list of the member function invoked as part of the 
on statement are evaluated for each of the expressions that control the on statement. 
In the example below, the argument expression f ? f : stdout  of  fprint() is 
logically evaluated for each invocation of fprint(). Compilers are capable of eval-
uating an expression once if it is safe to do so, as it is in this case:

void print7primes(FILE *f) {
    on (2; 3; 5; 7; 11; 13; 17) fprint(f ? f : stdout);
}

Errors can occur on both input and output, the underlying  FILE streams become 
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disabled  until  the  error  status  is  fetched,  through  stdout.ferror() and  cleared 
through  stdout.clearerr(),  COOGL library functions. This form of error han-
dling is appropriate for input output and doesn't require any additional language sup-
port. By stopping further operations, output doesn't become garbled with missing in-
formation, and input is not confused by values, going to the wrong variables and in-
put being consumed beyond the error condition.

The  on  statement  can  also  be  used  for  string  manipulation  for  example  by 
sprint() and sscan() member functions that have as their argument a string one 
which they append the formatted values they produce, or a string from which the data 
is consumed and after the data is consumed it is truncated so that the data consumed 
is no longer part of the string so that the next sscan() operation works on whatever 
comes next on the string. The language library provides a str type that supports these 
operations very efficiently. In this way on also subsumes the unsafe C variable argu-
ment functions sprintf() and sscanf() functionality.

9.5   Byte count vs operation count on value convention

The value convention of print(), fprint(), scan(), and fscan(), when used 
in an  on expression is based on the number of operations that succeeded. It is the  
same as the C standard library scanf() return value convention, C’s printf() re-
turn value convention is based on the number of bytes written, which is not very use -
ful.

9.6   Compile time and run time enabled traces with on

Traditionally in C the preprocessor is used to define macros for the generation of  
traces. These macros usually have two versions, one that does nothing and another 
that does the tracing, the version of the macro chosen depending on some compile 
time configuration, maybe through #ifdef to choose between production and debug 
builds. The trace macros themselves, when they generate code, usually have a fast 
way of being disabled at run-time, usually through a test of some global state. The 
evaluation of arguments to the macro, including function invocations does not occur 
when the tracing is disabled at run-time.

Compile time infrastructure can be done in  COOGL with the  on statement and a 
dedicated  trace() member function for that purpose, similar to how  print() is 
done. Alternatively with a family of functions whose argument expressions are only 
evaluated when tracing is enabled, see the §9.7 section for more about that.

To cause the whole on statement to disappear, the first object in the on expression 
list can be a dummy type, a version of which that causes its trace() member func-
tion to always return -1, and that is inlined, allows the compiler to see that the on is 
to do no work after the first trace() on the first expression, and because that func-
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tion does nothing, the whole on statement produces no code. For example:

pub namespace tr {
    pub class start { pub int trace() return -1; }
    pub class stop   { pub int trace() return -1; }
    pub start go;
    pub stop  end;
}

Two versions of the code above would exist, one as shown above, another with ac-
tual  tracing support.  Assuming that  other  types have  trace() member  functions 
added to them:

import tr;
int doit(int n, char name[]) {
    on (tr.go; "n="; n; "name="; name; tr.end) trace();
}

The version of  namespace tr that supports tracing would have its  start class 
test whether traces are enabled at run-time, and if not, return -1. The function tr.-
go.trace() would prepare whatever memory is required for the tracing, insert com-
mon information for all traces (global sequence number, cpu, thread id, time, function 
name, etc.), use of trace() on the data to be traced would then go into that memory, 
and  tr.end.trace() would complete  the  trace record.  If  tracing  occurs to  per-
thread tracing buffers then other than a global sequence number amount of shared 
state no interference would occur between the threads. If the traces are to be in a 
global trace buffer, then more complicated shared state management would be re-
quired.

9.7   Optional argument expression evaluation

The declaration of a function’s argument list can have one of the comma argument 
declaration delimiters be a semi-colon instead of a comma. Invocation of such a func-
tion requires that the same argument delimiter be a semicolon. A function with such a  
declaration indicates to its user that the arguments after the semicolon might not be 
evaluated unless their values are required by the function. A valid degenerate form of  
this syntax allows for a starting semicolon prior to the argument declarations and cor-
respondingly prior to the argument expressions in the function invocation.

An example use might be a function that has a fast path that only requires the argu-
ments after the list  for its slow path,  so the cost of evaluation those expressions,  
which might involve function calls, etc. does not have to be incurred in the fast path.

An example is a collection of trace functions that are split into an inline function 
and an out of line function which is only invoked by the inline function when tracing 
is actually to occur, i.e. when run-time traces are not disabled, at compile time, or at 
run-time. The inlined fast path could generate no code whatsoever, for example in a 
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production build. Or whose fast path tests to see if tracing is enabled, and only in that  
case, allows the cost of the argument expression evaluation to occur when the inlined 
code calls the actual tracing function.

A sketch of a tracing example follows. It is important to emphasize that requiring 
the semicolon to be used both in the declaration of  trace() and in its invocation 
makes  the  contract  between  it  and  its  user  explicit,  the  programmers  that  call 
trace() knows that  f(),  g(), and  h() will not be invoked under some circum-
stances, in this case when traces are disabled, so their code should not depend on 
their invocation.

bool e = false;                  // run-time trace control; or
// lit bool e = false;           // compile-time trace control

void trace(bool enabled; uint a0, uint a1, uint a2) inline {
    if (enabled) tracex(a0, a1, a2);
}
void tracex(uint a0, uint a1, uint a2) {
    on ("a0="; a0; "a1="; a1; "a2="; a2; "\n") print();
}

// f(), g(), and h() are not invoked unless e is true
int main() { trace(e; f(), g(), h()); }

9.8   Goto target restrictions

COOGL ensures that objects declared on the run time stack are constructed when 
their declarations are executed and are destroyed when the scope in which they are 
declared is exited. A goto that reaches a statement in which an object is in scope is 
valid only if the object had already been constructed prior to the goto statement. If 
the goto causes the object construction to be skipped, a compilation error occurs.

Frequent use of declarations intermixed with statements reduces the ability of goto 
statements to be used. For example, a goto statement into the body of a for that has 
some variables declared before the label makes such a control transfer invalid.

The most common forms of goto are:

 The goto out idiom, and the similar goto error idiom, which goes to a 
label towards the end of the function to do cleanup and then return; and 

 The goto restart idiom, where some operation that usually is performed 
by straight line code in the function might need to be restarted from almost 
the beginning because of some rare condition that is most easily handled by 
restarting the operation. 

Though a simple iteration statement coupled with  continue instead of the  goto 
restart would be a normal rewrite of this second form of goto, the added level of 
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indentation and the visual misconception caused by the loop construct leads some 
systems programmers to prefer the  goto restart idiom. This form of  goto does 
not run into trouble related to jumping past object declarations because it is a back-
wards jump to the same or an outer scope.

The goto out  idiom can run into the trouble of jumping past object declarations. 
The notion of destructors for functions (code that runs at function return time) allevi-
ates most of the goto out needs without the visual clutter of a nested scope, it also 
tends to make such functions shorter and easier to follow. If the goto out  is abso-
lutely required for some code, it can still be used by:

 Moving all declarations before the goto statement so that there are no inter-
vening declarations; or

 Enclosing intervening declarations in scopes that are exited before the target 
label of the goto statement;

If trouble still occurs, it is probably time to rewrite the code and simplify it, because 
most likely it has accumulated too many independent isolated changes over time and 
a rewrite would likely reduce its size, complexity, and bugs.

9.9   Use of return expression; in void functions

A void function can use the return expression; form of the return statement, 
for example:

void f() {...}
void g() {
    if (a()) return f();
    ... complicated code follows ...
}

This relaxation simplifies the language by allowing void functions to be thought of 
as returning a value, a  void value. With that in mind, the  return expression; 
statement in a void function can use any void expression. Without this simplifi-
cation of the language the g() function above would have to be written this way:

void g() {
    if (a()) {
        f();
        return;
    }
    ... complicated code follows ...
}

9.10   Function values that are vital

A function that has the vital keyword immediately after the closing parenthesis of 
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its argument list indicates that the value can not be ignored, it must be used. Some-
thing must be done with it, otherwise a compilation error occurs.

For example, a function whose value is required as an argument to another func-
tion, to ensure that nested uses are correct. In example() below disable_lock() 
disables interrupts to a certain level and then acquires a lock, it returns the previous 
interrupt enabled level; unlock_enable() unlocks the lock and restores interrupts to 
the level specified in its argument, these are AIX kernel APIs, many operating system 
kernels have APIs similar to them:

int disable_lock(simple_lock_t *lock, int pri) vital { ... }
void example() {
    int pri1 = disable_lock(&lock1, INTIODONE);
    some_work();                      // needs lock1
    int pri2 = disable_lock(&lock2, INTMAX);
    more_work();                      // needs lock1 and lock2
    unlock_enable(&lock1, pri2);
    final_work();                     // needs lock2
    unlock_enable(&lock2, pri1);
}

The re-enablement of  interrupt  levels  must  be done in  the reverse order shown 
above, even though the locks are released in a different order. This locking idiom oc-
curs when a hash or a hash chain is locked, then an object found through the hash is 
locked, then the hash lock is released and the object lock is retained while some ob-
ject manipulation occurs.

The object oriented idiom of encapsulating the lock operations in an object and us-
ing the object destruction to cause the lock to be released, other than being obscure,  
would be incorrect for the example above.

9.11   Classes whose objects are vital

A class declared with  vital indicates that objects of its type must all be created 
and individually destructed, no optimizations are allowed on them to reduce the num-
ber  of  short  lived  objects  that  are  created,  for  example,  if  they  are  value  like, 
init_deinit() and reinit_deinit() won't be invoked on them. For example:

class trace() vital { ... }

9.12   Jump statements cause object destruction

Jump statements, i.e. break,  continue,  goto, and return cause the destruction 
of any constructed in-scope objects that won't be in scope after the jump. Destruction 
occurs in the opposite order of their construction. Between the jump statements and 
their target an arbitrary amount of code can be executed, including infinite loops and 
even program normal or abnormal termination. Thus instead of the C assembler like 
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almost immediate control transfer, additional work could occur during their execu-
tion. This is a significant expansion of the behavior of these constructs when com-
pared to their C behavior, it has both advantages and disadvantages, particularly be-
cause control transfer is no longer obvious. Other work that occurs under cover is the  
destructor invocations when objects are no longer in scope, which is not apparent 
when the scope is closed. In contrast, object construction is correlated to the object  
declaration because the declaration and construction occur at the same time.

The standard C library functions setjmp() and longjmp() can not be be used in 
COOGL they are unsafe. Even though they are useful for very drastic error handling, 
or to build higher level mechanisms for error handling and they can be of good use in 
the hands of a competent system designer they are best left out of the language.

9.13   Loop-member functions and the loop statement

To aid in the encapsulation of containers, (lists, trees, hashes, etc.), a class can im-
plement a special kind of member function, a loop-member function, used to abstract 
the control flow and details related to iterating over the contents of the container. As-
suming  the  iterator non-static  member  class  of  stack,  from §4.14,  the  class 
stack can implement a loop-member function to iterate over the values of a stack,  
top to bottom. Note that the loop-member function, values(), produces a series of 
values, each value is produced by the continue itor.get() statement:

class stack(size_t max, int *error) promise(empty()) {
    // ... rest unchanged ...
    pub loop int values() {
        decl this->iterator itor;
        while (!itor.end())
            continue itor.get(); // produce int values
    }
}

Use of the loop-member function values() is shown below:

int average(stack *s) {
    large total = 0;
    int count = stack->count();
    if (!count) return 0;
    loop (int v = stack->values()) total += v;
    return cast(int) (total / count);
}

There are two forms of the loop control flow statement, a very simple one, shown 
above. A second loop statement allows the 3 for statement optional expressions to 
follow, separated by semicolon, the loop control declaration:
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void add_top_n(stack *s, size_t n) {
    int v, sum = 0;
    loop (int v = stack->values(); size_t i = 0; i < n; i++)
        sum += v;
    return sum;
}

The  controlling  expression  of  the  loop  statement  can  also  be  an  assignment,  it 
doesn’t have to be a declaration, as shown in  add_top_n() above. The result of 
compiling show_top_n() is code similar to the code shown below:

int add_top_n(stack *s, size_t n) {
    int v, sum = 0;
  { decl this->iterator itor;
    for (size_t i = 0; !itor.end() && i < n; i++) {
        v = itor.get();
        sum += v;
    } }
    return sum;
}

The current version of the compiler, requires that the loop-member function pro-
duce its values from within an iterative control flow statement, either a  for or a 
while statement, and not from a  do while  or another  loop statement. An addi-
tional restriction is that the values be produced from within a single location within 
the iterative control flow statement, and not through recursive calls to itself, or other 
functions. A future versions of the compiler could support multiple value producing 
locations relatively easily. It is unlikely that a future version of the compiler will sup-
port recursively producing the values, it would require a co-routine like environment 
with its own run-time stack to be preserved while the loop-member function was ac-
tive, i.e. while the loop-member function was being used to iterate on the container,  
and the disposal of it if the loop statement terminated prematurely through a break, 
a goto, or a return.

Its invalid to invoke a loop-member function other than from the loop controlling 
declaration. The restrictions against recursion could be removed, but they don’t seem 
worthwhile, it would require allowing loop-member functions to be invoked from 
places other than loop-member functions,  which would be meaningless if executed 
from outside a loop-member function call-chain.

Recursive algorithms can be made non-recursive, with some extra effort, and even 
though usually the code is not as easily comprehended, non-recursive algorithms can 
be used to work-around this restriction. Generic high performance containers are usu-
ally very well written code, and the extra effort to remove recursion usually pays off 
in higher performance, thus this restriction is not as bad as it might seem.

 If an inherently recursive algorithm needs to be used by the loop-member function,  
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it can arrange its own co-routine based implementation, it might also benefit (in run-
time performance) if the underlying iterator implementation uses a buffer that is man-
aged by the loop-member function, emptied by it, and replenished with multiple val-
ues (recursively) each time its emptied, thus reducing the costs of co-routine switch-
ing,  increasing instruction cache locality,  and benefitting from the inlining of  the 
itor.get() and of the loop-member function into the loop control flow statement.

9.14   No structured exception handling

COOGL does not have structured exception handling mechanisms, it doesn't need 
them because it doesn't have other mechanisms, such as operator overloading or con-
version operators, which in other languages make exception handling a requirement.  
The  COOGL design excluded structured exception handling support because of the 
flow control complexity morass that it engenders. The language complexity that re-
sults from language based exception handling is very high, particularly for a feature 
to be used only to handle exceptional conditions.

Structured exception handling, as a programming language facility, is a language 
design mistake, at least in COOGL. The fundamental reason is that once exceptions 
are thrown freely by a multitude of code, libraries, and even by language facilities 
themselves, no code can be written without worrying about what exceptions might be 
thrown by functions down the call chain that ought to require continued consideration 
in the current code.

Reliable systems can easily be written with traditional error handling paths, out of 
line exception handling functions, and consistent use of return codes. Well designed 
and well constructed systems might have one or more layers that represent failure do-
mains where errors are handled through out of line execution. Those systems are usu-
ally built with custom allocators, lock stacks, and setjmp() longjmp() like facili-
ties. They are much easier to build, understand and maintain because it is not the pre-
occupation of every function, and sometimes every block of code, to worry about 
these exceptional circumstances. By definition, exception handling code is excep-
tional, and its correctness is correlated with its actual testing, which implies that only 
a sideband orthogonal mechanism used between a few layers is the best way to orga-
nize such code. The alternative of having exception handling code spread throughout 
the whole code base, and making it the source of concern for every line of code writ -
ten, is impossible to maintain, it is, after all, a form of a non local  goto, but even 
worst because the target of these non-local goto, the label is determined at run-time, 
with the ever present possibility in some cases that there might not be a target for the  
exception being thrown.

Providing  language  support  for  just  a  few exception  handling  layers  is  nothing 
more than to add a feature that will be hardly used, so it shouldn't be in the language. 
Providing it so that a moderate number of exception handling paths be written, thus 
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possibly needing it in the language, is nothing more than an invitation for an untested 
morass of paths, or even worse, code that actually actively uses these glorified non-
local  goto statements under normal product operation. In some languages, such as 
Java, its standard library interfaces include exceptions being thrown as a means of re-
porting errors, for example when a file open fails, which is not something excep-
tional, it is something that should be expected. Structured exception handling is simi-
lar to allowing a drunken pilot fly an airplane full of passengers, a very bad idea.

A  system  whose  error  handling  would  have  been  based  on  setjmp() and 
longjmp() together with lock stacks and cleanup functions can still be implemented 
by performing the cleanup work in the exception handler and coordinating with a 
control thread to terminate the thread that caused the exception. Alternatively, the 
thread can move its run-time stack to a different stack and start over from there after 
disposing of its prior stack.



10 - Operators, expressions, keywords, and behavior

“At one point, I took BCPL from Martin Richards at 
MIT and converted it into what I thought was a fairly 
straight translation, but it turned out to be a different 
language so I called it B, and then Dennis took it and 
added types and called it C.”

“B is a computer language directly descendant from 
BCPL. B is good for recursive, non-numeric, machine 
independent applications, such as system and 
language work. B, compared to BCPL, is syntactically 
rich in expressions and syntactically poor in 
statements.”

--Ken Thompson

COOGL inherits  C's operators, their behaviors are identical. Some 
operators, when used with a few other operators must parenthesize 
their sub-expressions. Additional operators added by  COOGL: sym-
bol  lookup  in  function’s  scope;  absolute  symbol  referencing;  fine 
grain function inline control; checked operators that perform arith-
metic  of  signed or  unsigned integers,  and indicate if  the operation 
overflowed or involved a division by zero.

COOGL doesn’t have undefined behavior, wherever the C11 stan-
dard  states  undefined  behavior,  COOGL code  behaves  in  a  docu-
mented manner characteristic of the environment where the compiled 
code runs.

10.1   Parenthesis requirement in certain error prone expressions

Parenthesis are mandatory in certain expressions to prevent certain programming 
errors.  The operators and their precedence levels are shown in the following page. 
The precedence choices in  C  for the binary bitwise operators (groups 8, 9 and 10) 
and the shift operators (group 5) is a common source of programming errors. Their 
uses without parenthesis together with certain other operators is usually contrary to 
what some programmers might have intended. Those choices are the result of C's  
evolution from B, and B from BCPL, and the later incorporation of the && and || 
operators into C, replacing & and | as the natural logical operators.
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The following additional rules apply, they, mandate the use of parenthesis for the 
troublesome cases:

 Uses of a binary bitwise operators: &, |, or ^ (groups: 8, 9 and 10) together 
with operators: *, / %, +, -, <<, >>, <, <=, >, >= , ==, or != (groups: 3, 4, 
5, 6 and 7) must have parenthesis. The binary bitwise operators have a very 
low precedence, out of place between relational operators (groups 6 and 7) 
and logical operators (groups 11 and 12).

Compilation Error Meaning in C Programmer Intent

i & j + 1
i & j == k
i | j * 3
i & ~1 < k 

i & (j + 1)
i & (j == k)
i | (j * 3)
i & (~1 < k)

(i & j) + 1
(i & j) == k
(i | j) * 3
(i & ~1) < k

Historically the binary bitwise-and and bitwise-or operators,  & and |, were 
used also for logical operations in the ancestors of the C language (B, BCPL 
and CPL). Those languages didn't have separate logical-and and logical-or 
operators, i.e.  && and  ||, because the relational and comparison operators 
produce a true or false value in those languages, 1 or 0 in the languages that 
lack a boolean type, then expressions such as these were common and appro-
priate, the precedence of & and | didn't cause trouble in those languages, just 
like this operation doesn't cause trouble in C, but this kind of use is not id -
iomatic in C:

if (min <= n & n <= max)

A problem with  C  is that C's historical lack of boolean types, and conver-
sions and strong type checking, causes code such as this to be silently wrong:

/* C code, some parentheses are needed to be COOGL code */
int a = 2, b = 1;           /* non-zero means true */
assert(a & b);              /* wrong! (2 & 1) is zero */
assert(a && b);             /* right */
if (a & b > 0) go();        /* wrong! (2 & 1) is zero */
if (a && b > 0) go();       /* right */
if (a != 0 & b > 0) go();   /* right, not idiomatic */
if (a && b > 0) go();       /* right, idiomatic */

In K&R C no compilation errors occur when a & (bitwise and) operation is 
performed between an integer and a relational expression, e.g. the first  if 
above, which is incorrect because even when both operands are non-zero, the 
result of a  & (bitwise and) might still be zero. Thus instead of salvaging in 
COOGL these last vestiges of CPL and BCPL present in C, including the 
correct but non idiomatic uses in the 3rd if above, it is best to prevent these 
misuses.

 Uses of the binary bitwise-exclusive-or operator:  ^ (group 9) together with 
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one of the other binary bitwise operators:  & and | (groups 8 and 10) must 
have parenthesis. The ^ is a more complicated operation than | (bitwise-or) 
and & (bitwise-and). The ^ is defined in terms of &, |, and ~ (bitwise-not) 
as:

(a ^ b) == ((~a & b) | (a & ~b))

Having ^ precedence between the more fundamental operators of | and & is 
counter intuitive, having ^ with higher precedence would make sense from 
the  mathematical  perspective  that  more  complicated  operators  defined  in 
terms of simpler ones have higher precedence than the ones on which their 
definition is based. For example, multiplication is more complicated than ad-
dition,  multiplication  is  defined  as  repeated  addition,  multiplication  has 
higher precedence. Thus ^ should have had higher binding than both | and 
&. But because operator precedence cannot be changed in COOGL and con-
tinue to aspire to be an evolution of C, mandating parenthesis in this and the 
various other cases that tend to cause confusion among some C program-
mers, is a simple improvement that prevents programming errors of this na-
ture.

 Uses of << or >> (group 5) together with *, /, %, +, or - (groups 3 and 4) 
must have parenthesis. For example: i << j + k  produces a compilation 
error. The C language indicates that this expression means i << (j + k)  
instead of (i << j) + k . Considering i * j + k  means (i * j) + k, 
in C and in math, and that p << k means p * 2k i.e. that the shift left opera-
tor is a multiplication by a power of two in disguise, then the precedence of 
<< lower than  + or  - is mathematically counter intuitive. The same argu-
ment applies to right shift which is a division by a power of two: 

Compilation Error Meaning in C Programmer Intent

i << j + k
i + j << k

p - q << r + s
p * q >> r / s

i << (j + k)
(i + j) << k

(p - q) << (r + s)
(p * q) >> (r / s)

(i << j) + k
i + (j << k)

p - (q << r) + s
p * (q << r) / s

Many code sequences don't need any extra parenthesis, for example in:

if (x & 1 && b == 0) go();

the C precedence already does what is expected, i.e.:

if ((x & 1) && (b == 0)) go();

10.2   Member lookup operator ^

The ^ member access operator is a unary operator (i.e. ^member) that is only valid 
in  expression  arguments  within  function  invocations.  The  member  is  looked  up 
within the name space of the function being invoked, instead of the name space of the 
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calling function. Examples are shown in §7.8.

10.3   Fine grained function inline control

Section §Error: Reference source not found describes the func()inline form of 
the function call operator. The use of  inline is a syntactical form where the key-
word enhances the expression syntax, a kind of modifier used at function invocation 
time. From a language perspective  ()inline is another form of the function call op-
erator.

10.4   Checked arithmetic operators

Arithmetic operators that indicate if the operation overflowed are:  ?++,  ?--.  ?- 
(unary checked arithmetic negative), ?+,  ?-, and ?* and the assignment-operation 
operators: ?+=, ?-=, and ?*=. These operators can only be used with signed or un-
signed integer types, to efficiently determine if the operation resulted in an overflow. 
These operators are particularly important for secure coding, where overflow detec-
tion is very important but awkward, expensive, and error prone to program in C.  
Overflow detection is important to ensure that large value computations don't wrap 
around in unexpected ways, possibly allowing, through the resulting unexpected val-
ues, attack vectors into the software that contains them.

Checked arithmetic operators that indicate if  a division by zero would have oc-
curred are: ?/ and ?%, and their corresponding checked-assignment-operation opera-
tors ?/= and ?%=.

The precise C instruction sequence produced by these operators is carefully tuned, 
through C intrinsics and/or  asm expressions, to ensure that the underlying registers 
are accessed as efficiently as possible. A base portable implementation of these in-
struction sequences expressed purely in C is also provided to allow the porting of the 
compiler to new computer architectures and new underlying C compilers to be an 
easier two step process, by allowing the tuning of these expressions to be performed 
at a later phase after the compiler has been fully ported and tested.

The value of ?+,  ?-, ?* , ?/, and ?% is a tuple with two members, the type of the 
first is the type of corresponding arithmetic operator as dictated by the types of its ar-
guments. The second value of the tuple is a boolean, which is true if the operation 
overflowed (for the first three) or if division by zero would have occurred (for the last 
two), false otherwise. The value of the assignment-op operators: ?+=, ?-=, ?*=, ?/
=, and ?%= is a boolean that indicates if the operation overflowed (for the first three) 
or if division by zero would have occurred (for the last two). The |= operator is used 
idiomatically to accumulate the overflow condition. When overflow occurs the actual 
value computed is arbitrary, but it is valid to use it in further computations, its use is  
not undefined behavior. These operators are not allowed with floating point types.
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The checked-assignment,  ?=, operator is an assignment operator whose value is a 
boolean that indicates if the value being assigned is larger than the values that can be 
represented by the target of the assignment. It is used when a larger type is used to 
perform arithmetic involving values of a smaller type, and the final result is then as-
signed to the smaller type, at that point checking if the value was too large to fit. If 
the value doesn't fit the result is truncated, when the types are integral.

tuple [int r, bool error]
a_times_b_minus_c_plus_d_div_e(int a, int b,
                               int c, int d, int e) {
    [r, error] = a ?* b;  // type of ?* is tuple [int, bool]
    error |= r ?-= c;     // type of ?-= is bool
    error |= r ?+= d;     // type of ?+= is bool
    error |= r ?/= e;     // type of ?/= is bool
    return [r, error];
}

In the following example all the operations are performed with variables of type 
large and the final value, lr, is then attempted to be assigned to a, presumably, nar-
rower variable,  r, of type  int. Note that for systems where the representations of 
int and large are the same, the code below is equivalent to the code above, but if 
int is not capable of storing every large value, and because both a multiplication 
and a division are involved, it is possible that the final value might still fit in an int 
while the intermediate values might have been too large for an int.

tuple [int r, bool error]
a_times_b_minus_c_plus_d_div_e(int a, int b,
                               int c, int d, int e) {
    large la = a, lb = b, lc = c, ld = d, le = e, lr;
    [lr, error] = la ?* lb;
    error |= lr ?-= lc;
    error |= lr ?+= ld;
    error |= lr ?/= le;
    error |= r ?= lr;
    return [r, error];
}

10.5   Keywords

COOGL inherits from C all of its keywords and their semantics.  COOGL intro-
duces several new keywords used for object oriented, generic programming, and a 
few other features. The semantics of several C keywords are enhanced. A few C key-
words, that are no longer needed, were removed.

Many of  COOGL new keywords and C keywords with extended or restricted se-
mantics have already been touched upon. The C keywords removed in COOGL are 
shown in the table below, keywords removed from the language remain in the lan-



176        Operators, expressions, keywords, and behavior Chapter 10

guage as reserved keywords, any use of them causes a compilation error. C keywords  
whose semantics have been enhanced or restricted in COOGL are also shown.

C keywords affected by COOGL

removed enhanced

auto
const
extern

long long
register
signed
unsigned
volatile

enum
union
static
void

Section §10.6 describes the removed keywords.

Use of enum to declare compile time constants is described in §20. Scoped enumer-
ations, specifically typed enumerations, and bit field structured enumerations can be 
specified, see  §Error: Reference source not found. Pointers can not occur within a 
union declaration, see §14.7. Static members are declared with the static modifier, 
see §4.3. The void keyword also corresponds to a very special class: class void.

Types added by COOGL in addition to the types that it inherited from C are shown 
in the following table. From a language grammar perspective, these types (and void) 
are not actual keywords, they are built in global types, see §Error: Reference source
not  found.  The  new  integer  types:  bool,  byte,  ubyte,  ushort,  uint,  large, 
ularge and unic are introduced in §18 and described in chapter §12. The C key-
words  char and  long are  typedefs in  COOGL as are  uchar and  ulong, which 
were not keywords in C, they are also described in the same section.

Types added by COOGL, in addition to its C types 

bool
unic

byte
large

ubyte
uchar

ushort
uint

ulong
ularge

Keywords added by COOGL in addition to the keywords that it inherited from C 
are shown in the following table:

Keywords added by COOGL, in addition to its C keywords 

identifiers declarators access modifiers statement

this
retval
argsof

class
extend
genre
fieldof
typenew

decl
pub
priv
prot

inherit
defer
redef
inline
vital

loop
promise
require

The new keywords are described in detail throughout this book, they are briefly de-
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scribed in the sections enumerated below.

The statement keywords:

 The loop control flow statement is presented in §9.13.

 The on statement is described in §1.4.

 The promise(expression) and require(expression) specifications are 
used as part of the function declaration, prior to the function body, see §4.1.

Special identifiers:

 The current object can be referred through the this identifier, see §4.13.

 The argsof identifier stands for the a tuple whose members are identical to 
the argument list of a function that argsof is a member of, see §11.9.

 The  retval identifier is used to access the value returned by a function, 
from the function's destructor, if it has one, see §5.23.

Declarators:

 Chapter  §4 describes  class, which is the central object oriented program-
ming facility.

 Classes can be extended through the extend keyword, see §7.1.

 Function and class arguments can be type names for generic programming 
purposes. A type argument is declared with genre, see §11.3.

 Generic  programming also  makes use  of  the  special  fieldof declarator, 
which allows arguments to be field names. This is described in  §11.13. A 
generic linked list implementations that make use of genre type arguments 
and fieldof field name arguments in its implementation is in §11.15.

 Incompatible number types can be declared with typenew, see §Error: Ref-
erence source not found.

Accessibility modifier keywords:

 The access modifiers pub, priv and prot are described in §6.7.

 Local declarations within a function or class, i.e. non member declarations, 
must start with the decl keyword when the base type for the declaration is a 
type expression, i.e. an expression whose value is a type, see §4.4.

Other modifier keywords:

 Inheritance and polymorphism are specified through inherit, see §4.6 and 
§6, together with defer and redef, see §6.4 and  §6.6.

 The  inline keyword provides control over function inlining, see  §Error:
Reference source not found.
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10.6   Removed keywords

Several C keywords are removed from the COOGL language, they are preserved as 
reserved keywords, their use results in a compilation error. The rationale for preserv-
ing them as reserved keywords is to minimize confusion when seen by C program-
mers as variable names and to allow them back in the language if the user base de-
mands it. The rationale for their removal is:

 auto - this modifier can only be used for local variables, it indicates that a 
variable should be allocated on the run time stack. Its absence has the same 
meaning as its presence, unless static is used, in which case the variable is 
not allocated on the stack, it is allocated globally instead. This keyword is 
hardly ever used by C code, it belongs mostly to the prehistory of C. The an-
cestral roots of auto are in PL/1 where it was required for stack variables.

 extern - this modifier is used to indicate that what might otherwise seem 
like a local variable declaration or a global variable declaration is actually 
only a type definition for a global variable declared elsewhere. It  is used 
when a variable or function needs to be used in source code compiled sepa-
rately from the source code that actually defines it. Uses of extern usually 
appear in header files, though uses within a function are not uncommon, lo-
cal uses introduce complexity in the language because it goes against the 
normal  scoping  rules.  COOGL compilation  is  global,  extern is  not  re-
quired.

 Long long  - this is not actually a keyword in C, it is a special type that cor-
responds to a 64 bit type. COOGL introduces the large type which serves 
this purpose without having to have special case ad hoc parsing for a single 
type in the language. The ancestral roots of long long are from ALGOL68.

 register - this belongs to the early of C. It used to be used to direct early C 
compilers to place a local variable in a register instead of in the run time 
stack. Modern compilers do much better register allocation than a program-
mer can express through these means. Modern compilers simply ignore uses 
of register, though C mandates that the address of such a variable cannot 
have its address taken. Most C compilers honor that language definition left-
over.

 signed and unsigned - uses of these as types or as modifiers is not allowed 
in  COOGL. Instead explicitly typed integer types were added to the lan-
guage: ubyte, ushort, uint, ulong, and ularge. Declaration forms such 
as these:

unsigned int ui;
unsigned     u;
signed char  sc;
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Are not valid in COOGL, they should be written this way instead:

uint         ui;
uint         u;
schar        sc;

10.7   Undefined behavior and implementation dependent behavior

The definition of undefined behavior in C11 follows:

“3.4.3 undefined behavior”

“behavior, upon use of a nonportable or erroneous program construct or of  
erroneous data, for which this International Standard imposes no require-
ments”

“NOTE  Possible  undefined  behavior  ranges  from  ignoring  the  situation  
completely  with unpredictable  results,  to  behaving during translation or  
program execution in a documented manner characteristic of the environ-
ment (with or without the issuance of a diagnostic message), to terminating  
a translation or execution (with the issuance of a diagnostic message).” –  
C11 3.4.3 n1570.pdf:4

Every undefined behavior aspect of the C language inherited by COOGL is treated 
as  “behaving  during  translation  or  program execution  in  a  documented  manner  
characteristic of the environment (with or without the issuance of a diagnostic mes-
sage), to terminating a translation or execution (with the issuance of a diagnostic  
message).”  No  aspect  results  in  “ignoring  the  situation  completely  with  unpre-
dictable results.” Furthermore  “terminating execution” doesn’t occur in an uncon-
trolled way, instead an exception, that can be caught by an exception handler is docu-
mented to be raised when specific undefined behavior occurs, for example when an 
array is indexed with an invalid index, or when a NIL pointer is dereferenced.

Not every aspect of undefined behavior in C is addressed in this section, a signifi-
cant source of undefined behavior in C relates to the unsafe aspects of C, for example 
indexing an array out of bounds, accessing memory after it has been released, etc. In-
valid memory access aspects of C are addressed fundamentally, at the core of those 
issues, by its safe language design, see §14.

COOGL source code is compiled into C11 code that does not contain any con-
structs that would be seen by the C11 compiler as undefined behavior. For every in-
stance of undefined behavior in the C11 standard a specific code generation approach 
is chosen that prevents its occurrence. The approach might include causing the com-
pilation to fail  and directing the programmer to  address the issue at the  COOGL 
source code level.

For example, the underlying C11 compiler's limits for internal and external identi-
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fier lengths are determined and known by the  COOGL compiler. The identifiers in 
COOGL source code, after any adjustments required by the translation to C11 code, 
(see Appendix §2S in page 291), are checked to ensure that the length of the adjusted 
identifier doesn't exceed its length limit. If the limit is exceeded, a compilation error 
occurs. Internal and external identifiers are described in §S9.

With respect to undefined behavior:

“Any identifiers that differ in a significant character are different identifiers.  
If two identifiers differ only in nonsignificant characters, the behavior is  
undefined.” – C11 6.4.2.1 n1570.pdf:60

To ensure that undefined behavior does not occur, the COOGL compiler produces a 
compilation error instead of producing code with identifiers whose length exceed the 
limits supported by the platform or the limits chosen by the programmer.

One of the most common and unexpected sources of undefined behavior in C pro-
grams is integer overflow:

“EXAMPLE An example of undefined behavior is the behavior on integer over-
flow.” – C11 3.4.3 n1570.pdf:4

The overflows() function:

bool overflows(int n) {
    if (n + 100 < n) return true;
    return false;
}

Is compiled by undefined behavior optimizing C compilers into this x86/64 code:

_overflows:
        xorl    %eax, %eax      // always return false
        retq

The compiler sees that a positive value, 100, was added the int n, and takes ad-
vantage that integers in math are infinite and that n+100 > n , is always true, in the 
domain  of  the  mathematical  integers,  and  causes  the  function  to  always  return 
false.  The compiler writers  forget that the computer  does not deal with infinite 
mathematical integers, it deals with finite numbers in a modular wrap around way. 
The compiler doesn’t even bother to tell the programmer that code was removed, the 
whole  if (n + 100 < n) return true;  statement was removed. By doing this 
the compiler is in essence hiding behind the standard description to insert what could 
be a security hole or backdoor into code that in prior versions of the compiler would 
have been compiled correctly. Particularly on computer systems where the underlying 
hardware does not raise an exception on overflow and where signed integers are im-
plemented in two's-complement, e.g. all modern computer systems, the code above is 
idiomatic code that determines if the addition of a positive number and an integer 
overflows. The compiler writers might assume that this kind of micro-optimization 
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and silent code removal amounts to adding value, but what they are actually doing is 
ignoring the programmer and silently introducing bugs.

In COOGL signed integer overflow or underflow does not cause undefined behav-
ior. The behavior is well defined and corresponds to what every modern computer 
system does when performing arithmetic  with two's complement numbers,  i.e.  on 
overflow it wraps from the largest positive number representable to the smallest neg-
ative number representable, and vice-versa for underflow. Assuming 32 bit int, the 
largest  int is  231-1  =  0x7fffFFFF =  2147483647 the  smallest  int is  -231 = 
0x80000000 = -2147483648. For example adding 4 to 231-1 after overflow results 
in -231+3 which is =  0x80000003 = -2147483645. This means that even when some 
arithmetic might overflow, later arithmetic might cause it to underflow and the final 
value could be the correct mathematical value, for example the overflow that pro-
duces the value of b is canceled by the underflow that produces the value of c:

int main() {
    int a = 2000111222;
    int b = a + 1000333444; // b == -1294522630 (overflowed)
    int c = b - 1000000000; // c == 2000444666 (underflowed)
    assert(a + 333444 == c);
}

Some C compiler writers will tell you with a straight face that their compiler might, 
now, or in the future produce arbitrary values for b and c. The compiler could deter-
mine that the a + 1000333444 causes integer overflow, so the value of  b doesn’t 
have to be determined, nor does the value of  c, so both could be arbitrary values. 
Other compiler writer’s will snicker and say: “oh, that program, it is allowed to cor-
rupt all of your files, I can do whatever I want in that case.” Of course, computer 
systems don’t behave that way, compilers are not supposed to behave that way either, 
neither does COOGL. 

Another case of undefined behavior is storing into C string literals, whose type is  
const char array:

“It is unspecified whether these arrays are distinct provided their elements  
have the appropriate values. If the program attempts to modify such an ar-
ray, the behavior is undefined.” – C11 6.4.5 n1570.pdf:71

The following code has undefined behavior in C, in COOGL the behavior is speci-
fied, an exception is raised, usually SIGBUS in UNIX and UNIX-like operating sys-
tems, the specific exception is platform dependent but is documented:

int main() { char *p = "hello"; *p = 'H'; }

Another example of undefined behavior is where this shift left operation, one of the 
most primitive hardware instructions, which is well defined in every hardware in-
struction set, gets turned into some aberration far from the hardware reality of com-
puter systems. C was supposed to be a low level language close to the hardware, not  
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the playground for Computer Science students to evolve it into a language that gets in 
the way of the programmer whenever a group of people managed to write “undefined 
behavior” is a standard document that the complier writer’s then use to their perverse  
advantage to introduce bugs into your program under the guise of optimization. For 
example:

int shift32(int a) { return a << 32; }

Causes a well known C11 compiler to return an arbitrary value when compiled with 
optimization enabled, completely ignoring the shift operation, which can be deter-
mined at compile time that it would have produced the value 0, or if the underlying 
instruction was issued on an Intel x86 CPU, it would have returned the value a, be-
cause on that computer system shift of a 32 bit sized  int doesn’t do anything, the 
value is left unchanged. Certainly having the hardware do what the computer system 
does is better than having the compiler return a random value. The same code without 
optimization causes the underlying hardware instruction to be compiled and what the 
computer system does is the result of the shift.

The opportunities for undefined behavior with left shift are:

“E1 << E2”

“The integer promotions are performed on each of the operands. The type of  
the result is that of the promoted left operand. If the value of the right op-
erand is negative or is greater than or equal to the width of the promoted  
left operand, the behavior is undefined.”

“The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are  
filled  with  zeros.  If  E1  has  an unsigned type,  the value of  the  result  is  
E1x2E2, reduced modulo one more than the maximum value representable  
in the result type.  If E1 has a signed type and nonnegative value, and  
E1x2E2 is representable in the result type, then that is the resulting value;  
otherwise, the behavior is undefined.” – C11 6.5.7 n1570.pdf:95 

Under the same mantra of  optimization compiler could prove an invariant based 
theorem that for a specific E1 << E2  shift of an int E1x2E2 is not “representable in  
the result  type,”  and allow itself to produce a  random value making the code go 
“faster” by omitting code generation for the shift. Of course that would be even more 
nonsense, but it would seem that compiler writers would be eager to be consistent 
with their undefined behavior useless optimization effort related to shift of a 32 bit 
int by 32 bits, what is the performance benefit of that?

In the real hardware world the shift left instruction is the same exact instruction for 
both int and unsigned int , and if it happens to be different in some ancient, no 
longer relevant machine, then the compiler should just generate that instruction and 
let it do what it does.

In the paper “Undefined Behavior: What Happened to My Code?” (Xi Wang Hao-
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gang Chen Alvin Cheung Zhihao Jia# Nickolai Zeldovich M. Frans Kaashoek) the 
authors review a variety of undefined behavior “optimizations” performed by compil-
ers that have caused the directions of the programmer to be ignored under the guise 
of optimization. They explain the approach of 4 large projects (the Linux kernel, the 
FreeBSD kernel, the PostgresSQL database, and the Apache web server) to problems 
introduced into their code base and their approach to address them. The first three of 
the projects chose to disable most of the optimizations that result from the undefined 
behavior optimization features, only Apache chose to attempt to address these issues 
as they are  discovered,  which seems counterintuitive because a  web server has a 
larger attack surface and vulnerability because web servers are meant to serve re-
quests from completely untrusted computer systems. The other 3 projects, the com-
piler writers would say, are no longer written in C because they depend on undefined 
behavior being defined in certain ways not defined by the standard (signed integers 
are implemented in two’s complement, they don’t raise overflow or underflow excep-
tions, they wrap around, etc., NULL pointer related optimizations are disabled, and 
strict aliasing optimizations are also disabled).

There are quite a few other undefined behavior situations in the C11 specification,  
they are all addressed by COOGL, the description of how they are addressed is in a 
separate document.

10.8   Implementation-defined behavior and unspecified behavior

The definitions of  unspecified behavior and implementation-defined behavior in 
C11 follow: 

“3.4.1 implementation-defined behavior”

“unspecified  behavior  where  each  implementation  documents  how  the  
choice is made”

“EXAMPLE  An example of implementation-defined behavior is the propa-
gation of the high-order bit when a signed integer is shifted right.” – C11 
3.4.1 n1570.pdf:3

“3.4.4 unspecified behavior”

“use  of  an  unspecified value,  or  other behavior where  this  International  
Standard provides two or more possibilities and imposes no further require-
ments on which is chosen in any instance”

“EXAMPLE An example of unspecified behavior is the order in which the  
arguments to a function are evaluated.” – C11 3.4.1 n1570.pdf:4

Important  unspecified behaviors  and implementation-defined behaviors  of the C 
language inherited by  COOGL, that are important to address to make  COOGL a 
more useful language are explained and specified in this section.
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This unspecified behavior could lead to data leaks if the compiler doesn’t actually 
copy the pad fields, for example if it skips them when structures are assigned:

“When a value is stored in an object of structure or union type, including in  
a member object, the bytes of the object representation that correspond to  
any padding bytes take unspecified values.” – C11 6.2.6.1 n1570.pdf:44

To ensure that this does not occur when a structure has internal padding bytes, or 
when bytes that contain bit fields have padding bits, the translated structure at the 
C11 level has all of that storage accounted for by explicitly inserting declarations of 
extra fields where the padding would have occurred. This prevents scenarios where a 
programmer has allocated zeroed memory used it as a structure, and later assigns that 
structure’s value to another structure, the target structure will not have padding bytes 
with unspecified values. This is important in scenarios where the data in the structure 
might be externalized and information might have leaked unbeknownst to the pro-
grammer  through the  padding  bytes  because  of  liberties  the  underlying  compiler 
might take in this situation, for example not copying every byte of a structure when a 
structure is assigned to another structure.

Converting from an unsigned integer to a signed integer, the 3rd paragraph below:

“When a value with integer type is converted to another integer type other  
than  _Bool,  if  the  value  can  be  represented  by  the  new  type,  it  is  un-
changed.”

“Otherwise, if the new type is unsigned, the value is converted by repeatedly  
adding or subtracting one more than the maximum value that can be repre-
sented in the new type until the value is in the range of the new type.”

“Otherwise, the new type is signed and the value cannot be represented in  
it; either the result is implementation-defined or an implementation-defined  
signal is raised.” – C11 6.3.1.3 n1570.pdf:51

In COOGL the conversion does not raise an exception, instead the conversion re-
sults in the integer having the exact same representation, i.e. bit pattern, in the signed 
integer value as it had in the unsigned integer value.

C11 gives liberty to the underlying system to handle right shifts of signed values in 
implementation defined ways. Machines that don’t implement two’s complement and 
that don’t support right shift with sign extension, i.e. arithmetic right shift, are no 
longer relevant. In  COOGL shift right of a signed value always causes sign exten-
sion. 

“The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an  
unsigned type or if E1 has a signed type and a nonnegative value, the value  
of the result is the integral part of the quotient of E1 / 2E2.  If E1 has a  
signed type and a negative value, the resulting value is implementation-de-
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fined.” – C11 6.5.7 n1570.pdf:95 

It is important to emphasize that there is a tremendous amount of lore and very use-
ful algorithms and programming techniques that simply can not be expressed if sign 
extending shifts are not supported, see “Hacker's Delight” by Henry S. Warren, Jr.

Note that if you use shift right of a negative value to try to implement division by a 
power of two you won’t get the same result that you would get with signed integer 
division, rounding of the remainder will not be towards zero, divisions with a remain-
der will require an off by one adjustment in those cases. But if you are scaling coordi-
nates by a power of two, and you want the scaling to be uniform everywhere, instead 
of leaning towards zero, then an arithmetic right shift is the correct way of doing it.

10.9   Loop optimization concern

About the only optimization that seems to matter about integer overflow relates to 
walking arrays and their indexing with signed variables, the effects it can have in 
loop unrolling loops. Also issues related to indexing with a 32 bit int on some 64 bit 
platforms, i.e. overheads related to sign extension:

“Signed integer overflow: If arithmetic on an 'int' type (for example) over-
flows, the result is undefined. One example is that "INT_MAX+1" is not  
guaranteed to be INT_MIN. This behavior enables certain classes of opti-
mizations that are important for some code.  For example,  knowing that  
INT_MAX+1 is undefined allows optimizing "X+1 > X" to "true". Knowing  
the  multiplication  "cannot"  overflow (because  doing  so  would  be  unde-
fined)  allows  optimizing  "X*2/2"  to  "X".  While  these  may  seem trivial,  
these sorts of things are commonly exposed by inlining and macro expan-
sion. A more important optimization that this allows is for "<=" loops like  
this:”

“for (i = 0; i <= N; ++i) { ... }”

“In this loop, the compiler can assume that the loop will iterate exactly N+1  
times if "i" is undefined on overflow, which allows a broad range of loop  
optimizations to kick in. On the other hand, if the variable is defined to  
wrap around on overflow, then the compiler must assume that the loop is  
possibly infinite (which happens if N is INT_MAX) - which then disables  
these  important  loop  optimizations.  This  particularly  affects  64-bit  plat-
forms since so much code uses "int" as induction variables.”

“The cost to making signed integer overflow defined is that  these sorts of  
optimizations are simply lost (for example, a common symptom is a ton of  
sign extensions inside of loops on 64-bit targets). Both Clang and GCC ac-
cept the "-fwrapv" flag which forces the compiler to treat signed integer  
overflow as defined (other than divide of INT_MIN by -1).” – Chris Lattner
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To address Lattner’s concerns. The loop below, when compiled with GCC produces 
identically unrolled optimized code with or without the  -fwrapv compiler option, 
CLANG doesn’t infer from the abort(), which makes the for unreachable, that n 
must be smaller than INT_MAX. Without the  if (n == INT_MAX) abort();  both 
GCC and CLANG do not unroll this loop when  -fwrapv is used.

#include <stdlib.h>
#include <limits.h>
void f(int n, double a[], double s) {
    if (n == INT_MAX) abort();
    for (int i = 0; i <= n; i++) a[i] *= s;
}

Note how you have to suspiciously setup the loop to test  i <= n ,  if the range 
worked on was  i < n , both compilers produce identical code with and without  -
fwrapv. Given that Lattner talks about a “ton of sign extensions” he must be refer-
ring to the address arithmetic and having to widen int variables to 64 bits to com-
pute array element addresses. Which implies that in his problematic loop, the body of 
the loop must be working on an array. Having arrays that have more than 2 31 ele-
ments is going to become more and more common, walking within the inside of such 
an array with wrap-around int indexes that go negative must be quite unusual, so 
the assumption that these compilers ought to be making is that wrapping array index-
ing does not occur, and if a programmer wants that, a -fwrapping-array-indexes 
compiler optimization disablement can be provided. Furthermore, the compiler could 
warn when it sees i <= n  instead of i < n in loops involving int indexes, and in-
dicate that it is enabling that optimization, and provide a warning for the loop in 
question, the programmer might realize that it is actually a bug in his code, as array 
indexing in C is zero based, not one based, and i < n might be what is needed.

When COOGL is compiled into C11 code, and the underlying C11 compiler re-
quires -fwrapv and related (or similar) options, because it is one of these undefined 
behavior optimizing compilers, then the code translated into C11 code is always com-
piled with those options, and to address Lattner’s concern, warnings will be produced 
when loops iterate with signed (32 or 64 bit) variables and have termination condi-
tions predicated on a  <= test instead of a  < test, or if walking backwards, if  >= is 
used instead of >. The programmer can then decide to claim via a require() con-
tract or an expect() assertion that indeed the ending value is not the largest value 
(or  smallest  value)  possible  for  the  iterating  variable’s  type,  e.g.  INT_MAX or 
LONG_MAX.



11 - Generic programming and object allocation

“A module is parameterized by a type parameter …       
if the module is to do anything with objects of the 
parameter type, certain operations must be provided 
by any actual type. Information about required 
operations is described in a where clause, which is 
part of the heading of a parameterized module. For 
example:
  set =
    cluster[t: type] is
       create, insert, elements
    where t has
       equal: proctype(t, t) returns(bool)”

-- Clu Reference Manual, October 1979

Generic  programming allows general  purpose  code  applicable  to 
unknown types to be written. The name of a type, built-in or user de-
fined, is a type object. Types as data items are no different than any 
other native data item in the language, they can be used as variables, 
members, and as arguments to functions or classes. Types as variables 
are typed, they can only be assigned compatible types. The names of 
fields of generic types can also be arguments to functions or classes.

Dynamic memory allocation and deallocation of objects and arrays 
of objects is not built into the language. The lib.creatable inter-
face provides heap based dynamic object creation and destruction. 

11.1   Type dot expression

Types are used in generic programming to specify the type that a generic type argu-
ment  must  be  compatible  with.  For  example,  the  generic  argument  to  the  class 
stack, in §11.3, has to be compatible with the lang.value interface type.

A type dot expression, type_dot_expr, is an expression that refers to a type, it can 
just be an identifier that refers to a type, or it can be an expression formed by a series 
of identifiers separated by the dot operator. The first identifier can be preceded by the 
dot-dot operator: .. to indicate that that identifier is to be searched for in the outer-
most scope instead of being searched for relative to the current scope.
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For example:

pub ..libc.FILE *fp = ..libc.stdin; // absolute type expression
pub class c {
    pub class libc {                // hides global libc ...
        pub typedef int FILE;       // purposely confusing!
    }
    pub ..libc.FILE *get_stdin() { 
        return ..libc.stdin;        // absolute type expression
    }
    pub libc.FILE integer;          // relative type expression
}

11.2   Constructor invocation syntax with built-in types

The construction syntax for classes type(argument_list) variable is also ap-
plicable to built-in types, for example these declarations are equivalent:

decl int(2) i;          // declaration of i equivalent to ...
int i = 2;              // ... this declaration of i
int tab[3] = {7, 7, 7}; // declaration of tab equivalent to ...
decl int(7) tab[3];     // ... this declaration of tab

To keep the code readable, and because this construct matters only in the realm of 
generic programming, this syntax is not generalized to pointer declarations:

char *cp = "abc";            // valid
decl char *("abc") cp;       // invalid

This syntax is valid only when the type specification doesn't compound the base 
type beyond array declarations, typedef can be used for pointers:

typedef char *char_ptr;
char *p = "abc";         //  declaration of p equivalent to ...
decl char_ptr("abc") p;  // ... this declaration of p

11.3   Type arguments, type variables, and type values

The syntax genre type_dot_expr ident is used to declare an argument, ident, 
that refers to a type that is compatible with the type that type_dot_expr refers to. 
This means that the type of ident must be the same type, or a subclass of the type, 
or implement the interface, that  type_dot_expr refers to. The declaration  genre 
void type declares type to be a universal type variable. All types are compatible 
with it because all types descend from class void. The generic argument declara-
tion genre lang.value type, below, declares type, an argument that refers to a 
type that implements value semantics, i.e. types that implement the lang.value in-
terface, this is required by swap() because it implements swapping through assign-
ment and also by initializing temp from another object of the same type, i.e. *a:
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void swap(genre lang.value type, type *a, type *b) {
    type temp = *a;
    *a = *b;
    *b = temp;
}

A type value can have one of these forms:

 a type name (native or user defined);

 an expression that refers to a type, for example: list->type, or stk.type 
where type is a type name;

 an expression that refers to a variable whose value is a type;

 a type specification that uses type declarators, as shown below.

This invocation of swap() passes int as the type argument:

void test() { int i = 1, j = 2; swap(int, &i, &j); }

Types that use type declarators to specify pointer or array types have to be specified 
by prefixing them with class, for example, class char * as shown below.

Type arguments can be omitted, in which case they are deduced by the compiler:

void test() {
    char *c = "cat", *d = "dog";
    swap(char *, &c, &d);          // error
    typedef char *char_ptr;
    swap(char_ptr, &c, &d);        // workaround: needs typedef
    swap(class char *, &c, &d);    // better: without a typedef
    swap(&c, &d);                  // NICER: type deduced §11.5
}

A generic version of the stack class is shown below:

class stack(genre lang.value type,
            size_t max, int *error) promise(empty()) {
    priv type entries[];
    entries.create(max);
    priv type *sp = entries.start;
    *error = !sp ? libc.ENOMEM : 0;
    return;

    pub void deinit() { entries.destroy(); }
    pub bool empty() { return sp == entries.start; }
    pub bool full() { return sp == entries.end; }
    pub void push(type v) require(!full()) { *sp++ = v; }
    pub type pop() require(!empty()) { return *--sp; }
    pub type top() require(!empty()) { return sp[-1]; }
}

The type argument specifies that the type must implement the lang.value inter-
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face, it must be a value type so that objects of its type can be assigned, passed by 
value as arguments, and returned as function values.

 Note that when an expression refers to a variable whose value is a type the specific  
type that it contains might only be determinable at run time, but can not vary during 
the program’s execution, because type variables and type arguments are not value 
like, they can not be assigned to or changed in any way after their initialization.

11.4   Restrictions on type arguments

Type arguments must be specified first in argument lists. This restriction allows 
type arguments to be omitted, from left to right, and be deduced instead. Also point-
ers to specific instances of generic types can be declared by omitting the non type ar-
guments in an intuitive manner, i.e. by omitting the trailing arguments. For example:

class point(genre lang.value type, priv type x, priv type y) {}
void use() {
    decl point(int, 1, 2) ipoint;
    decl point(float, 1.23, 4.56) fpoint;
    decl point(12.34, 56.78) fpoint2;   // type deduced §11.5
    decl point(int) *p = &ipoint;       // valid: omits x and y
    decl point(int, 0, 0) *q = &ipoint; // error: extra args
}

The declaration of p as a pointer to a point(int) doesn't specify the x and y ar-
guments, which are not pertinent to p 's type. The declaration of q is invalid.

Objects of the point type are not value like, a stack of point can not be declared:

void example() {
    decl stack(int, 10, &error) istk;    // int is a value type
    decl stack(int) *istkp = &istk
    decl stack(point(int), 10, &error) pstk;
    // error: point(int) is incompatible with lang.value
}

The point class can be enhanced so that objects of its type can be used as values:

class point(genre lang.value type, pub type x, pub type y) {
    pub is lang.value(point);       // point is a value type
    pub void init(point raw *to) redef {
        x.init(&to->x), y.init(&to->y);
    }
    pub void reinit(point *from) redef {
        x = from->x, y = from->y;
    }
}
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11.5   Type argument omission and deduction

A type argument can have a default value, for example:

class bitmap(genre lang.whole type = ularge, pub size_t n)
         require(n > 0) {
    priv type data[(n + type.bits - 1) & ~(type.bits – 1)];
    for (type *p = data; p < data.end; ) *p++ = 0;
    return;

    priv typedef tuple [size_t ix, type mask] ix_mask;
    pub bool get(size_t b) require (b < n) {
        ix_mask im = get_ix_mask(b);
        return data[im.ix] & im.mask;
    }
    pub void set(size_t b) require (b < n) {
        ix_mask im = get_ix_mask(b);
        data[im.ix] |= im.mask;
    } 
    pub void clear(size_t b) require (b < n) {
        ix_mask im = get_ix_mask(b);
        data[im.ix] &= ~im.mask;
    }
    priv ix_mask get_ix_mask(size_t b) require(b < bits)
        return [b >> type.bits,
                cast(type) 1 << (b & (type.bits – 1))];
}

As shown earlier with  swap() and  point, type arguments can be omitted, from 
left to right, when a function or class with type arguments is used. Omitting the first 
type argument causes its type to be deduced based on the type of the first non-type 
argument whose type is based on the omitted type argument. If there is a second type 
argument, and it is omitted too, its type is deduced based on the type of the second  
non-type argument whose type is based on the omitted second type argument. Simi-
larly for additional type arguments. For example:

class stuff(pub genre lang.value type1,
            pub genre lang.value type2,
            int intarg, type1 *t1ptr,
            float floatarg, type2 t2arg[]) {
    pub int    intval = intarg;
    pub type1 *pointer = t1ptr;
    pub float  floatval = floatarg;
    pub type2 *t2val[] = t2arg;
}

In the use of stuff below to declare s, s.type1 is double and s.type2 is char:

decl stuff(1, cast(double *) NIL, 3.141593, "hi") s;
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Of course that is a contrived example, a practical one:

max.type max(pub genre lang.number type, type a, type b)
             return a > b ? a : b;
int main() {
    int x = libc.rand(), y = libc.rand();
    on ("max("; x; ", "; y; ") = "; max(x, y); '\n') print();
}

See §Error: Reference source not found for more details about lang.number, the 
ancestor class of all number types in the language.

11.6   Specialization of generic classes and functions

The bitmap generic class presented in §11.5 includes a data member, n, that holds 
the number of  bits  in  the  bitmap,  at  run-time.  The type of  n was chosen to  be 
size_t, an appropriate type for sizes in most circumstances. A specialized version of 
bitmap that allows the type of n to be chosen, for example to be a ubyte, because 
the bitmaps are known to have at most 128 bits, follows:

class bitmap(genre lang.whole type = ularge,
             genre lang.whole size_type,
             pub size_type n) require(n > 0) {
    pub typedef bitmap bitmap_type;
    ...                              // rest of class unchanged
}

Note that this version of bitmap when used with various types leads to its special-
ization into incompatible types, for example a bitmap whose size_type is ubyte 
is a different bitmap type than one whose size_type is size_t, note that the type 
of size_type is deduced in both decl declarations:

void f(ubyte ubsz, size_t size) {
    decl bitmap(ubsz) ubm;   // size_type is ubyte
    decl bitmap(size) sbm;   // size_type is size_t
    decl ubm.bitmap_type *p = &ubm;
    p = &sbm;                // error: incompatible types
}

A specialized bitmaplit that allows the type to be specialized with a genre lit , 
so that the number of bits is not actually stored as part of the bitmap but instead be-
comes part of the type at compile time:

class bitmaplit(genre lang.whole type = ularge,
                genre lit size_t n) require(n > 0) {
    priv inherit bitmap(size_t, n) inline bm;
    pub alias get = bm.get;
    pub alias set = bm.set;
    pub alias clear = bm.clear;
}
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Note that bitmaplit is implemented by privately inheriting from bitmap and inlin-
ing the implementation, which allows the compiler to realize that n is a compile time 
constant and doesn't need to be stored as part of the underlying bitmap object, which  
is not visible outside of bitmaplit. Thus a bitmaplit(256) uses 28 / 8 = 32 bytes:

void x() { decl bitmaplit(256) b; assert(sizeof(b) == 32); }

Specialized  generic  programming  where  different  implementations  are  provided 
and the most appropriate one is chosen is supported by the language. Specialized 
templates in C++ and its SFINAE mechanism are too complex, error prone, and leads 
to hard to read code code, the programmer can not usually figure out what code is ac -
tually being used, short of reading every header file that might have been included 
and doing the work that the compiler does to choose the actual template that gener-
ates the code.

11.7   Type variables must be initialized, never assigned

Type variables and arguments always refer to a concrete type during their lifetime,  
they are never invalid, the value is set during their initialization, e.g. at function invo-
cation time. The type value that they refer can not be be changed through assignment. 
Type variables are implemented internally as pointers, when they are required to exist 
at run time. Static type checking can be applied to multiple objects declared to be of 
the same type without concern for the type in question changing based on program 
control flow. If assignment to the type variable was allowed between multiple decla-
rations based on the type, static type checking could not be performed.

An  alternative  language  design,  that  would  be  desired  by  the  followers  of  the 
school of language orthogonality, would require that type variables be allowed to be 
changed at run time. The amount of complexity that this would add to the language is 
very high. Such a design and complexity are mentioned here only to make explicit 
that  such  a  design  and  evolution  is  not  desired,  furthermore  it  goes  completely 
against the design goal of simplicity for the language.

Note that by allowing type arguments, which by declaring them with an accessibil-
ity modifier can be made into type members of a generic class, and by allowing for  
the nature of the type arguments that is allowed to be specified, (for example that  
they be value like, comparable, relationally comparable, hashable, etc), then all the 
needs for type safe generic programming that produces incompatible type errors at 
compile time are satisfied. This is much better than C++ link time errors produced af-
ter the files are silently compiled successfully because the type that a generic argu-
ment must be compatible with can not be specified.

11.8   Function names vs class names

Even though the notions of function and class are unified by the language, there are 
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differences between them. These properties apply to class declarations:

 Introduces a new type.

 A class name can be used to specify other types, e.g. stack *.

 The class name is a type value, it is not a function pointer.

In contrast, a non-class function:

 Does not introduce a named type, it introduces an unnamed type.

 The function name is a function pointer, it is not a type value.

11.9   The argsof tuple type member

Classes  and  functions  have  a  compiler  generated  tuple  type  public  member, 
argsof, it corresponds to the argument list of the class or function. The calling con-
vention for passing tuple values to a function is such that the values are passed indi -
vidually as if each was an argument. The calling function can receive them in a tuple, 
or with arguments whose types correspond exactly to the type of the tuple’s values. 
The argsof tuple type is important for dynamic object creation and destruction, i.e.  
on the heap, as described in §11.10. An example use of argsof:

void f(int i, float f, char c) {
    on ("i = "; i; ", f = "; f; ", c = "; c; '\n') print();
}
void example() {
    decl f.argsof args = [1, 3.141593, 'x'];
    f(args);
}

11.10   The lib.creatable interface

Allocation and deallocation support in C does not require special language facili-
ties, other than the  sizeof operator which is very convenient to prevent program-
ming errors from unmaintainable code that knows the size of a type. The C allocator 
returns a value of type void *. In COOGL object creation is typed correctly, it does 
not require an unsafe pointer cast or unsafe pointer assignment as is the case with C.  
The additional language support in  COOGL is the  argsof tuple type member, see 
§11.9, and the ability to specify the memory on which a constructor is invoked.

Classes that  support  the  create() static  member  function and the  destroy() 
non-static member function, by providing the  lib.creatable interface, can have 
objects of its class created and destroyed under arbitrary program control. Otherwise 
objects of the class type can not be created or destroyed at run-time under arbitrary 
program  control.  Optional  arguments,  see  §13.8,  to  lib.creatable() are  not 
shown here.
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pub namespace lib {
    pub interface creatable(genre void type) {
        extend class type {
            pub !inherit static type *create(type.argsof args){
                type raw *r = lib.object.alloc(type);
                return type(args, r); // constructor invocation
            }
        }
        pub void destroy()
          require(lib.object.allocated(type, this)) redef {
            deinit();                 // destructor invocation
            lib.object.free(type, this);
        }
        // array allocation support not shown here, see §13.8
    }
}

The  implementation  of  create() and  destroy() obtained  by  providing  the 
lib.creatable interface can be customized by redefining those member functions 
to mediate between them and the additional required functionality. For  create() 
and destroy() to be used by clients, the provision of the interface must be accessi-
ble, the is declaration must be pub.

The outermost code of lib.creatable is shown above. The implementation pro-
vided with the compiler is part of the design and implementation of the language 
safety, it is required to ensure COOGL's type safety, and central to its very memory 
efficient object layout and very fast polymorphic member function dispatch. Note 
how type.argsof, a tuple type equivalent to the argument list of the constructor of 
type, is used to specify an identical argument list for the create() static member 
function. Support for array allocation and deallocation is presented in §13.8.

Memory allocation support is added to a class by providing the  lib.creatable 
interface:

class ratio(pub int numerator, pub int denominator) {
    pub is lib.creatable(ratio);
}

An example use follows, the r pointer points to a heap allocated and constructed 
object, unless the allocation fails, in which case the value of r is NIL:

void example() {
    ratio *r = ratio.create(3, 4);
    if (!r) return;
    on (r->numerator; " "; r->denominator; '\n') print();
    r->destroy();
    decl ratio(5, 11) rr;
    rr.destroy();    // causes run-time exception to be raised
}
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If  destroy() is invoked on an object that is a member of another object, or if it 
was not allocated by  lib.object.alloc(), a run-time exception is raised by the 
require precondition of destroy().

11.11   Public static member functions that can't be inherited

A  class  derived that  inherits  from  another  class  base which  provides  the 
lib.creatable interface does  not  have a  derived.create() member function 
that creates  derived objects, nor does it have one that creates  base objects. The 
create() member function, added through an extend class by lib.creatable, 
is declared to be publicly accessible but not inheritable, i.e.  pub !inherit, which 
causes create() not to be inherited by derived.

11.12   Literal arguments to generic classes

A literal argument to a generic argument, can be used to parameterize a generic 
type, the literal value is a per class value, not a per object value, it can be used to di -
mension statically sized arrays within the generic class, see §Error: Reference source
not found for an example.

11.13   Field name argument declarations with fieldof 

The names of fields of generic types can used as arguments to functions or classes. 
A fieldof argument or member argument declaration is used to specify an argu-
ment that stands for a field (usually declared with a different name than the argument 
name) of a generic type, the fieldof declaration also specifies the type that the field 
should be compatible with.

For example in class  list, below, its  field argument stands for the name of a 
field of the generic argument specified by type, the type of field is link, a static 
member class of list.

class list(priv genre void type,
           priv fieldof type list.link field) {
    priv inherit link;       // next and prev used by list head
    return;
    ...
    pub static class link {
        priv pub { list } link *next = NIL, *prev = NIL;
        return;
        ...
    }
}

Class  entry can have its members in 3 different lists at the same time, its links 
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within those lists are link1, link2, and link3. These field names are used as argu-
ments to the class list when using it to access its nested static class link. The ar-
gument field when instantiated by link1 indicates that link1 is a field of entry 
(the first argument of list, i.e. the type argument), furthermore its type has to be 
link or a class that descends from it.

class entry(put byte *data) {
    pub list(entry, link1).link link1;
    pub list(entry, link2).link link2;
    pub list(entry, link3).link link3;
    pub is lib.creatable(entry);
}

A complete implementation of list is in §11.15.

11.14   Generic intrusive lists

Fine grained generic programming is troublesome in many languages. One of the 
goals  of  the  generic  programming facility  in  COOGL was to  be  able  to  support 
generic data structures, for example lists, hashes, trees, etc that are as efficient as 
hand crafted data structures, specifically they should not impose memory overheads 
that don't exist in hand crafted ones. Additionally, their coding should be straightfor-
ward, not the result of an accidentally discovered language within another language 
as it is the case with template meta-programming in C++, which even with all of its 
impenetrable obscure programming mechanism, doesn't allow for the most common 
ways of implementing certain data structures which are easily programmed in C.

The best approximation of intrusive lists in C++ is provided by Boost but the com-
plexity compounding across C++ features leads to these problems:

“However, member hooks have some implementation limitations: If there is  
a virtual inheritance relationship between the parent and the member hook,  
then the distance between the parent and the hook is not a compile-time  
fixed value so obtaining the address of the parent from the member hook is  
not possible without reverse engineering compiler produced RTTI.”

“Apart from this, the non-standard pointer to member implementation for  
classes with complex inheritance relationships in MSVC ABI compatible-
compilers is not supported by member hooks since it also depends on com-
piler-produced RTTI information.” -- www.boost.org

It is quite usual for an object to be linked into more than one linked list, such that  
when found through one list  it  might need to be removed from another list.  Data 
structures of this nature are quite common in system software. An implementation 
where the pointers are within the objects is usually desired because it has the smallest 
overhead. These lists, with linkage within the objects themselves are called intrusive 
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lists. When the lists themselves are unknown, it is just known that the object is in 
some list, which is quite common, the usual programming idioms in C for #define 
based reusable list manipulation macros are type unsafe. The challenge is then the 
type safety of the generic code, and to do so with no overhead, i.e. functionally iden-
tical code but without the risk of unsafe memory accesses as a result of programming 
error or concurrency. Various forms of generic intrusive lists are presented in this 
chapter.

11.15   Generic doubly linked list: list

The list class is a generic list type, with member functions to insert an object as  
its first or last element, and to remove the first or last element, if the list is not empty, 
the removed element is returned, if any, otherwise NIL is returned. The list class 
uses list.link for its links.

class list(priv genre void type,
           priv fieldof type list.link field) {
    priv inherit link;
    next = prev = this;
    pub bool empty() inline return this == next;
    pub static class link {
        priv pub { list } link *next = NIL, *prev = NIL;
        pub bool in_list() inline return next != NIL;
        prot void remove() require (in_list()) inline {
            link *n = next, *p = prev;
            n->prev = p, p->next = n;
        }
        prot void ins(link *p, link *n)
          require(!in_list()) inline {// insert between p and n
            prev = p, next = n, n->prev = p->next = this;
        }
    }
    pub type *insert_first(type *ent) inline
        return ent->field.ins(this, this->next), ent;
    pub type *insert_last(type *ent) inline
        return ent->field.ins(this->prev, this), ent;
    priv type *rem(link *e) inline return empty() ? NIL :
           (e->remove(), field_to_obj(type, link, field, e));
    pub type *remove_first() inline return rem(next);
    pub type *remove_last() inline return rem(prev);
}

 Classes whose objects want to be in a list declare their links with list.link, as 
shown further below. This form of intrusive  list has  prev and  next pointers to 
form a doubly linked list. To make insertion and removal as fast as possible, at the  
start or at the end of the list, the list head itself has the same previous and next point-
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ers, an empty list is just the list pointing to itself, thus insertion and removal have no 
special cases. The previous pointer of the first element points to the list head, and the 
next pointer of the last list element points to the list head. Thus the list is circular. No  
tests need to be performed when inserting or removing a list element, furthermore, 
the list removal code doesn't need to know (i.e. have the address of) the list that the 
entity is being removed from, this is the most common and most efficient doubly 
linked list used in system software, particularly if adding an entry at the beginning 
and at the end of the list needs to be performed in constant time. The fundamentally 
unsafe aspect of this kind of list (in C and C++) is that the list head could end up be-
ing manipulated as if it were an object of the wrong type, i.e. as it if were a list ele -
ment. See §1L.2 for field_to_obj().

11.16   Use of list

An example of list that has objects on 3 different lists at the same time follows:

class entry(pub byte *data) {
    pub list(entry, link1).link link1;
    pub list(entry, link2).link link2;
    pub list(entry, link3).link link3;
    pub is lib.creatable(entry);
}

There are 3 pub members of entry based on the list.link type. Their types are 
different because they refer to different member names.

List declaration and initialization follows. The types of list1, list2, and list3 
are all different because they are a function of the member names link1, link2, and 
link3 respectively.

decl list(entry, link1) list1;
decl list(entry, link2) list2;
decl list(entry, link3) list3;

List manipulation:

int main() {
    entry *a = entry.create("a");
    entry *b = entry.create("b");
    entry *c = entry.create("c");
    entry *e;
    list1.insert_first(a);        // list1: {a}
    list1.insert_first(b);        // list1: {b, a}
    list1.insert_first(c);        // list1: {c, b, a}
    e = list1.remove_last();      // list1: {c, b}
    b->link1.remove();            // list1: {c}
}

Test that the types of the lists are different:
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test() {
    decl list(entry, link1) *pl1 = &list1;
    decl list(entry, link2) *pl2 = &list2;
    pl1 = pl2; // error: incompatible pointer types
}



12 - More about types and smart pointers

“The machines on which we first used BCPL and then B  
were word-addressed, and these languages' single data  
type, the `cell,' comfortably equated with the hardware 
machine word. The advent of the PDP-11 exposed 
several inadequacies of B's semantic model. First, its 
character-handling mechanisms, inherited with few 
changes from BCPL, were clumsy: using library 
procedures to spread packed strings into individual 
cells and then repack, or to access and replace 
individual characters, began to feel awkward, even 
silly, on a byte-oriented machine.”

-- Dennis Ritchie

All types descend from class void. User defined types don't de-
scend directly from it, they descend indirectly through one of these 
intermediate  classes:  lang.classes,  lang.array,  lang.number 
and class void * . The type hierarchy exists to aid native type ex-
tension, generic programming, and the treatment of all variables, in-
cluding pointers, arrays, and array descriptors, as objects. The ability 
to treat native types as objects allows generic programming to use na-
tive types as type arguments. The treatment of pointers as objects al-
lows for the management of pointers and their lifecycle, supporting 
programming idioms that sometimes referred to as smart pointers.

12.1   Integer types

The hardware and compiler dependent integer types of the target language, i.e. the 
C  integer types, obey the C size restrictions:  sizeof(char) ≤ sizeof(short) ≤ 
sizeof(int) ≤ sizeof(long) ≤ sizeof(large).

The language also has a native boolean type, bool, and its literal values: true and 
false.  Various  standard  integer  typedef definitions  are  also  provided:  byte a 
signed 8 bit integer,  large the largest supported integer type, and  index for vari-
ables capable of indexing the largest possible arrays that can be addressed, its size is 
the same as the size of pointers. The integer types are:  byte,  short,  int,  large, 
and index; and the corresponding unsigned types: ubyte, ushort, uint, ularge, 
and uindex.
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The compiler includes options for multiple COOGL compilation modes on systems 
that support multiple C compilation modes, for example 32 and 64 bit modes. The 
COOGL compiler's expression evaluation is semantically identical to the native C 
compiler in each supported compilation mode.

12.2   Indexing types

Historically, in all mainstream computer systems int is a 32 bit sized type. At the 
same time, systems with pointers that are 64 bit wide are also mainstream, legacy 
systems and deeply embedded systems remain with 32 bit wide pointers. Most sys-
tems, even handheld computers, e.g. tablets and smart phones, have physical memo-
ries larger than 1GB, at the time of this writing they have between 2GB and 8GB,  
and there doesn’t seem to be a reason why their physical memory won’t continue to 
grow,  particularly  because  digital  media,  pictures  and  movies,  continue  to  have 
higher  resolutions  and  quality  (e.g.  higher  resolutions,  higher  frames per  second, 
slow motion movie capture modes, etc). At the other extreme, large computer sys-
tems with physical memories larger than a TB, i.e. 1024 x GB, are common, even 
mid-size computer servers are have physical memories in the TB order too.

A consequence of all of this, is that arrays whose numbers of elements are larger 
than 231-1 elements might become more and more common. Indexing such arrays 
with a 32 bit signed variable of type  int will become problematic over time. The 
natural progression would be for C to eventually have its  int type be 64 bit wide, 
but there is too much legacy software whose binary interfaces require int to be 32 
bit wide, it is very unlikely that this will change in the foreseeable future.

Additionally, if int were 64 bits wide, there would not be a native type for 32 bit  
words or 16 bit words, because short could not serve both roles. Some ALGOL68 
based aberration similar to long long could be devised, for example, short could 
be 32 bits and short short could be 16 bits wide.

The types index and uindex serve the purpose of having array indexing types that 
won’t run into trouble for arrays that can not be indexed correctly with variables of 
type int. Because most array indexing is done with local variables, using index or 
uindex, does not have run-time costs associated with them.

Out of bounds indexing of arrays and array descriptors causes a run time exception, 
see §14.33. Could also have compile time options to forbid arrays larger that 2^31-1 
for software that doesn't require such large arrays, hardware integer overflow excep-
tions is valuable.

Size restrictions: sizeof(int) ≤ sizeof(index) ≤ sizeof(large) and behave 
exactly the same as their C counterparts, the same relationship holds for their un-
signed counterparts.
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12.3   Floating point, complex, and imaginary types

The hardware and compiler dependent floating point types of the language, i.e. the 
C floating point types, they behave exactly as their C counterparts, they follow these 
restrictions:

sizeof(float)            <= sizeof(double)
sizeof(imaginary)        == sizeof(imaginary_float)
sizeof(imaginary)        == sizeof(float)
sizeof(imaginary_float)  <= sizeof(imaginary_double)
sizeof(imaginary_double) == sizeof(double)
sizeof(complex)          == sizeof(complex_float)
sizeof(complex_float)    <= sizeof(complex_double)
sizeof(complex)          == 2 * sizeof(float)
sizeof(complex_double)   == 2 * sizeof(double)

12.4   Enums

The space and layout rules for variables of enum type, when used in a struct dec-
laration, strictly follow the rules of the native C compiler. An integer type, a floating 
type, or a pointer type can be associated with an enum declaration. An enumeration 
declared with enum class causes the enumeration identifiers to be accessible only 
through the enumeration type name, the identifiers are not added to the scope where  
they are made, instead they are scoped by the enum type being declared:

enum pet { CAT, DOG, HORSE };
pet p = CAT;              // type of pet dictated by C compiler
enum ularge page {
    SIZE   = 4096,
    OFFSET = SIZE - 1,
    MASK   = ~OFFSET,
};
page pg = SIZE;           // integer type: ularge
enum class double math { pi =  3.1415926535897932384626433 };
double pi_x_2 = math.pi * 2;
enum class byte kind {
    EXPLICIT = 0,
    USERDEF  = 1,
    NATIVE   = 2,
    COMPOUND = 3
};
pub kind k = kind.NATIVE;  // integer type: byte
pub kind u = USERDEF;      // error: USERDEF is undefined

The initialization can take advantage of the member lookup operator, see §10.2:

pub kind(^USERDEF) u;

Within a struct declaration enum typed fields cannot be based on enums whose 
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integer type is explicitly specified, this is a feature not available to the struct bridge 
to the native C compiler.

An enum used to name a set of known values, among a larger set of values, can be 
specified by using ... at the end of its name = value list, for example:

enum ularge page {
    SIZE   = 4096,
    OFFSET = SIZE - 1,
    MASK   = ~OFFSET,
    ...                      // other values are valid
};
page pg = 0;                 // integer type: ularge

Absence of  ... implies that other values are not valid, potential assignment of a 
value outside the valid value set produces a compilation error. The compilation error 
can be disabled with a cast:

void example() {
    kind k = 17;            // error: invalid value
    kind k = kind.USERDEF;  // ok
    k = rand();             // error: invalid value
    k = cast(kind) rand();  // tell compiler it is ok
}

COOGL debuggers are encouraged to interpret as bit masks enum declarations that 
include ... and whose values are disjoint in their underlying bit representations. For 
example:

enum class mode {
    r = 4,
    w = 2,
    x = 1,
    ...    // other values are valid
}
mode rw = mode.r | mode.w;
mode rwx = rw | mode.x;

Or:

decl mode(^r | ^w) rw;
decl mode(^r | ^w | ^x) rwx;

In a COOGL aware debugger:

(db) print rwx
mode.r | mode.w | mode.x
(db) print cast(int) rwx
7
(db)
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12.5   Bit fields

Bit fields are a C language feature used to specify one or more fields that use a  
specified number of bits and where multiple fields can share the same underlying 
fundamental units of memory supported by the computer system (bytes, words, etc). 
For example to specify the bits in a 64 bit IEEE double:

struct ieee64 { uint sign:1; uint exponent:11; fraction:52; };

Modern computer systems do not support loading or storing into bit fields directly,  
from or to memory, the memory unit that contains the bit field first has to be loaded,  
the required bits have to be extracted from the register that holds the value to actually 
be able to interpret the value appropriately. To store a value into a bit field the con-
taining storage word has to be fetched, the bits merged into their correct place, and 
the word stored back into memory. Usually the surrounding bits contain bits of other 
bit fields and must be preserved. Thus bit fields cause additional computations more 
expensive than a simple load or store instruction of a fundamental memory word of 
the underlying computer system.

The base type of a bitfield must be an integer type, or an enumerated type whose 
base type is an integer type. Nameless bitfields can be declared to specify unused 
bits. The address of a bit field can not be taken. The rules for bit fields strictly follow 
the rules of the native C compiler, and might require them to be specified in a differ-
ent order:

struct ieee64 { fraction:52; uint exponent:11; uint sign:1; };

A bit field specified with zero bits causes the remaining bits of the underlying base 
types to be skipped, if there are any, as shown in this program:

union bitfields {
    struct {
        ubyte   field1:1, :0; // skip ubyte's leftover 7 bits
        ubyte   field2:2, :0; // skip ubyte's leftover 6 bits
        ushort  field3:3, :0; // skip ushort's leftover 13 bits
        uint    field4:4, :0; // skip uint's leftover 28 bits
        ulong   field5:5, :0; // skip ulong's leftover 59 bits
        ulong   field6:6;
    };
    ulong words[3];
};
bitfields b = { .f1=1,.f2=3,.f3=7,.f4=0xF,.f5=0x1F,.f6=0x3f };
int main() {
    on (b.word[0]; b.word[1]; b.word[2]) printx();
}

Its output is:

0000000f00070301000000000000001f000000000000003f
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COOGL extends typedef declarations to allow integral types to be declared with a 
specified number of  bits  which are  convenient  for  various purposes,  for  example 
when specifying variables whose values are used as shift counts to ensure that shift  
counts are within valid ranges, 0-31 and 0-63, for 32 and 64 bit types, helpful to en-
sure that shifts in COOGL don't lead to the undefined behavior disease that is infect-
ing modern C compilers while also ensuring that the shifts are as efficient as the un-
derlying C shift  operations.  This  is  achieved  by  ensuring that  the  values  of  shift 
amounts that are precomputed and used repeatedly are always valid without having to 
mask them to ensure defined behavior. Example declarations:

typedef uint uint5: 5;       // sizeof(uint5) == sizeof(uint)
typedef uint uint6: 6;       // sizeof(uint6) == sizeof(uint)
typedef uchar uchar5: 5;     // sizeof(uchar5) == sizeof(uchar)
typedef uchar uchar6: 6;     // sizeof(uchar6) == sizeof(uchar)

Variables whose type is a bit field specified with a  typedef declaration always 
consume a whole memory unit of its specified base type, fully, multiple such vari-
ables declared next to each other in a  class occupy their own dedicated memory 
units, thus their bits don't interfere with each other, furthermore the pad bits are guar-
anteed to be zero, so the cost of fetching their values is the same as fetching the un-
derlying memory unit, plus an additional sign bit propagation cost if the bit field is 
signed, which are very unusual. The cost of storing into them clearing the high bits to 
ensure the pad bits remain zero, it is a simple sore, not a fetch-mask-store operation.

To prevent undefined behavior in COOGL with respect to shift counts, if the com-
piler can not prove that the shift count results in a valid range, a compilation error oc-
curs. The programmer can provide sufficient proof through require(), promise(), 
or  assert() to establish the domain of various arguments, functions, and expres-
sions, to help the compiler prove that the shift count is valid. Worst case the program-
mer can reduce the shift count to the correct range with a bit-and operation.

12.6   Unicode characters

C89 introduced the syntax L"wide" for a character string literal to mean an array 
of wchar_t initialized to the characters between the quotes, and zero terminated, i.e. 
the same as the traditional C "string" literal, which means the same thing but for 
char being the underlying character type. The actual size of wchar_t is not dictated 
by C89. On AIX it is 16 bits on 32 bit compilation mode and it is 32 bits on 64 bit  
compilation mode. On Solaris it is 32 bits irrespective of compilation mode. COOGL 
introduces a new integer type, unic, for a Unicode character. The unic type is a 32 
bit unsigned type (it is the same as C11’s char32_t which is also supported, its ex-
actly the same). The string and character prefix notation for Unicode characters is  
similar to L'x' and L"x", but it uses uppercase U instead:
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unic u = U'x';              // 32 bit Unicode character literal
unic up[] = U"32 bit Unicode literal";

12.7   Unicode 16 bit characters

C11 also introduced  char16_t 16 bit unsigned character to represent the 16 bit 
subset of the Unicode character set. Its literals use lowercase u:

char16_t u = u'x';          // 16 bit Unicode character literal
unic up[] = u"16 bit Unicode literal";

12.8   Character and string literal

C multi-character character literals are not supported, for example:

void invalid() {
    int c = 'abcd'; // error: multi-character literal
}

Multi line string literals, with or without the L, u, and U prefixes are supported:

void use() {
    char *p = "this is a long literal, split into multiple "
              "lines, the compiler concatenates them\n";
    p.print();
    unic *up = U"hello "        // U must be only at the start,
                "wide world\n"; // U can not be here.
    up.print();
}

There is minimal support in the run time lang library for string literals used in the 
construction of the str string type, see §XXX.

12.9   Incompatible and global types

Use of traditional number types to represent values of different kinds, for example 
age, weight, height, force, speed, etc, can lead to subtle errors not caught by the com-
piler when variables of these inherently incompatible types are mixed incorrectly. For 
example, a function with 3  float arguments:  age,  weight, and  height could be 
invoked mistakenly with the arguments out of order.

A typenew declaration allows a new number type to be defined that is incompati-
ble with the base type used to declare it, usually the base type is a number type. No 
default conversions are allowed from or to a variable of such a type. For example:

typenew float age_t;
typenew float weight_t;
typenew float height_t;
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// error: incompatible type arithmetic: a += w
void func(age_t a, weight_t w, height_t h) { a += w; }
void use() {
       age_t a = cast(age_t) 23;
       weight_t w = cast(weight_t) 180;
       height_t h = cast(height_t) 6;
       a = 24;        // error: incompatible types
       ++a;           // ok
       func(a, w, h); // ok
       func(w, h, a); // error: incompatible types in
}                     // the three arguments

The typenew syntax is a subset of the typedef syntax, it allows for all kinds of 
declarations with the exception of function pointers, additionally only one type can 
be declared at a time.

Types can be declared globally,  irrespective of the location of their declaration. 
Global types can not be hidden by other declarations in non global scopes. Global 
type declarations are used to declare types that are used pervasively, for example: 
int,  char,  float, etc. The syntax for a  typeglob declaration is identical to the 
syntax for a typenew declaration.

12.10   Types and literal dimensions

To reduce programming errors related to incorrectly used specifications  typenew 
and typeglob declarations can include a dimension specification that causes them to 
be unique incompatible types and also allows for literals to be specified of those di-
mensions, or related to those dimensions, or computed in a way that ensures that the 
result of the computation is of the correct dimension. A dimension identifier is de-
clared within the curly braces after the base type, in the following example m is a di-
mension specifier for meters and min is a dimension specifier for minutes:

typeglob float {m} meter_t;
typeglob float {min} minutes_t;

The dimension identifier exists in a unique scope of dimension specifiers and its  
name  doesn't  collide  with  other  kinds  of  identifiers.  The  dimension  identifier  is 
global, if declared in a typeglob declaration, or local to its scope, if declared with a 
typenew declaration. Dimension identifiers can not be hidden by other dimension 
specifiers declared in subordinate scopes. A dimension specifier can be specified as a 
dimension expression based on other dimension identifiers, or literals, and formed 
with multiplication, division, and parenthesized sub-expressions. For example:

typeglob float {km = 1000`meter} km_t;
typeglob float {hr = 60`min} hour_t;
typeglob float {kph = 1`km / 1`hr} kph_t;

To specify a literal with a specific dimension, the literal is followed by a back quote 
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and then by the dimension specifier. For example 60`min above is a literal that rep-
resents 60 minutes and is of the type  minutes_t. Note that syntactically the back 
quote is an operator that can only be used with literals, thus there can be space prior  
and after it, for clarity it is always used without spaces.

The compiler understands the relationships between dimension specifiers that have 
been defined as a function of other dimension specifiers, and implicitly uses that in-
formation to scale compatible units, for example to scale hours to minutes, or vice-
versa. For example:

minutes_t hr_to_min(hours_t h) { return h * 60`min / 1`hr; }
minutes_t minutes_to_arrive(speed_t s, km_t d) {
    return d / s;       // compiler scales to minutes: (d/s)*60
 // return s / d;       // error: 1/hr incompatible with min
 // return hr_to_min(d / s);  // ok, but conversion not needed
}

Dimensionally incompatible expressions cause a compilation error.

12.11   class void

As mentioned in  §5.1 all types inherit, usually indirectly, from class void.  All 
types, other than class void, descend from these four types:

 lang.classes – ancestor to all classes defined by a class declaration; 

 lang.number – ancestor to character, integer, floating point and enum types;

 class void * – ancestor to all pointer types;

 lang.arraylike – base class of lang.array and lang.arraydesc;

 These classes descend directly from class void . What these intermediate classes 
are useful for is explained in the following sections. These intermediate classes when 
extended enhance their descendants. These descend from lang.arraylike:

 lang.arraydesc – base class of all array descriptors;

 lang.array – base class of all static and dynamically allocated arrays;

12.12   User defined classes descend from lang.classes

All classes defined by a  class declaration that don't inherit explicitly from other 
classes inherit implicitly from the  lang.classes class. Classes defined by a class 
declaration that inherit explicitly from another class inherit lang.classes indirectly, 
i.e. from its base class, lang.classes doesn't implement the lang.value interface, 
which results in the non-copying default behavior of classes. This default behavior is 
different from the corresponding assignment, argument passing, and function value 
returning C copying behaviors of struct and union, which are the same in C and 



210        More about types and smart pointers Chapter 12

COOGL.

The rationale for user defined classes not having raw memory copy implementa-
tions for assignment, value passing, and value returning, is that many classes don't 
need it, and providing them by default would lead to raw memory copies that might 
be incorrect for them. If needed, the class designer can implement the copying behav-
ior by implementing the lang.value interface.

12.13   Base class of all arrays: lang.array

The class lang.array is the base class of:

 lang.carray – ancestor to all compile time sized array types;

 lang.dynarray – ancestor to all dynamic array types;

12.14   Base class of all compile time sized arrays: lang.carray

The base class for all compile time sized arrays, also known as C arrays, is lang.-
carray. These arrays can not be initialized from another array, nor assigned from 
one, nor passed by value as arguments or returned as the value of a function. Arrays 
that are fields within structures that are assigned to each other, or passed by value, or 
returned by value, cause the implied array copying required by those operations.

Arrays within structures in COOGL can only contain the subset of types compatible 
with C, i.e. not user defined classes, this design decision completely separates struc-
tures and the layout control that they give programmers and classes, whose layout is 
under the control of the compiler and whose dynamic allocation and object oriented 
dispatch  mechanisms  are  not  the  programmer's  concern.  Keeping  structures  and 
classes separate simplifies the language.

12.15   Base class of all dynamically sized arrays: lang.dynarray

Dynamically allocated arrays, see §13, have the number of elements within them 
determined at run time, not at compile time. The base class for all dynamically allo-
cated arrays is lang.dynarray.

12.16   Construction and destruction of lang.carray and lang.dynarray

Default construction for statically and dynamically sized arrays is allowed only if 
default construction is allowed by its array element type. Arrays whose element type 
is initializable, i.e. implements the initializable interface can have their elements 
initialized at array declaration time through the traditional C array initialization syn-
tax:
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void example(size_t n, type a, type b, type c) require(n >= 3){
    type c[5] = {a, b, c};  // type must be lang.defaultable
    decl type(a) d[n];      // n elements initialized with a
    type e[2] = {a, b, c};  // error: too many initializers
    type f[n] = {a, b, c};  // error without require above
}

If the number of elements in the array is larger than the number of values present in 
the value list, then the additional values in the array are initialized by the default con-
structor,  which  the  base  type  of  the  array  must  implement,  i.e.  type  must  be 
lang.defaultable directly or indirectly, usually through lang.value. If the num-
ber of elements in the initializer list of a statically sized array is larger than the num-
ber of elements in the initializer list a compilation error occurs. If the array is a dy-
namic array and it is initialized with an array initializer, for example f[n] above, a 
compilation error occurs if the compiler can not prove that the number of elements is 
greater or equals to the number of elements in the initializer, the proof can be pro-
vided by the programmer through a require() as shown above. If the number of el-
ements can be larger than the number of elements specified in the initializer and the 
type is not lang.defaultable then a compilation error also occurs.

Destruction is synthesized for arrays just as it is for classes, unless deinit() is in-
voked explicitly on it, for example:

class building {
    pub apartment apt[10];
    pub void deinit() { apt.deinit(); }
}

12.17   lang.arraydesc and lang.vecdesc array descriptors 

Multi dimensional array descriptors descend from the lang.arraydesc class, uni-
dimensional array descriptors descend from lang.vecdesc, both are generic classes:

namespace lang {
    pub class struct arraydesc(pub genre void type,
                               size_t n) require (n >= 2) {
        pub type *start = NIL;
        pub type *end = NIL;
        pub size_t max[n];
    }
    pub class struct vecdesc(pub genre void type) {
        pub type *start = NIL;
        pub size_t max[1];
    }
}

The implementation of unidimensional array descriptors as a specialized type that 
only uses two fields, instead of 3, is to allow global array descriptors to be updated 
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atomically  faster  than  multidimensional  array  descriptors,  because  most  hardware 
platforms support atomic two-word memory updates.

12.18   Number type interface hierarchy: lang.number

Computer representation of numbers is approximate.  COOGL numeric types de-
scend from various interfaces that represent various aspects of their number nature. 
These interfaces are not implemented through COOGL code, they are special inter-
faces known by the language and implemented natively by the compiler. They exist 
to allow numeric types to be enhanced through  extend additions to them, and to 
unify native C types and interface concepts.

The C behavior that allows fundamental types to be initialized, assigned, passed by 
value and returned as the value of a function is obtained by their implementation of 
the  lang.number interface which implements the  lang.value interface, compiler 
generated code implements the  init(),  deinit() and  reinit() member func-
tions.

This hierarchy of interfaces, with lang.number, at its top level, and with classes at 
the  bottom,  allows  various  characteristics  of  numbers  to  be  required  by  generic 
classes for their genre arguments.

The second level in this interface hierarchy has:

 lang.sign - capable of representing negative values;

 lang.nosign - not capable of representing negative values;

 lang.integral - capable of only representing whole numbers.

The third level in the hierarchy has:

 lang.whole - only capable of storing zero and positive whole numbers;

 lang.integer - capable of storing positive and negative whole numbers;

 lang.real - stores numbers in floating point representation;

 lang.cmplx - stores complex numbers in floating point representation;

 lang.imgnry - stores imaginary numbers in floating point representation;

The fourth and last level in this hierarchy has five sub-trees of classes, each one 
containing the COOGL fundamental numeric types:

 ubyte, ushort, uint and ularge;

 byte, short, int and large;

 float, and  double;

 complex, and  complex_double;
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 imaginary, and  imaginary_double;

All of the interfaces in the top two levels of the hierarchy are defined within the 
lang name space. Classes defined in the last level are in the global name space.

A partial declaration showing the interfaces and implementation relationships and a 
few member functions:

namespace lang {
   // root of COOGL numeric interface hierarchy
   // adds arithmetic operators: + - * /
   // adds relational operators: ! == != < <= > >=
   pub interface number { pub is lang.value(number); }

   // 2nd level
   pub interface sign   { pub is number; }
   pub interface nosign { pub is number; }

   // adds bitwise operators:            ~ & ^ |
   // adds checked arithmetic operators: ?+ ?- ?* ?/ ?%
   // adds arithmetic operator:          %
   pub interface integral { pub is number; }

   // 3rd level
   pub interface whole   { pub is integral;  pub is nosign; }
   pub interface integer { pub is integral;  pub is sign; }
   pub interface real    { pub is number;    pub is sign; }
   pub interface cmplx   { pub is number;    pub is sign; }
   pub interface imgnry  { pub is number;    pub is sign; }
}

The 4th level of the hierarchy is outside of the class lang 's name space:

pub class ubyte  { pub is lang.whole; }
pub class ushort { pub is lang.whole; }
pub class uint   { pub is lang.whole; }
pub class ularge { pub is lang.whole; }
pub class byte   { pub is lang.integer; }
pub class short  { pub is lang.integer; }
pub class int    { pub is lang.integer; }
pub class large  { pub is lang.integer; }
pub class float  { pub is lang.real; }
pub class double { pub is lang.real; }
pub class cplx   { pub is lang.cmplx; }
pub class cplxd  { pub is lang.cmplx; }
pub class imag   { pub is lang.imgnry; }
pub class imagd  { pub is lang.imgnry; }

The fact that the fundamental types belong to an interface hierarchy has no run time 
implications in memory use or performance. The lang.number type hierarchy exists 
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to make them no different than user implemented classes, so that they can be used as  
part of generic programming.

Built in operators such as addition and bitwise-and are introduced in the class hier-
archy to allow a generic class that is only applicable to certain number types to be 
implementable. For example a generic class that only applies to number types that 
support bitwise operators, for example the bitmap class from §11.6 which allows for 
the specification of the underlying integer type used to store the bits in the set re-
quires that the generic type descend from lang.whole.

12.19   Pointers descend from class void *

All pointers in COOGL descend directly, or indirectly, from class void *. which 
implements class lang.value as if it was declared:

class void * {
    pub is lang.value(genre void *);
}

A pointer is an object, its members are accessed with the . (dot) operator just like 
any  other  object  member  would  be  accessed  given  an  expression  with  an  object 
value. Access to the members of an object that a pointer points to is via the pointer  
member access operator, i.e. ->. For example:

void ex(stack *s) {
    s.print();    // Print the pointer to the stack object.
    s->print();   // Print the stack object.
    (*s).print(); // Print the stack object.
    on (s, *s) print(); // Print the pointer and the object.
}

When pointers are treated as objects, their member functions, could be confused by 
the programmer with member functions of the object that the pointer points to, partic-
ularly if both have members with the same name and signature. The wrong member 
could be called by mistake when -> is used instead of . (dot) or vice versa. Because 
of this pointers to objects usually are not extended with a print() member function 
to ensure that the object is printed and not the pointer value, which is usually not 
what is desired.

12.20   Smart pointers and their priv member: ptr

A smart pointer is a pointer that executes code at pointer construction, assignment, 
value passing, value returning, and destruction time. Smart pointers are implemented 
by deriving from pointers. Complete control is provided through the constructor, and 
these member functions  init(),  init_default(),  deinit(),  init_deinit(), 
reinit(),  and reinit_deinit(). By redefining them, appropriate control is pro-
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vided for the lifetime of pointers. Smart pointer programming idioms, for example, 
where reference counting or locking occur at pointer construction time, and reference 
releasing or unlocking occur at pointer destruction time are easily supported. Control 
of pointer value use, i.e. whenever data is fetched based on it, is too expensive.

In the following example a simple reference count based garbage collected class 
stk is shown, it tracks all the pointers to its stack objects and forces its objects to be 
allocated from the heap by making its constructor prot. When the last pointer refer-
ence to a stk object is destroyed, the object is destroyed and the memory released. 
The stk class inherits its implementation from the stack class from §4.2.

class stk(size_t *n, int *errp) prot pub {stk *} {
    priv pub {stk *} int refs = 0;
    pub inherit stack(n, errp);
    priv is lib.creatable(stk) allocator;
    return;
    pub static stk *create(size_t *n, int *errp) {
        return allocator.create(n, errp);
    } 
    priv pub {stk *} void destroy() { allocator.destroy(); }
}

Objects of  stk type are created with  create(),  disposal of  stk objects is done 
through their  destroy() member which is only publicly accessible to the class of 
pointers to stk, i.e. the type stk *, a smart pointer in this case. An example use: 

void use() {
    int err;
    stk *sp = stk.create(20, &err);
    sp->push(1);
    sp->push(2);
    sp->pop();
    sp->pop();
}

A smart pointer class is a class declaration that continues the declaration of a class 
of pointers, it is not a class extension through extend class , it is a continuation of 
the class declaration through continue class, see §7.2. All pointer classes have a 
prot member, ptr, that can be used to access and change the pointer value without 
causing init(), reinit(), etc. to be invoked. Note that the declaration of a smart 
pointer class causes all declarations of pointers of that class to be smart pointer decla-
rations. The smart pointer class can declare pointers to the class that are not smart  
pointers by declaring them as raw pointers, as shown below in the equal() member 
function of class stk *.

The code of stk * follows, the type of this, within its members is stk **this:
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continue class stk * {
    pub is nilable(class stk *);                 // See §Error: 
Reference source not found.
    pub is equalable(class stk *);               // See §Error: 
Reference source not found.
    priv static int conserr;
    priv static stk(1, &conserr) nil;
    priv static stk *nilptr = &nil; // nil.refs is 1
    priv static void init_default(type raw **to) redef {
        to->ptr = &nil.stack;
        ++nil.refs;
    }
    pub void init(stk **to) redef { to->ptr = ptr; hold(); }
    pub void deinit() redef { release(); }
    pub void init_deinit(stk **to) redef { to->ptr = ptr; }
                         // the reference from this is to's now
    pub void reinit(stk **to) redef {
        hold();          // order matters when this == to
        to->release();
        to->ptr = ptr;
    }
    pub void reinit_deinit(stk **to) redef {
        to->release();
        to->ptr = ptr;   // the reference from this is to's now
    }
    priv void hold() { ++(*this)->refs; }
    priv void release() {
        if (--(*this)->refs == 0) {
            assert(!isnil());
            (*this)->destroy();
        }
    }
    pub bool is_nil() redef { return this == &nil; }
    pub void nil_it() redef { *this = nilptr; } //init(&nilptr)
    pub bool equal(stk *raw that) redef {
        return ptr == that->ptr; // raw, non-smart pointer
    }      // chosen for performance reasons, not correctness
}

The stk *  smart pointer class member functions, is_nil() and nil_it(), test if 
the pointer is nil and to set it to nil. The notion of what nil means for stk * is fully 
defined by the class. In the example above, it does not correspond to the NIL value, 
but to a dummy static object, nilstk, that makes the treatment of nil stk * objects 
less of a special case, for example both hold() and release() can freely increment 
and decrement refs without worrying about the pointer being an actual NIL value.

The value of stk.allocator.create(), of stk *s  type, causes during its con-
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struction, the reference count of the newly created stk object to be 1. The returned 
value is then used by invoking the member function init_deinit() on it when it is 
returned as the value of stk.create(), and again through init_deinit() when it is as-
signed to sp in the use() example above. The original reference count now counts 
as sp 's reference count. The more complicated and expensive sequences of invoca-
tions of  init() followed by  deinit() are avoided. Finally, when use() returns, 
sp 's  deinit() releases the last reference, causing the  stk object to be destroyed, 
i.e. it is deinitialized and its memory is released.

12.21   Control during pointer dereference XXX

This requirement is addressed usually by using a handle instead of a pointer, which 
allows a smart pointer to be constructed from the handle, and causes locks to be ac-
quired, or objects to be held, etc. Destruction of the smart pointer causes the unlock, 
or object reference to be released, etc.

12.22   Explicitly declared classes and smart pointer restrictions

The language allows objects from an explicitly declared class, including a smart 
pointer class, to be used in certain expressions, depending on which member func-
tions are defined:

 Use as a function argument or return value, if init() is defined.

 Use as a value that is used in the initialization of an object of the same type, if 
init() is defined.

 Use as a value that is assigned to another object of the same type, if reinit() 
is defined.

These operations are always valid:

 Obtain their address with the address-of operator, i.e. &.

 Invoke member functions on it.

All other uses are invalid, including:

 Use as a value in an explicit comparison or relational expression, i.e. ==, !=, <, 
<=,  >, or  >=.

 Use as a value in a conditional expression context, where it would need to be de-
termined if its value is NIL or not, i.e. when used as the value tested in an if, 
while, for, or loop statement or by the &&, ||, ! or ?: operators.

 Use as a value in arithmetic, pointer arithmetic, or bitwise expressions, i.e. ++, 
--, +, -, *, /, %, ~, &, |, <<, or >> ; or their related assignment-operation ex-
pressions:  +=,  -=, *=, /=,  %=,  &=,  |=,  <<=, or  >>= ; or their corresponding 
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checked operators:  ?+,  ?-,  ?*,  ?/, or  ?% ; or their corresponding assignment 
checked operators: ?+=, ?-=, ?*=, ?/=, or ?%=.

These restrictions were designed into the language to completely encapsulate and 
prevent misuse of smart pointers. Use of the pointer indirection operators: * and -> 
are, of course, allowed with smart pointers. The ability to redefine the other operators 
doesn't seem to carry its weight in a language that aims to be simple, that ability is 
not present as it would introduce operator overloading and its complexity.

Examples of invalid expressions are: 

void push_stk(stk *src, stk *dest)
       require(dest != NIL) { // error: smart pointer compared
    if (!src) return;         // error: smart pointer NIL test
    ++src, --src;             // error: arithmetic on object
    // avoid infinite loop:
    assert(src != dest);      // error: smart pointer compared
    while (!src->empty()) {
        assert(!dest->full());
        dest->push(src->pop());
    }
}

Idiomatically is_nil(), nil_it(), and equal() are provided by smart pointers 
by implementing the  equalable and nilable interfaces:

namespace lib {
    pub interface nilable(genre void type) {
        pub void nil_it() defer;               // make it NIL
        pub bool is_nil() defer;               // is it NIL?
    }
    pub inteface equalable(genre void type) {
        pub bool equal(type *raw that) defer; // this == that?
    }
}

The push_stk() function can be written as:

void push_stk(stk *src, stk *dest) require(!dest.is_nil()) {
    if (src.is_nil()) return;
    assert(!src.equal(dest));      // avoid infinite loop:
    while (!src->empty()) {
        assert(!dest->full());
        dest->push(src->pop());
    }
}
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In spite of this advice, C99 adopted the scheme:
“The rules for both the GCC and MacDonald schemes 
are difficult to use and comprehend, and are difficult to  
formalize even to the level of the current ANSI-
standard; in particular, the type calculus for variable-
sized arrays is murky for both. In the existing ANSI-C 
language, the type and value of an object p suffice to 
determine the evaluation of operations on it. In 
particular, if p is a pointer, the code generated for 
expressions like p[i] and p[i][j] depend only on its 
type, because any necessary array bounds are part of 
the type of p. In the MacDonald and GCC extensions, 
the values of non-constant array bounds are not tied 
firmly to its type.”

-- Dennis Ritchie

COOGL supports arrays whose dimensions are determined at run 
time, array dimensions are members of the array. COOGL support is 
different from the variable length array support of C99, because it is 
too complex, and its use is error prone.

13.1   Variable length arrays

Variable length arrays were added to C in C99, the second official C language stan-
dard and third since the de-facto K&R C standard. Variable length array support is,  
by far, the most complex extension made to C as part of the C99 standardization 
process.

The problem that variable length arrays addressed in C99 was the lack of support in 
C89  for  multidimensional  arrays  whose  dimensions  are  only  known at  run-time.  
Given that C has been used mostly for systems programming, this limitation caused 
little or no trouble, but it is one of the principal reasons that prevented the use of C 
for numeric programs which were, and sometimes still are, written in FORTRAN in-
stead of C.
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13.2   v[] declaration syntax in C

In C the meaning of the type v[] declaration syntax has changed with C's evolu-
tion, the meaning depends on the context of the declaration.

A global declaration of the form type v[]:

/* Global declaration, it is an external declaration of v
   a uni-dimensional array of unknown size. */
int v[];                       /* Valid in K&R-C/C89/C99/C11 */

An argument declaration of the form type v[], is equivalent to an argument dec-
laration of the form type *v:

/* Argument declaration, equivalent to: void f(int *v) {...} */
void f(int v[]) {...}          /* Valid in K&R-C/C89/C99/C11 */

The declaration of the last member of a structure, of the form type v[]:

/* Declaration of v[] as the last structure member.
   Invalid in K&R-C/C89.
   Valid in C99/C11, it is a flexible array. */
struct s1 { int b; int v[]; }

To reduce complexity and for language safety reasons COOGL does not support 
C99/C11 flexible arrays, nor does it support, zero sized array members as the last 
member of a structure.

A structure member declaration, that is not the last member, of the form type v[]:

/* Declaration of a[] not as the last structure member: */
struct s { int v[]; int b; } /* Invalid in: K&R-C/C89/C99/C11*/

A local variable of the form type v[]:

/* Local variable declaration: */
void function() { int v[]; } /* Invalid in: K&R-C/C89/C99/C11*/

The various contexts in which a declaration of the form type v[] can appear in C 
code, and their validity, are summarized in the table below:

Is type v[] Declaration Valid? K&R-C
C89

C99
C11

Context Example

global
argument

last member
not last member

local

int v[];
void f(int v[]) { ... }
struct s { int i; int v[]; }
struct s { int v[]; int i; }
void f() { int v[]; ... }

yes
yes
no
no
no

yes
yes
yes
no
no

13.3   type v[][] declarations are always invalid in C

Irrespective of context, array declarations with two or more dimensions with un-
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specified sizes are invalid in C. For example:

int a2d[][];   /* all of these declarations are invalid in C */
int a3d[][][];
int a4d[][][3][4];
int a5d[][2][][3][4];

13.4   Variable length arrays in COOGL

 C99 stretches C compile time casts into run time casts that include array dimen-
sioning cast expressions evaluated at run time, COOGL does not follow that baroque 
design. instead it provides support for variable length arrays in a simpler way. Vari-
able length array declarations in COOGL are a kind of entity that is different from the 
traditional C statically dimensioned arrays. Nonetheless, statically dimensioned ar-
rays can be used as arguments to functions that expect variable length arrays.

In COOGL the number of elements in each array dimension can be obtained from 
the array object. The statically dimensioned array member max[K] provides the num-
ber of elements in each of the K dimensions of the array.

Variable length array matrix multiplication in COOGL:

void multiply(float a[][], float b[][], float r[][]) {
    // r[I][J] = a[I][K] * b[K][J]
    index I = a.max[0], K = a.max[1], J = b.max[1];
    expect(r.max[0] == I && r.max[1] == J &&
           a.max[0] == I && a.max[1] == K &&
           b.max[0] == K && b.max[1] == J);
    for (index i = 0; i < I; ++i)
        for (index j = 0; j < J; ++j) {
            float t = 0;
            for (index k = 0; k < K; ++k)
                t += a[i][k] * b[k][j];
            r[i][j] = t;
        }
}
void use(index n, index m) {
    float data[n][m], trans[m][n], result[n][n];
    get_data_and_trans(data, trans);
    multiply(data, trans, result);
    print_result(result);
}

Local array variables declared with run-time expressions as their dimensions are 
variable length arrays. Variables declared with array declarators without dimension-
ing expressions are array descriptors. For example the a[][], b[][], and r[][] are 
array  descriptor  arguments  of  multiply().  Local  variable  length  array  variables 
within use() are: data[n][m], trans[m][n], and result[n][n].
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Arrays of array descriptors and array descriptors of arrays are not supported, even 
though alluring from a language orthogonality perspective, they have little value and 
don't merit the complexity that they would add to the language. The declarations of 
a[n][m][], b[n][][], and c[][n][m] are all invalid:

void f(index n, index m) {
    float a[n][m][];     // error: array of array descriptors
    float b[n][][];      // error: array of array descriptors
    float c[][n][m];     // error: array descriptor of arrays
}

In C the [] declarator is most commonly used in argument declarations, the other 
two  cases  mentioned  above  in  §13.2 are  not  as  common.  Because  in  C  the  [] 
declarator  when used  in  an  argument  declaration  is  a  synonym of  the  * pointer 
declarator, there is no language level semantic difference between them, though it is 
sometimes used as a visual cue to the programmer that the pointer in question is actu-
ally the address of the first element in a unidimensional array. For example, these two 
C declarations of vector in sum() are equivalent in C:

float sum(int n, float vector[]) { ... }
float sum(int n, float *vector) { ... }

The declaration of m[][] is an invalid argument declaration in C:

/* error: array type has incomplete element type  */
int f(int m[][]) { ... }

In C, the number of elements can only be omitted from the first array declarator, for 
example:

int f(int m[][20]) { ... }

Which is equivalent to:

int f(int (*m)[20]) { ... }

In COOGL, arguments declared with [] are array descriptor arguments, arguments 
declared with * are a pointer to a single object, not a pointer to an element within an 
array.

To provide C source code compatibility and some run-time calling convention com-
patibility, a function that takes arguments declared with a single empty [] passes a 
pointer to the first element of the array in that argument. An extra hidden argument, is 
passed in addition to the function's arguments specified in its signature with the array 
descriptor's value of max[0], see §2S.6.

In the declarations of multiply() 's arguments, above: a,  b, and r, are array de-
scriptors, they are objects, not pointers to objects, the references to the dimensions, 
for example a.max[0] are thus in the form object.member.

When native C arrays, or variable length arrays, are passed to multiply(), as oc-
curs in use() above, it is the compiler's job to create array descriptors and pass those 



13.4 Variable length arrays in COOGL          223

by value. The memory for the underlying array elements is not contained within the 
array descriptors, thus even though the array descriptors are passed by value the net 
effect is that the underlying elements of the array that was the input argument is what  
is referenced or affected by the function.

A source of common bugs is removed by having the array dimensions be part of the 
array descriptors instead of passing them explicitly as additional arguments, as occurs 
in C99. Given that the relationship between the dimensions of the arrays is not know-
able by the compiler, the  expect() in  multiply() validates that the array argu-
ments are valid with respect to each other.

The number of entries in an array or in an array descriptor is total, i.e. the result 
of multiplying: max[0] * max[0] * ... * max[N-1]. For example:

void add(float a[][], float b[][], float r[][]) {
    // r[I][J] = a[I][J] + b[I][J]
    index I = r.max[0], J = r.max[1];
    expect(a.max[0] == I && a.max[1] == J &&
           b.max[0] == I && b.max[1] == J);
    float *ap = a.start; // same as: ap = &a[0][0];
    float *bp = b.start;
    float *rp = r.start;
    float *endrp = rp + r.total;    // example of of total
 // float *endrp = r.end;           // this is the same
    while (rp < endrp) *rp++ = *ap++ + *bp++;
}

13.5   Idiomatic error setting by constructor and arrays of objects

Class  stackx inherits from  stack, its constructor only sets  *errnop if an error 
actually occurred, otherwise it is left unchanged. This allows users of stackx to cre-
ate multiple stacks and only check the accumulated construction error.

class stackx(size_t max, int *error) {
    int e;
    pub inherit stack(max, &e);
    if (e) *error = e;
}
void use() {
    int error = 0;
    decl stackx(10, &error) stk2d[50][50];
    if (error) return;
    for (int i = 0; i < stk2d.max[0]; i++)
        for (int j = 0; j < stk2d.max[1]; j++)
            stk2d[i][j].push(i + j);
}

The idiomatic setting of *error only when errors occur allows for the checking of 
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construction errors for the whole array to be done more easily.

13.6   Restrictions on array descriptors and variable length arrays

C99 extends K&R and C89 casts, sizeof, and array declarations with run time be-
haviors, to support variable length arrays. The COOGL extension is simpler, the C89 
core is left unchanged in these areas. In C99 casts can be used to mutate memory into 
an array whose dimensions are only known at run time, the use of casts for this is  
needlessly obscure, that syntax is not supported in COOGL, the reinterpretation of 
memory as arrays of various dimensions is done through array descriptors, see §13.7.

To make the use of array descriptors as simple as possible and prevent program-
ming errors, these restrictions exist on them:

 Use of sizeof on an array descriptor or on a variable length array is invalid, 
sizeof(a) produces a compile time error to prevent confusion between the 
size of the array descriptor and the size of the underlying array itself.

 The address of an array descriptor, or of a variable length array, cannot be 
taken, they are strictly value objects. To pass them as arguments to a function 
an array descriptor argument receives a copy of the array descriptor.

 The dimensions of a variable length array are set at construction time, the ar-
ray dimensions can not be changed.

The variable length arrays and array descriptors in  COOGL are close to Dennis 
Ritchie's proposal for a variable length array extension to C. Ritchie's proposal was 
not adopted for C99, even though Ritchie explained the problems and complexity in 
GCC's  and  MacDonald's  proposals,  they  were  the  base  for  what  was  eventually 
adopted by C99.

13.7   Array memory reinterpretation

The declaration of a variable length array causes the allocation and construction of 
the underlying memory for the array elements. Array descriptors allow for the under-
lying memory to be associated with it at a later time. The underlying array entries of 
an array can be reinterpreted by an array descriptor, for example to refer to fewer ele-
ments, or to have a different number of dimensions. In the example below the b[2]
[3][5][7] array descriptor refers to the memory of a[10][21].

Note the last two array descriptor arguments of lib.array.make(), the last one is 
generic based on the first argument. Passing a.start there causes it to be received 
as a unidimensional array descriptor thus its max[0] can be used to ensure that the 
array descriptor that is requested does not give access to memory outside the array.
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void use() {
    int a[10][21];
    int b[][][][] = lib.array.make(int, {2,3,5,7}, a.start);
}

The syntax  {2,3,5,7} argument to  lib.array.make, above, is an array initial-
izer passed as an argument and received in an array descriptor argument, the array el-
ement’s type must be compatible with the type of the array elements of the corre-
sponding argument. In C a cast would have been required, because in C the array ex-
pression can occur in subexpressions thus its type can not be determined in general,  
from the context of where it occurs. This divergence from C and non-silent incompat-
ibility might be addressed in the future, but there is very little use for it in practice.

13.8   Dynamic creation and destruction of arrays

Support for allocating the underlying memory for an array on the heap, when an ar-
ray needs to be allocated dynamically, even if the array doesn't require construction 
or destruction, is provided by lib.creatable, through create() and destroy() 
member functions added as an extension to the array descriptor of the specified type.

An example of the use of create() and destroy() on array descriptors:

float create_and_init_matrix(size_t n, size_t m)[][] {
    float a[][], b[][], r[][];
    if (a.create({n,m}) && b.create({m,n}) && r.create({n,n}))
        work(a, b, r);
    a.destroy(), b.destroy();
    return r;
}

the {n,m} array is the dims[] array descriptor argument to create(), see below.

The invocation of destroy() is valid even if create() failed, or if it was never 
invoked, destroy() must be invoked explicitly, the destruction of a and b does not 
invoke destroy(), because the underlying memory for the array might still be refer-
enced by other array descriptors, as is the case with r, the array data it references is 
returned as the value of the function by returning a copy of the r array descriptor.

Invoking the create() member function is invalid, and raises an exception, if the 
array descriptor already refers to some memory. The type.argsof tuple type, the ar-
gument list of the constructor of type, is used to declare the argument list of cre-
ate(), a non-static member functions added to the array descriptors for type by the 
lib.creatable interface.

When a type is extended within some scope, or namespace, the type extension is al-
ways global, not scoped. Thus a generic interface such as lib.creatable can ex-
tend related types, array descriptors in this case, appropriately. The unsafe_cast() 
operator and uninit(), used below, are described in §14.21 and §14.23.



226        Variable length and dynamically allocated arrays Chapter 13

pub namespace lib {
    pub interface creatable(pub genre void type,
                            pub lit uint extra = 1,
                            pub lit bool uninit_extra = false)
                                          require(extra <= 2) {
        // rest of lib.creatable is in §11.10
        extend class lang.arraydesc(genre void type) {
            pub bool create(size_t dims[],
                            decl type.argsof args)
                                     require(!start &&
                                             dims.max[0] > 0) {
                size_t total = 1;
                bool overflow = false;
                size_t *d = dims;
                do {
                    size_t sz = *d++;
                    expect(sz > 0);
                    overflow |= total ?*= sz;
                } while (d < dims.end);
                expect(!overflow);
                lib.object.array_alloc(type, this, extra,
                                       total, dims);
                if (!start) return false;
                type raw *p = unsafe_cast(type raw *) start;
                type raw *prior = p - 1;
                type raw *after = unsafe_cast(type raw *) end;
                for (; p < after; ++p) type(args, p);
                if (!extra) return true;
                if (uninit_extra) {
                    if (extra == 2) type.uninit(args, prior);
                    type.uninit(args, after);
                } else {
                    if (extra == 2) type(args, prior);
                    type(args, after);
                }
                return true;
            }
            pub void destroy() redef {
                if (!start) return;
                for (type *p = start; p < end; ++p)p->deinit();
                lib.object.array.free(this);
            }
        }
    }
}
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13.9   Array descriptors and polymorphism

Array descriptors, in general, are not polymorphic, the types of the underlying ob-
jects are known, with the relaxation that if the objects have the same exact size, then 
polymorphism is allowed. The types of all the elements in the array are the same, but 
they can be of a type that descends from the type of the base element of the array de-
scriptor, for example, an array of objects of a type can be passed as an argument and 
received by an array descriptor whose type is an ancestor of the array's type. The re-
striction on the size is required because indexing of array descriptors, or walking 
them with pointers, is based on the size of the underlying elements of the array, they 
must be known at compile time, not at run-time. Even though this restriction could 
possibly be relaxed, it doesn't seem to merit the language complexity of doing so.
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14 - Safe programming

“The first principle was security: The principle that 
every syntactically incorrect program should be 
rejected by the compiler and that every syntactically 
correct program should give a result or an error 
message that was predictable and comprehensible in 
terms of the source language program itself. Thus no 
core dumps should ever be necessary. It was logically 
impossible for any source language program to cause 
the computer to run wild, either at compile time or at 
run time. A consequence of this principle is that every 
occurrence of every subscript of every subscripted 
variable was on every occasion checked at run time 
against both the upper and the lower declared bounds 
of the array. Many years later we asked our customers 
whether they wished us to provide an option to switch 
off these checks in the interests of efficiency on 
production runs. Unanimously, they urged us not to--
they already knew how frequently subscript errors 
occur on production runs where failure to detect them 
could be disastrous. I note with fear and horror that 
even in 1980, language designers and users have not 
learned this lesson. In any respectable branch of 
engineering, failure to observe such elementary pre- 
cautions would have long been against the law.”

-- C.A.R. Hoare

Memory safety ensures that incorrect memory accesses do not oc-
cur. Most C and C++ programs have bugs that cause incorrect mem-
ory accesses.  COOGL programs do not contain invalid memory ac-
cesses, the language prevents them by design.

14.1   Safe programming

Memory safety ensures that invalid memory accesses do not occur, but without a 
definition this is no more than a loose concept. This chapter is organized in a bottoms 
up manner,  first  low level  concepts  and mechanisms are explained,  incrementally 
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building up to an explanation at the end of the chapter about COOGL safe program-
ing and a precise definition of invalid memory access. Preventing invalid memory ac-
cesses prevents a whole class of security weaknesses that are frequently exploited.

C shines in its ability to manipulate memory in any way that the programmer thinks 
is appropriate, irrespective of whether the memory accesses make sense or are com-
pletely wild. The success of C as the systems programming language of choice, over 
other programming languages (ALGOL60, ALGOL68, PL/1, Pascal, Ada, Modula II, 
etc.), can be partially attributed to its ability to allow programmers to do whatever 
they want, without the language getting in the way. 

The most difficult design aspect of COOGL was to preserve the ability of C to ma-
nipulate memory, while ensuring that the memory manipulation is safe. This need 
drove the design choices of its approach to memory safety.

14.2   Modern computer system hardware

Modern computer systems organize memory as a flat relatively clean address space, 
with the units of memory addressing being the 8 bit byte, all of them implement inte-
gers as two's complement arithmetic. Long gone are the days of computer systems 
with one’s complement arithmetic; with only word addressable memory; with 12, 16, 
18, or 24 bit addresses and words, and 6, 7, or 9 bit characters. Gone also are the days 
of non-flat, segmented, and possibly capability based, addressing schemes (the IBM 
iSeries system being the only surviving system with a hardware supported capability 
memory system). Simplicity won over baroqueness, and only backwards compatible 
leftovers of segment based addressing remain in the x86/64 system computer archi-
tecture, they are mostly ignored, or only used by a tiny amount of system software.

 COOGL is a language for modern systems, some of the restrictions in the C lan-
guage definition that attempted to make accommodations for these defunct computer 
architectures are not required to be present in COOGL, which is an evolution of C, 
not an accumulation of additional features on top of it.

Hardware supported memory segments for secure sharing of large amounts of data, 
or to implement protected subsystems, within clean flat address spaces, for example 
as provided by the POWER architectures, has been pushed under the flat address 
space and into the realm of the operating system kernel for their management, where 
they belong, instead of in the hands of every programmer and every programming 
language and its compiler, as was done in the ancient segmented architectures.

Modern computer system architectures place data type placement restrictions on the 
various data types supported by them, or at least make strong performance recom-
mendation about it. Usually native data type entities must be located in memory in 
addresses that are a multiple of their size, this address alignment requirement allows 
the data item to be accessed as efficiently as possible. For example, 64 bit floating 
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point numbers stored in addresses that are multiples of 8 (eight 8-bit bytes = 64 bits), 
or 32 bit integers stored at addresses that are multiples of 4. Hardware designed with 
these data placement restrictions is simpler to implement than hardware that operates 
without them. For example, access to a 32 bit integer that crosses a cache line bound-
ary and a virtual memory page boundary is much more complicated than an aligned 
32 bit integer access, which would never cross those boundaries. Most modern com-
puter architectures raise an alignment exception when an unaligned access is per-
formed. Certain legacy architectures don't cause alignment exceptions, but their un-
aligned accesses can be slower, sometimes much slower, than an aligned access. Un-
aligned data item accesses are not prevented by  COOGL, if the access results in a 
hardware exception, the exception is delivered to the program, see §14.33.

Input and output of characters, integers, and floating point data, in binary form, is  
required by applications. Whether the data being read is actually well formed for 
those data types, is a concern for the application, not for the COOGL programming 
language because such improperly formed data can not lead to invalid memory ac-
cesses. For example, an application that expects that the characters that it reads be 
ASCII characters, valid UTF8 strings, or that its floating point values are valid, can 
choose to validate them prior to their use, or assume that they are valid and simply al-
low the program to misbehave if made to operate on an invalid data file.

COOGL does not assume that the computer system includes a Memory Manage-
ment Unit (MMU) to translate between a virtual address space and a physical address 
space. If such an MMU exists, it usually does, then some specific implementation ap-
proaches to COOGL safe programming take make use of it, either through the mem-
ory mapping interfaces provided by modern operating systems, or by directly making 
use of the MMU in its run time language support, for example in an operating system 
kernel, a hypervisor, firmware, or some other low level software that runs without the 
support of an operating system. Systems without an MMU, or with a a very primitive 
address validation scheme (for example a few bounds and/or mapping registers) use 
other implementation approaches to achieve COOGL safe programming.

14.3   Safe programming approach

A way to think about safe programming languages is that, when a problem occurs 
with the program, the problem can always be fully investigated and understood at the 
programming language level. There is never a need to examine the state at the ma-
chine level, for example, the programmer never has to examine a corrupted run time 
stack, computer register values, instruction sequences, and the machine instructions 
that the program was translated into. For example, to understand the nature of a run-
away program that ended up crashing after executing some arbitrary data as if it were  
instructions, as occurs in C and C++. The programmer only debugs logic errors that 
are fully understandable at the programming language level, not at the machine level.



232        Safe programming Chapter 14

Most  safe  programming languages  include  automatic  memory  management,  i.e. 
garbage collection, as a means to ensure that an object’s memory not be reused if the 
underlying memory where the object is stored could still  be referenced through a 
pointer that is still accessible by the program; and conversely that memory that is no 
longer accessible can be eventually reused for other purposes. Some safe program-
ming languages contain substantial run-time systems: virtual machines, just-in-time 
code  generators,  language  interpreters,  and  large  libraries,  written  in  unsafe  lan-
guages, problems in those bodies of code, can not be debugged as logic errors at the 
language level. The larger the run-time code written with an unsafe programming 
language the less safe the language is as a whole.

The approach to  safe  memory management used by  COOGL does not  mandate 
garbage collection, instead memory management remains in the control of the pro-
grammer, but in a safe way. General purpose or custom garbage collection can be im-
plemented by an application if they choose to do so. By providing minimal mecha-
nisms in the language, the programmer can choose between traditional explicit mem-
ory management, general purpose garbage collectors, or allocators specialized for the 
application that offer garbage collection like behavior, without the costs of general 
purpose garbage collection.

There is little value in a new language that evolves C, but that in its evolution 
causes C's rich memory manipulation abilities to be removed, or to become so crip-
pled so as to become unusable as an evolutionary path for C code.  COOGL's ap-
proach to safe programming walks a careful design balance of preserving the value 
and efficiency of C's memory manipulation while ensuring that the memory manipu-
lation is safe and efficient. This chapter explains how that is done.

It is important to emphasize that garbage collection is not a panacea for program-
ming, it prevents certain errors, but leads to other kinds of errors. For example, if the 
programmer is not careful enough to ensure that data, when not longer needed, is not  
referenced  through  accessible  pointers,  then  the  memory  never  is  reused,  which 
slowly but surely leads to the program’s memory needs to grown continuously, even-
tually leading to the program thrashing the underlying virtual memory system, or fail-
ing in other ways when memory allocations start to fail unexpectedly. Systems that 
depend on garbage collection tend to require a much larger amount of memory than 
systems that don’t require garbage collection, requiring 1.5 to 2 times as much is not 
unusual.

Finally, it is also important to realize that one size fits all solutions are limiting and 
when implemented by the language itself, rob the programmer from the possibility of 
implementing  alternative  approaches  to  safety  that  might  be  more  appropriate, 
smarter, performant, safer, than the approach chosen by a language, including the ap-
proach chosen by COOGL. Thus only a small amount of mechanism is implemented 
and defined by COOGL. Through the use of preclass inheritance (see §14.30) and 
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pointer life cycle control (i.e. smart pointers), alternative approaches can be imple-
mented without having to modify the compiler or change the language definition. 

14.4   Bad memory accesses in C

In C it is easy to reference memory that should not be accessed.

Run time stack smashing in C:

void wrong() { char x[1]; x[200] = 'x'; }

More stack smashing:

void store_1_at_index_100(int *p) { p[100] = 1; }
void wrong() { int v = 1; store_1_at_index_100(&v); }

Abridged version of classical malloc() and free() problem in C:

void stomp() { char *p = malloc(10); free(p); *p = 'x'; }

Malformed string causing unrelated memory to be affected in C:

char s[] = {"hi"};
char d[3];
void stomp() {
    s[2] = 'x';
    strcpy(d, s);
}

Pointer smashing through union in C:

void smash() {
    char c;
    union { char *p; int i; } u;
    u.p = &c;
    u.i = 17;   /* smash the u.p pointer */
    *u.p = 'x'; /* use smashed pointer */
}

All  of  these programs are  incorrect,  they are  abridged versions that  present  the 
essence of programming problems found in many large C programs.

A more complex variation of stack smashing in C:

char *set(char *p) { *p = ' '; return p; }
char *bad() { char c; return set(&c); }
void store(char *p) { *p = 'x'; }
int main() { char *p = bad(); store(p); }

The address  of  the local  variable  c is  only  valid  while  bad() is  active,  when 
bad() returns, the address of c is returned, i.e. p in main() points to a variable, c, 
whose function, bad(), is no longer active in the run time stack. When the value of 
p is passed to store() it could easily point to something that should not be altered, 
for example the return address of store() within the function call run time stack.
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C compilers are incapable of reporting an error for this class of code, particularly if  
the functions are separately compiled, all of it is valid C code, programmers are sup-
posed to know what they are doing. For example, if the programmer is doing some 
intelligence agency's biding, similar code might be written as a hidden security hole 
to exploit later as a backdoor to take over the system.

14.5   Plain and non-plain data and types

Variables of the base types: character, floating point, and integer types (with the ex-
ception of  index and  uindex) are  plain data. Pointers, array descriptors, variable 
length arrays, and index variables (of  index or  uindex types) are not plain data. 
Structures,  unions, and traditional C arrays that only contain plain data are also plain  
data. Plain data are entities that only contain, directly, or indirectly, other entities that 
are also plain data. For example, traditional C arrays of plain data, and structures and 
unions whose members are all plain data, are plain data. The definition of plain data 
is recursive, allowing for traditional C arrays of structures with traditional C array 
members, and so on, that are plain data to be plain data. The definition is also intu-
itive, simply meaning that there are no pointers, no indexes, no array descriptors, and 
no variable length arrays anywhere within an object that is plain data. The data de-
scribed by an array descriptor or contained in a variable length array can be plain 
data, and manipulated as such, the data, the array elements, remain plain data, even 
though the array descriptor and variable length array are not plain data. A comple-
mentary concept, non-plain data, refers to any data that is not plain data. Two related 
definitions are plain data types and non-plain data types; they are the types of objects 
that are plain data and objects that are non-plain data, respectively.

Data of a type declared by the programmer, or the language, in a class declaration 
is never plain data, irrespective of whether or not it contains pointers, indexes, array 
descriptors, or variable length arrays. Even though built in types,  int,  float, etc. 
can be thought of as being of a class type, they are not actually declared in a class  
declaration, they are plain data, the fact that they can be extended through extend 
class does not affect their treatment as plain data.

These are non-plain data types:

typedef byte *byteptr_t;
struct bytebuf_t { size_t size; byteptr_t mem; };
struct range_t { index start; index end; };
class point { pub float x, y; }

These are non-plain data:
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byteptr_t bp;
bytebuf_t bb;
range r;
point p;
int *ip;

These are examples of plain data types:

struct dirent_t {        // UNIX v6 directory entry
    ushort inum;
    char   name[14];
};
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lit size_t DATABUF_SIZE = 512;
struct databuf_t {
    char   data[DATABUF_SIZE];
};
struct dirbuf_t {        // a databuf full of directory entries
    dirent_t de[sizeof(databuf_t) / sizeof(dirent_t)];
};

These are plain data:

dirent_t de;
dirbuf_t db;

A class can not have the address of its data members, whether they are of a plain 
data or not, to be used in such a way that their addresses, directly or indirectly in 
other functions, would end up being used with the cast() or the try_cast() oper-
ators. Any such use causes a compilation error, see §14.12.

A consequence of not allowing any of the memory within a class to be manipu-
lated in ways that other plain data can be manipulated is that this forces a complete 
separation between class and struct, and the compiler can be allowed to perform 
more aggressive alias analysis and optimizations for memory accesses that relate to a 
class than  those  that  relate  to  a  struct,  at  least  for  the  plain  data  parts  of  a 
struct. The compiler can be as aggressive as it is for classes with the non-plain data 
members of a struct.

14.6   Insight for safe, C style, memory manipulation in COOGL

The rich memory manipulation of C allows simple and efficient organization and 
placement of data in memory in whatever way that is required, without the language 
getting in the way of doing so. Usually the data placement has been defined else -
where and the programmer is not at liberty of choosing a different organization for it.  
For example, data to communicate with other computer systems or devices, such as 
data associated with network and storage systems, network communication protocols, 
distributed file systems, distributed transaction coordinators,  file formats, database 
engines, file system metadata, volume manager metadata, etc.

Externally imposed memory layouts share the common characteristic that they are 
meaningful outside of the computer system, or at least across unrelated processes. 
Pointers, array descriptors, and variable length arrays (organized in a programming 
language mandated way) are not included in such layouts because they would be 
meaningless in them. The externally defined memory layouts can all be thought of as 
being plain data. Even if the plain data contained various variable length components 
to it, they often do, the actual description of such data, its size, its location, would be 
part of some external specification, described with other plain data for example off-
sets within the data, explicit or computed, not with pointers or a language specific 
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representation of variable length arrays nor with array descriptors. This is the key in-
sight on which safe programming in COOGL is based: C's rich memory manipu-
lation  is  needed,  almost  exclusively,  when  detailed  control  of  externally  defined 
memory layouts is required, and those only contain plain data.

Other circumstances under which C's memory manipulation is used, are much less 
important, and don't occur as often, for example to implement memory allocators. 
This use is supported by COOGL through unsafe code, but are not required to imple-
ment most programs.

Some other infrequent uses that require C's rich pointer manipulation include being 
able to determine from a pointer within a memory area the base of the memory area, 
for example from a pointer to a field within a structure to compute a pointer to the 
structure (supported in a safe way in COOGL  by field_to_obj(), see §1L.2); or 
from a pointer to a structure to find another structure that has been placed immedi-
ately prior to it; or from a pointer to an object within an area to find control informa-
tion placed near it, for example by clearing a number of low bits within the pointer to  
compute the pointer to the control information. Most of these uses are uncommon 
enough that they don't need to be supported by safe code.

Indexing with plain data is unsafe, the plain data could be addressable from else-
where, type based alias resolution could lead the compiler to assume that the index 
has not changed by intervening stores and cause the index to be refetched after it has  
been validated and cause an unchecked out of bounds array reference. Thus index 
and  uindex are not plain data. Indexing with plain data is only allowed when the 
compiler can prove that the specific data item has never had its address taken, for ex-
ample when indexing with a locally declared int variable.

The types  index and  uindex are non-plain data types, their size depends on the 
underlying system (for example 32 vs 64 bit memory addresses), externally imposed 
layouts should never include system specific types. Indexes are used to index into ar-
rays and to perform pointer arithmetic. Because they are not plain data, they are safe  
from being affected in unexpected ways by code creating external memory layouts 
through COOGL's rich memory manipulation means. If the external memory layout 
is to be used only within the same system, for example through some shared memory, 
then the ssize_t and size_t types can be used, they are plain data, instead of in-
dex and uindex.

14.7   Unions can't contain indexes, pointers, or array descriptors

COOGL unions are not allowed to contain members of type  index or  uindex, 
pointers, or array descriptors, directly or indirectly. Thus all COOGL unions are plain 
data, this is a restriction compared to C. COOGL is an evolution of C, not a superset.
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14.8   Global memory can't refer to memory on the run-time stack

Global memory are variables declared globally, or anywhere with static, or mem-
ory allocated dynamically from the heap. Run-time stack allocated memory is the 
memory that contains locally declared variables (non-static ones), function argu-
ments, or memory that was allocated with alloca().

The term refer in this section means that it points to memory (i.e. it is the address of 
the memory), or that it is an array descriptor value that can be used to access memory 
(i.e. it refers to elements within an array). The term address range is used in this sec-
tion to mean an individual address value that refers to a single data item, or an array 
descriptor value that refers to multiple contiguous data items.

Global memory can not refer to memory allocated on the run-time stack, this is 
guaranteed by the language, attempting to cause global memory to refer to run-time 
stack memory causes a compilation error. The requirements listed in this section are 
imposed by the language, and enforced by the compiler, they aid in the implementa-
tion of this property. 

An address range that refers to data within run-time stack allocated memory, can 
not be used other than to:

 Access the underlying memory.

 Store the address range into a variable that resides on the run-time stack. The 
destination variable must be declared after the variable whose data the ad-
dress range refers to, this ensures that the lifetime of the variable is shorter 
than the lifetime of the data it refers to. The destination variable must meet 
the restrictions on variables that refer to data on the run-time stack, described 
below.

 Pass it as a non-member argument to a function, but only if the argument meets 
the restrictions on variables that refer to data on the run-time stack.

 Call a member function on an object that the address range refers to, but only if 
uses of this in the member function meet the restrictions on variables and ad-
dresses that refer to data on the run-time stack.

When an address range that refers to data within run-time stack allocated memory 
is used for any other purpose than those listed above, a compilation error occurs. 
When used to call a function or a member function that doesn't meet the requirements 
enumerated above, it causes a compilation error in the calling location, not in the 
called function's code itself.

 The function and member functions mentioned above, have their names adjusted 
with compiler generated information that indicates that the function meets the restric-
tions, and for which of their arguments it meets them.
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A function argument or a this object pointer, whose value refers to memory on the 
run-time stack, or an expression whose value was derived from the argument's value,  
including through the use of local variables that refer to that memory, can be returned 
as a value by the function in a safe way, see §14.9 for details about this.

Run-time stack allocated variables, function arguments, and  this pointers that at 
any time might refer to data on the run-time stack can only be used to:

 Access the memory that they refer to.

 Use their value in pointer tests and comparisons.

 Pass their value to other functions or call member functions on them, but 
only if the corresponding arguments or this pointers meet the restrictions in 
this list, because they will refer to run-time stack allocated memory.

 Obtain an address range that refers to memory within the memory that they 
refer to. The address range is subject to the restrictions listed above on ad-
dress ranges that refer to run-time stack allocated memory. The address range 
can be assigned to a run-time stack allocated variable which must meet the 
restrictions enumerated on this list. If a local variable was the source of the 
address range used to derive the assigned address range, and the source vari-
able could be referring into run-time stack allocated memory allocated by the 
same function, then the variable into which the derived address range is as-
signed must have been declared after the location where the run-time stack 
allocated memory was allocated, this ensures its lifetime ends prior to the 
lifetime of the run-time stack allocated memory.

These restrictions imply that:

 The value of run-time stack allocated variables, function arguments, and this 
pointers, that could possibly refer to run-time stack allocated memory, can not 
be stored in the members of local variables that are structures, class objects, or 
arrays, or into any global memory.

 An address range that refers to run-time stack allocated memory can not be used 
used as an argument to a function, or to call a member function on it, if the invo-
cation of the function or member function, could lead to an address range that 
refers to the stack allocated memory to be stored in the members of local vari-
ables that are structures, class objects, or arrays, or into any global memory.

 Address ranges that refer to run-time stack allocated memory only exist as 
non-member  arguments  to  functions,  run-time  stack  allocated  variables 
within functions, or the value of  this within functions, and their lifetimes 
end prior to the lifetime of all the run-time stack allocated memory that they 
might have ever referred to.

Traditionally, in C, the address of local variables are used as arguments to functions 
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as a  means  to  return  values through them. The ability  to  do this  is  preserved  in  
COOGL to allow CLEAN code to be shared between C programs and COOGL pro-
grams. For example, when a large body of code is being incrementally migrated from 
C to COOGL. In COOGL it is idiomatic for functions that return multiple values to 
return them through a tuple.

The address of a memory buffer into which I/O should be performed, or into which 
some data should be built, is usually passed as an argument to a function that does the 
work, passing an array descriptor that refers to a non-static local buffer variable 
for these purposes doesn't have a better alternative solution, if it were not allowed, 
this kind of memory buffers would end up being global memory allocated from the 
heap, an alternative would be to allow each run-time stack to control a dedicated 
stack organized heap from which to allocate these memory buffers. A dedicated stack 
organized heap, associated with each run-time stack, implemented outside of the lan-
guage, could be used as a discipline that forces such buffers to be isolated from the  
run-time stacks, helping secure the run-time stack from security attacks, particularly 
when the code uses pre-existing libraries written in unsafe languages, such as C and 
C++. A compiler option is provided to produce a warning if addresses within run-
time stack allocated memory are ever passed as an argument to a C function, this 
helps find any data that might end up being used insecurely in a library written in an 
insecure language.

14.9   Returning addresses of run-time stack allocated memory

Address ranges that refer to memory allocated on the run time stack can not be re-
turned by the function that allocated the memory. Attempting to do so causes a com-
pilation error, irrespective of whether intermediate functions are used to attempt to do 
so. This prevents a function from referring to memory allocated on the run-time stack 
that has been deallocated when the function that allocated it returned. The language 
guarantees this property for every program.

For example, bad() attempts to cause the address of c to be returned by it through 
its invocation of set(), causing a compilation error:

char *set(char *p) { *p = ' '; return p; }
char *bad(char c) { return set(&c); } // error: returns address
                                      // of local: c

This is the case even if bad() and set() reside in separate source code files, and 
even if they are compiled separately into two different module binaries meant to be 
loaded dynamically at run-time under program control. The compiler generated infor-
mation for  set() includes information that indicates that the value returned by the 
function refers to memory within the memory that its first argument refers to. This in-
formation is propagated at compile time to bad()’s invocation of set() which re-
sults in a compilation error because the return statement attempts to return the ad-
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dress of c.

Assume the following version of  set(),  which doesn’t  lead to  the problem, is 
compiled into its own module that can be loaded dynamically at run-time:

char buf[] = {"hello"};
char *set(char *p) { *p = ' '; return buf; }

The following version of bad() is compiled, by itself, into a separate dynamically 
loadable module, with the compile time information about the version of set() that 
returns buf.

char *bad(char c) { return set(&c); } // no error produced 
                                      // at compile time

After compiling the dynamically loadable binary that contains bad(), the code of 
set() is recompiled with this code which could lead to invalid memory accesses:

char *set(char *p) { *p = ' '; return p; }

A program dynamically loads this version of set() and then attempts to dynami-
cally load the version of bad() which has not been recompiled, this causes an error 
and the dynamic loading of the binary fails because the symbol for set() required 
by bad() is incompatible with the symbol for set() that is currently in the program. 

Another example, the strchr() C library function, is invoked frequently with a lo-
cal C string as its argument. The function  wrong(), below, by itself doesn't reveal 
that  it  attempts,  through  strchr(),  to  cause  an address  within its  local  variable 
buf[6] to be returned, which is invalid and causes a compilation error. The relation-
ship between the str[] argument and the value returned by strchr() is determined 
by the compiler when strchr() is compiled. The relationship between buf[] and 
the value returned by strchr(), is used by the compiler when compiling wrong(), 
the compiler knows that it might possibly be returning an address within a local vari-
able, so a compilation error is produced.

char *strchr(char str[], int c) promise(retval == NULL ||
                                        str.start <= retval &&
                                        retval <= str.end) {
    char v;
    char *s = str;
    char *send = str.end;
    for (; s < send; ++s) {
        if ((v = *s) == c)
            return s;  // address of c in s, even if c == 0
        if (!v) break;
    }
    return NULL;       // return NULL otherwise
}
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char *wrong() {
    char buf[6] = {"hello"};
    char *p = strchr(buf, 'e');
    return p;      // error: address of buf[] could be returned
}

Note that the promise() specification that is part of strchr() is not required for 
the compiler to be able to determine the relationship between str[] and the value 
returned by strchr().

14.10   Run-time stack allocated memory and execution contexts

The address of run-time stack allocated memory can not be communicated, by any 
means, to other execution contexts, for example: concurrently executing code in an-
other thread, coroutines, exception handlers, interrupt handlers, signal handlers, etc. 
Operating system environments that allow processes with per execution context pri-
vate run-time stack’s that are only addressable by the execution context that owns the 
stack are supported by COOGL programs.  See §15.9 for more about execution con-
texts.

14.11   Run-time stack growth is checked

The COOGL run-time stack growth is checked against overflow through red-zones 
(MMU page frames that are inaccessible). When the stack frame increment size could 
skip the size of the red zone, compiler generated code, or  alloca() code, ensures 
that the red zone is not skipped by accessing the underlying memory incrementally in 
the direction of stack growth.

14.12   Casts and safety: cast() and try_cast()

A cast() is allowed from the address of some plain data to a pointer to a plain  
data type only if the cast does not result in a pointer that could access memory out-
side of the memory that the source address refers to. If the type of the memory that 
the target pointer refers to is larger than the memory that the source address refers to, 
then the use of cast() causes a compilation error, try_cast() should be used in-
stead.

A try_cast(type *, mem, value) addr  is like a  cast(type *) addr that 
tests if the memory at addr (which must be within the plain data memory described 
by the mem array descriptor) when interpreted as a pointer to type (which must be a 
plain data type) is fully contained within the memory described by mem, if it is, the 
value of the  try_cast() is the value  addr with type pointer to  type, if not, the 
value is value, whose type must be, or be compatible with, pointer to type. Usually 
value is  NIL (see §14.16) or  NULL, it can also be the address of some other data, 
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usually a dummy data variable of the same type. The result of a try_cast() can be 
checked explicitly, or just used to access the substitute dummy data, or if it is NIL to 
cause an exception (see §14.33) to be raised without testing the value explicitly, for 
example:

void example() {
    short s, *sp = &s, sa[10];
    int *ip = cast(int *)sp; // error: source object is smaller
    sp = &sa[0];
    ip = try_cast(int *, sa[], NIL) sp;     assert(ip != NIL);
    sp = &sa[9];
    ip = try_cast(int *, sa[], NIL) sp;     assert(ip == NIL);
}

The code generated for  try_cast() is optimized to assume that it will succeed. 
When multiple try_cast() are used in a function, it is very common for the same 
array descriptor within which the memory should be contained to be the same in all 
of them, array descriptors are used as values they are never aliased. This allows the 
contained within tests for that are performed in a series of  try_cast() to be opti-
mized easily, for example, assuming these structures used to form some kind of mes-
sage  where  the  header and  footer are  mandatory  but  the  prefix,  body,  and 
postfix are  all  optional,  presumably with the  header indicating what parts  are 
present:

struct header  { uint h1, h2, h3; };
struct prefix  { uint pre1, pre2; };
struct body    { uint b1, b2; };
struct postfix { uint post1, post2; };
struct footer  { uint f1; };

In the code below it is expected that data[] has enough space within it:
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void make_message(uint data[], header *h, prefix *pre,
                  body *b, postfix *post, footer *f) {
    uchar *ptr = cast(uchar *) data;
    *try_cast(header *, data, NIL) ptr = *h;
    ptr += sizeof(header);
    if (pre) {
        *try_cast(prefix *, data, NIL) ptr = *pre;
        ptr += sizeof(prefix);
    }
    if (b) {
        *try_cast(body *, data, NIL) ptr = *b;
        ptr += sizeof(body);
    }
    if (post) {
        *try_cast(postfix *, data, NIL) ptr = *post;
        ptr += sizeof(postfix);
    }
    *try_cast(footer *, data, NIL) ptr = *f;
}

In the worst case scenario all the optional parts are present, the compiler can see 
that if any of the  try_cast() fails it will cause a store into memory with address 
NIL. The optimized generated C code would reduce the 5 try_cast() to one < test:
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void make_message(uint data[], header *h, prefix *pre,
                  body *b, postfix *post, footer *f) {
    size_t size = sizeof(header) + sizeof(footer);
    if (pre) size += sizeof(prefix);
    if (b) size += sizeof(body);
    if (post) size += sizeof(postfix);
    lang__COND_STORE(data.max[0] < size, NIL, 0); // one < test

     //  lang__COND_STORE() is a compiler and hardware barrier,
     //  stores below only issued if no exception was raised

    uchar *ptr = (uchar *) data;
    *(header *) ptr = *h;
    ptr += sizeof(header);
    if (pre) {
        *(prefix *) ptr = *pre;
        ptr += sizeof(prefix);
    }
    if (b) {
        *(body *) ptr = *b;
        ptr += sizeof(body);
    }
    if (post) {
        *(postfix *) ptr = *post;
        ptr += sizeof(postfix);
    }
    *(footer *) ptr = *f;
}

The  generated  code  could  alternatively  have  a  very  precise  translation  of 
make_message() in  make_message_slow() which  causes  the  unavoidable  NIL 
dereference in the exact location that the program dictates (including compiler and 
hardware barriers), for example to facilitate debugging under a debug support compi-
lation flag:

    if (data.max[0] < size)
        return make_message_slow(data, h, pre, b, post, f);

The underlying C compiler is allowed to reorder memory accesses, as long as the 
execution by the thread perceives the execution as if it were in program order, and 
unless specific memory ordering is enforced through memory and compiler barriers. 
All the structure assignments in make_message() are to disjoint memory, reordering 
them by the compiler, or by the hardware is allowed from the perspective of other 
processors (e.g. because of hardware store buffers and cache coherency protocol in-
duced delays together with the data straddling cache lines). Those stores can only oc-
cur after lang__COND_STORE() has not raised an exception.
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14.13   Restrictions on class members whose type is a plain data type

Data members of a user or language defined class, where the data members’ type 
are plain data types are not allowed to be used as plain data, their addresses can not  
be used in a cast() or a try_cast() operation. Their address can not be passed as 
an argument to a function, this ensures that in the function the data that the pointer 
refers to is not treated as plain data. This further helps segregate high level code that 
can be heavily optimized by the compiler because the plain data within user or lan-
guage defined classes can not have pointers to it other than pointers of their correct 
type. Furthermore it forces the programmer not to get needlessly clever with under-
handed manipulation of data members in a way that is not expected by the compiler.

 A plain data member within a user or language defined class could have a member 
function defined on it, for example an int with a scan() function, this means that a 
this pointer within the member function points to the plain data item within the ob-
ject, which leads to another language restriction: plain data types when manipulated 
as objects, i.e. when they are the entity that this points to, can not have their address 
used for any purpose other than to affect the whole data item through its type. The  
address can not be passed as an argument to a function, stored in a local or global 
variable, etc. This restriction guarantees that long lived pointers to the member won’t 
exist once the member function invocation returns, it also guarantees that no loads or 
stores of the data are performed through types different than its own type, for exam-
ple an int data member is never accessed through its underlying bytes individually.

14.14   Implicit pointer conversions without casts

Implicit  pointer  conversions,  without  casts,  between pointers  are  allowed if  the 
source type and the target type are both pointers to objects, and if the type of the ob-
ject that the target pointer refers to is an ancestor class of the type of the object that 
the source pointer refers to. For example:

class base { pub int v; }
class derived { pub inherit base; pub int info; }
void example() {
    derived d;
    base *bp = &d;   // implicit conversion, cast not required
}

Similarly, a pointer to an object that provides an interface can be assigned to a  
pointer to the interface, without a cast; and a pointer to an interface that provides an-
other interface (directly or indirectly) can be assigned to a pointer to the other inter-
face, also without a cast.  For example, using the classes from, §6.5, to obtain the 
rdwr interface  through which sequential read or writes can be performed on the 
file, a pointer to  file can just be assigned to a pointer to  rdwr. Furthermore a 
pointer to an object that implements an interface directly or indirectly can be assigned 
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to a pointer to the interface, for example:

void nfs_pointer_example(nfs_file *nfp) {
    nfs_node *nnp = nfp;    //    object to ancestor class
    file *fp = nfp;         //    object to provided interface
    rdwrat *rwatp = nfp;    //    object to indirect interface
    rwatp = fp;             // interface to provided interface
    rdwr *rwp = fp;         // interface to indirect interface
    rwp = nfp;              //    object to indirect interface
    nfs_pointer_is_cast_example(nfp, nnp, fp, rwatp, rwp);
}

14.15   Pointer to base cast to pointer to derived: is_cast()

An is_cast(type *, value) ptr , from ptr a pointer to an object (where the 
ptr’s type is a pointer to an ancestor class of the actual object that it points to, or is a  
pointer type to an interface that the actual object implements), can be converted to a  
pointer to its actual type, or to some type in the inheritance chain or interface imple-
mentation chain of the object’s actual type. If the is_cast() can be performed, be-
cause it is of the appropriate type, or implements the appropriate interface, then the 
value  of  the  is_cast() is  the  value  of  ptr with  type  pointer  to  type.  If  the 
is_cast() can not be performed, then the value of the is_cast() is value, which 
must be  NIL, a trapping address, or the address of a valid data item whose type is 
type.  For example, when this function is called from  nfs_pointer_example(), 
above with the arguments specified there:

nfs_pointer_is_cast_example(nfs_file *nfp, nfs_node *nnp,
                           file *fp, rdwrat *rwatp, rdwr *rwp){
    nfp = is_cast(nfs_file *, NIL) nnp;          assert(nfp);
    nfp = is_cast(nfs_file *, NIL) fp;           assert(nfp);
    rwatp = is_cast(rdwrat *, NIL) rwp;          assert(rwatp);
    nfp = is_cast(nfs_file *, NIL) rwp;          assert(nfp);
    nnp = is_cast(nfs_node *, NIL) rwp;          assert(nnp);
    fp = is_cast(file *, NIL) rwatp;             assert(fp);

    // this fails, the rwp did not come from a nfs_dir object
    nfs_dir *ndp = is_cast(nfs_dir *, NIL) rwp;  assert(!ndp);
}

Other than is_cast() no other casts are allowed from the address of a non-plain 
data item. No other assignments between pointers are allowed, with or without casts, 
other than those described in this and the previous sections.

14.16   Trapping addresses, NIL, NULL, and uptr_cast()

Conversion from a non-pointer value, implicit or through a cast, to a pointer value 
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is not allowed unless the source non-pointer value is:

 The value zero, usually through the  NULL literal, which can be assigned to a 
pointer or used as a pointer argument, with or without a cast. Use of  NULL or 
zero as a pointer value is strongly discouraged and deprecated, see §14.18.

 The NIL value, is the preferred invalid pointer value, NIL can be assigned to a 
pointer, or used as a pointer argument, without a cast.

 A trapping pointer value, of the unsigned integer type uptr, in this range:

[uptr.trap.BASE, uptr.trap.BASE + uptr.trap.COUNT),

can be converted to a pointer, using the uptr_cast() operator:

uptr_cast(type *, val) uptrval 

If uptrval is trapping pointer value, the result is a pointer with that value. Oth-
erwise, the result of the operation is val, typically chosen to be NIL, sometimes 
NULL or a valid pointer to type, or some other trapping pointer value literal.

Use of NULL or zero as a pointer value is deprecated, NIL should be used instead, 
unless code needs to interface with C or C++ code which requires the use of NULL, 
Using NIL instead of NULL isolates the language from non-standard behavior when 
NULL pointers are dereferenced in different platforms, from unsafe aspects of using 
NULL, and from the undefined behavior compiler optimization campaign (see §1.7) 
which negatively impacts on the reliability of C profgrams, by allowing C compilers 
to turn any NULL pointer dereferencing into something potentially much worst than 
what would have traditionally occurred in earlier versions of the C language and its 
compilers.

A trapping address is either: NIL, a trapping pointer value, or an address within the 
range of addresses referred to by a pointer whose value is:  NIL, a trapping pointer 
value, or a trapping address. Given a pointer whose value is a trapping address, the  
address of: a field of a struct, a non-static member of a class, or of an array el-
ement within a traditional  C array,  are  all  trapping addresses.  Note that  similarly 
computed addresses based on a NULL pointer are not trapping addresses.

Fetching, storing, or executing, any memory, of any type, through a pointer whose 
value is a trapping address causes a run-time exception to occur, the exception is de-
livered to the execution context that caused it. The raising and delivery of the excep-
tion is not undefined behavior, it is defined behavior, see §14.33. A range of trapping 
pointer values is provided to allow pointers to contain invalid values that are guaran-
teed to cause an exception if used to access memory through them, or through other 
pointers whose values are trapping addresses computed from them, while allowing 
the programmer to store information in pointers when not being used as pointers, for 
example multiple invalid values with various meanings, or indexes into auxiliary in-
formation kept elsewhere.
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Trapping addresses exist as a safety net, catching the program, trapping it, reliably 
and dependably, when it misbehaves, i.e. when it dereferences a pointer whose value 
is a trapping address. The program does not continue to run subsequent code as if it  
had not misbehaved. The programmer can depend on the raising of an exception (see 
§14.33) to build software that is more reliable than if the behavior was undefined.

Note that a pointer set to a trapping pointer value is not related in any way to an ar-
ray descriptor within which the pointer can be subject to pointer arithmetic. Perform-
ing operations such as  p += n won’t cause the pointer to refer to some unknown 
memory, the expression simply won’t compile. Pointer arithmetic is only allowed if 
the compiler knows the array descriptor within which the objects that the pointer can 
point to are, and the compiler ensures at compile time that pointer arithmetic won’t 
cause the pointer to have values other than the values allowed by the range of values 
described by the array descriptor, i.e. [start-1, end].

The size of memory that an object can occupy is limited by the compiler, the range 
of trapping addresses is much larger than the range of trapping pointer values shown 
above. This guarantees that referencing every field of the largest supported object 
based on a trapping address always causes an exception (see §14.33). Furthermore 
there are also trapping addresses around NIL, whether there is a single range of trap-
ping addresses or two disjoint ones, one around the trapping pointer values and an-
other one around NIL, is not defined by the language.

Pointers to traditional arrays of objects, i.e. where the number of elements is known 
at compile time, and where the size of an array with that number of elements plus one 
(so that  &array[N] is also covered by trapping addresses) is larger than the maxi-
mum object size, can not be set to trapping pointer values, attempting to do so causes 
a compile time error.

All empty array descriptors are initialized so that their  start and  end members 
have the value NIL, this ensures that any attempt to dereference them will cause an 
exception (see §14.33). The range of trapping addresses around NIL, is such that for 
a NIL pointer p, the expression (p-1)->field is guaranteed to cause an exception, 
this ensures that for any empty array descriptor the start-1 expression refers only 
to trapping addresses.

The language guarantees that the trapping pointer value range supports:

 Storing 16 bit unsigned values in a 32 bit system, and 32 bit unsigned values in 
a 64 bit system.

 The values of a ushort on a 32 bit system, and the values of an uint on a 64 
bit system, can be stored and retrieved efficiently as trapping values.

 The type uptr.uval is ushort on 32 bit systems and uint on 32 bit systems.

 The range of uptr values supported is: [uptr.MINUVAL, uptr.MAXUVAL].
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 The value NIL is different than all the possible uptr values that result from us-
ing uptr.uval_set(), see below.

Most 64 bit processor architectures, allow processors that implement the architec-
ture not to implement the whole 64 bit virtual address space, resulting in some very 
large contiguous address ranges that are invalid, addresses within such an invalid 
range are chosen for each architecture to implement the trapping addresses. On a sys-
tem where every address is valid, wrappers around the memory mapping operating 
system interfaces might be required to ensure that a set of addresses can be reliably 
reserved to implement the semantics of the trapping pointer values by preventing the 
program from mapping memory into those addresses. It is not unusual for the operat-
ing system itself to restrict the range of valid addresses supported by it, in which case 
operating system specific invalid addresses can be used for the trapping pointer val-
ues.

14.17   Trapping pointer value interface and implementation

Common code file:

extend class uptr {                                  // uptr.cog
    pub lit uptr BITS = sizeof(uptr) * 8;
    enum class uptr trap {
        ONE = 1;
        SHIFT = BITS / 2 + 1;      // 33(64b) or 17(32b)
        COUNT = ONE << SHIFT;      // 8G(64b) or 128K(32b)
        HALF = COUNT / 2;          // 4G(64b) or 64K(32b)
        MNU = BASE | HALF;         // 0x3FF10000(32b)
        MXU = MNU + HALF - 1;      // 0x3FF1FFFF(32b)
        MINUVAL = cast(uval) MNU;  // 0
        MAXUVAL = cast(uval) MXU;  // 65535(64b)
        BASE = uptr.TRAP_BASE;
    }
    pub uval get_uval() return cast(uval) *this;
    pub void set_uval(uval v) { *this = MNU + cast(uptr) v; }
}

A platform dependent file used on some 32 bit systems:

extend class uptr {                               // uptr-32.cog
    typedef ushort uval;
    pub lit uptr TRAP_BASE = 0x3FF00000u;
}                          //  ----++++

A platform dependent file used on 64 bit systems:

extend class uptr {                               // uptr-64.cog
    typedef uint uval;
    pub lit uptr TRAP_BASE = 0x3FffFFf000000000uLL;
}                          //  ----++++----++++
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14.18   Use of NULL and zero as pointers is deprecated

Use of NULL and number zero as pointer values is deprecated in COOGL, they are 
allowed as a transition mechanism, the compiler option --NULL flag is required for 
their use. Support for them is particularly important to allow the use of C interfaces 
which might require or return NULL values. If the --NULL flag is not specified, test-
ing a pointer, explicitly for being equals or not equals to zero, or equals or not equals,  
to NULL, causes a compilation error. For example, if --NULL is not used, the follow-
ing functions all cause compilation errors:

bool is_a_0(int *a)    { return a == 0 ? true : false; }
bool is_b_ne_0(int *b) { return b != 0 ? true : false; }
bool is_c_NULL(int *c) { return c == NULL ? true : false; }
bool is_d_NULL(int *d) { return d != NULL ? false : true; }

It is not allowed to implicitly test a pointer to variable of a type that is not a user de-
fined or a language defined class in a conditional context or to convert it to a bool, 
if the --NULL flag is used, e.g. all of these would cause compilation errors:

bool is_a(int *a)     { return a ? true : false; }
bool is_not_b(int *b) { return !b ? true : false; }
bool is_c(int *c)     { return c; }
bool is_not_d(int *d) { return !d; }

The fundamental reason for deprecating NULL and zero as pointer values is that, in 
some platforms, a NULL pointer value could be used to fetch memory at or near ad-
dress zero. If  p is  NULL,  p->table[ix] might be readable if  ix is large enough, 
even if it is a valid index for  table[], even if  p->table[0] is not readable. On 
some platforms it might even be possible to store into memory at or near address 
zero.

A NULL pointer dereference, because of a programming error, becomes a potential 
security hole. Even if fetching data at address zero, or near it, can not be exploited as 
a security hole, the fact that it doesn't cause an exception, but silently allows the pro-
gram to continue to run, means that the program will most likely misbehave, possibly  
in a subtle way, for example by computing incorrect results and performing incorrect 
actions, possibly crashing subsequently, or much later, none of which can be tolerated 
in a safe programming language. Note that any such incorrect behavior could not be 
reasoned about from the programming language perspective, the programmer would 
have to understand, at the machine level what happened, what memory was accessed 
incorrectly, what values were found there, and what happened subsequently, for ex-
ample if a chain of incorrect values was found and led to one of them to be consid-
ered a function pointer and the program ended jumping to an arbitrary location and 
crashing immediately or later after executing some arbitrary code..

The layout of a running program's address space is under the control of the operat-
ing system, it is not reasonable to require operating system changes to implement the 
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best possible run-time environment for the language, at least not int the foreseeable  
future. Some operating systems even allow for memory to be mapped at virtual ad-
dress zero, through mmap(), or through shmat() (e.g. MacOS X).

In  consequence,  programs compiled  with  --NULL should  be  considered  unsafe. 
Even if they were safe in some systems, they might no longer be safe after operating 
system components  have  changed,  or  their  behaviors  have  changed,  for  example 
through: tunable options, system behavior control mechanisms, address space ran-
domization variations, etc.

14.19   Addresses of members based on NULL or trapping addresses

If a pointer's value is NULL or a trapping address (NIL is a trapping address), then 
computing the address of any field of the object is well defined, its a valid operation. 
Some programmers read the C standard and believe that computing the address of a 
field based on a NULL pointer is undefined behavior in C, there is merit to their read-
ing of the standard but that interpretation goes against the spirit of C, but is the inter-
pretation most likely to be defended by the compiler writers who have taken over the 
future of the C language, who have hijacked the language from its users. This is not 
undefined behavior in COOGL.

For example, offset_of_next() and offset_of_prev() are valid, the second is 
valid only if compiled with  --NULL,  both result in the computation of a constant 
value at compile time, they are both equally efficient:

size_t offset_of_next() return cast(size_t) (cast(uptr)
                            &(cast(node *)NIL)->next - NIL);
size_t offset_of_prev() return cast(size_t)
                            &(cast(node *) 0)->prev;

14.20   Use of NULL with objects of a class type is invalid

Because NULL, and the value 0, are deprecated pointer values, which are only sup-
ported as a bridge to legacy C code, there is no benefit in allowing pointers to objects  
of user or language defined classes to have those values. Assigning or comparing, 
NULL or 0, to a pointer to an object of a class type is invalid, even when compiled 
with the --NULL flag.

A pointer to an object of a user or language defined class can be converted to a 
bool value by assigning it to a bool variable; or by evaluating the pointer with the 
!, &&, or || operators; or by testing it in the control expression of control flow state -
ments (if,  for,  while, and do-while); or in the controlling expression of the ?: 
operator. If the pointer is  NIL, the result is  false. The result is  true otherwise. 
Note that because these pointers can never have the value  NULL, that value is not 
considered when they are tested.
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Traditional C-like code can be written that tests pointers to objects of a user or sys-
tem defined class type, for example to determine the end of a list, without worrying 
whether to use NIL or NULL, because only NIL can be used with them. In this code 
the first two for statements are valid, the third one causes a compilation error:

class node {
    pub node *next;
}
void walk(node *list) {
    for (node *p = list; p; p = p->next) work(p);
    for (node *p = list; p != NIL; p = p->next) work(p);
    for (node *p = list;
         p != NULL;          // error: node * compared to NULL
         p = p->next) work(p);
}

Use of NULL with pointers to the native data types, structures, unions, or pointers to 
them (recursively) is allowed, but only when  --NULL is used.  NIL can always be 
used with any of these.

If  --NULL and  --NULL-implicit are used, then testing implicitly in conditional 
expressions, or converting to  bool, pointers to objects whose type is not a user or 
language defined class is allowed, but if the value NIL is ever used with one of these 
types anywhere in the program, then testing pointer values of that type in a condi-
tional context or causing them to be converted to  bool causes a compilation error, 
they have to be explicitly compared against NULL, zero, or NIL instead. The goal is 
to provide an orderly way to transition away from NULL, because its use is unsafe, 
and replace its role with NIL, incrementally, particularly when migrating and reengi-
neering a very large code base from C into COOGL.

14.21   The unsafe_cast() operator and disabling unsafe features

The unsafe_cast(type) operator behaves exactly as the underlying C language 
cast operator, its use requires the --unsafe_cast compiler option to be used. Use of 
this option and --NULL and --NULL-implicit are the only way that a COOGL pro-
gram can be unsafe. The use of these options can be disabled in the compiler by vari-
ous means to ensure that they are not used mistakenly, see XXX.

14.22   Deconstructed values and uninitialized variables

When an object is destroyed, all of the entities that form it take their deconstructed  
values. Pointers take the NIL value, array descriptors are reshaped as empty array de-
scriptors (with start and end set to NIL, and the values in max[] are set to zero), 
entities of any other type are set to zero. All of this is done transparently by the lan-
guage. When an object is first allocated, prior to construction, those are their values.
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As a transparent performance optimization, the compiler will not pre-initialize a 
field of an object on the run-time stack to its deconstructed value, instead the com-
piler will ensure that the field be initialized by the constructor prior to there ever be-
ing a possibility of it being accessed during its construction or its initialization, di-
rectly or by other functions invoked at that time. The compiler will report an error if 
some of the members of an object are not initialized by the constructor or by the 
init() or  init_deinit() member functions. Because an object on the run-time 
stack can not have pointers to it at its destruction time its fields are not set to their de-
constructed values.

Plain data  variables on the stack are  not  pre-initialized by the compiler,  use of 
uninitialized plain data variables causes a compilation error with the exception of ar-
rays, they are commonly used for reading information into them, requiring them to be 
pre-initialized would be wasteful. Use of non-plain data variables on the stack that 
have not been initialized or assigned prior to their use causes a compilation error.

Global or static uninitialized plain data variables are all set to zero. Global or static  
uninitialized array descriptors are pre-initialized as described above.

Global or static pointers, arrays of pointers, and pointer fields within structures, 
must be initialized explicitly, pointers must be set to NIL or NULL, explicitly, accord-
ing to the convention for them, see §14.18. Arrays of pointers don't require every ele-
ment to be initialized, but at least the first element of the array must be initialized, ev-
ery range of non explicitly initialized values must be preceded by an initialized value, 
which must be either NIL or NULL, that value is used for the non explicitly initialized 
values that follow it. For example, a large global array of pointers can have all of its 
entries initialized to NIL by initializing its first element to NIL:

struct node { node *next; node **prevpp; id_t id; val_t val; };
lit size_t NHASH = 1024;
node *hash[NHASH] = {NIL};     // every array entry is NIL

14.23   The uninit() member function

A class can implement the static member function:

pub static void uninit(type raw *to) { ... }

If it is not implemented, then the compiler generates the code for uninit() which 
uninitializes  the  objects  non-static  members  described  in  §14.22.  A programmer 
might choose different uninitialized values, for example a  float might be set to a 
SNaN (signaling not a number) value, which are more convenient to detect program-
ming errors.
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14.24   Permanent association of heap virtual addresses and types

The language provides an implementation of dynamically allocated memory in the 
lang.creatable interface its design and implementation are key to the language 
safety, polymorphic member function invocation implementation, and the zero per-
object memory overhead polymorphism support.

When an object, or an array of objects, is allocated through lang.creatable, the 
addresses that they occupy, once the memory is freed, can only be reused to allocate 
objects or arrays of the same type. This implies that any pointers to the memory of 
these objects, even after the objects are freed, can never be used to refer to memory 
of other objects of a different type, they can only refer to the deconstructed memory 
of the objects of the type that they refer to.

The permanent association of virtual addresses and types does not mean that the un-
derlying physical memory is permanently dedicated to objects of a given type. The 
underlying pages of memory, if they only contain free objects, can be unmapped by 
the allocator thus allowing the operating system, or the allocator itself, to remap them 
elsewhere (if the operating system supports such remapping) for use by objects of an-
other type. This rebalancing of the underlying physical memory might be important 
for certain software that might create many objects of a specific type, then release  
them all, and later allocate many objects of another type.

Most  operating  systems  don't  provide  support  for  physical  page  remapping  for 
anonymous memory (i.e. memory that doesn't have a long lived home location, mem-
ory mapped files are not anonymous memory) only page un-mapping, the addresses 
associated with the unmapped page subsequently become inaccessible and any at-
tempt to fetch or store from them results in an exception. To prevent the underlying 
virtual  addresses  to  be  reused  for  a  different  purpose,  for  example  through  the 
mmap() UNIX system call, which could lead to a security compromise of the running 
program, if it can be caused to follow pointers to the free objects that previously oc-
cupied those addresses, the memory mapping interfaces are wrapped by library code 
that ensurers that the contiguous address range managed by the allocator can never be 
reused, or manipulated in any way, by any code other than the allocator itself.

The addresses of a page within the heap that have been unmapped, and that the al-
locator  subsequently  wants  to  reuse,  by  memory  mapping  a  page  of  anonymous 
memory into it, would be immediately accessible and zero filed. Until the pointers 
and array descriptors for the object carcasses that previously lived there are set to 
NIL the underlying dead objects will have, briefly, a different set of uninitialized val-
ues. Particularly pointers would have zero, i.e. C's NULL value, in them. Because of 
the undefined behavior associated with NULL by modern C compilers incorrect code 
might be able to cause arbitrary values to be interpreted as object pointers, defeating 
the language safety.
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On  such  platforms,  unless  other  mechanisms  are  provided  such  as 
userfaultfd(2) on Linux, the allocator managed memory needs to be backed by 
one or more persistent files that are created as needed and deleted while their file de-
scriptor is kept open, to ensure that when the program exits the storage space that the 
files use is released. Because those pages can be remapped at will at other addresses, 
they can be given their proper values prior to remapping them at the dead object ad -
dresses. The ability to create holes within these backing files is important, and it is 
present in most modern systems, to cause underlying file backing storage and physi-
cal memory used to cache it to be released all the way back to the operating system 
itself. The file descriptor for these persistent files must also be guarded through sys-
tem call wrappers to ensure that they are never used to affect the program’s memory, 
for example by writing into them. An alternative implementation on these systems is 
to never release memory from the heap back to the operating system for it to reuse, 
once associated with objects. On these systems the allocator could use memory advi-
sories to indicate that it won't use the memory, hopefully causing the pages to more  
quickly become candidates to be paged out and reused than other memory.

14.25   Array walking through pointer ranges is always valid

The array descriptor start and end values are always well defined, furthermore, 
the address start-1 is also well defined, thus code that walks arrays forwards and 
backwards does not suffer from strange address space warps or theoretical segment 
underflows from stone-age segment based addressing hardware architectures, simply 
because those architectures no longer exist or are no longer relevant.

tuple [int *first = NIL,
       int *last = NIL] find_first_last(int ad[], int val) {
    for (int *p = ad.start; p < ad.end; ++p)
        if (*p == val) {
            first = p;
            break;
        }
    for (int *p = ad.end; --p >= ad.start; )
        if (*p == val) {
            last = p;
            break;
        }
    return;
}

Note that the first for loop exit condition requires that p >= ad.end  for the loop 
to terminate, it will terminate when  p == ad.end . The second  for loop requires 
that p < ad.start  to terminate, it will terminate when p == ad.start-1 , which 
requires that it be a well defined address value that is arithmetically prior to ad.s-
tart, even though the undefined behavior C compiler optimization religion might 
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want to call that undefined, it is defined in  COOGL. The compilation of  COOGL 
code into C code guarantees that this is done in a way that the underlying C compiler 
undefined behavior can not arise and cause the compiled code to be incorrect.

A related aspect to these pointers that are off by one, before and after, a valid array 
of objects is that once these pointers are constructed, they could be used to refer, in 
principle, to memory that belongs to other objects, in an attempt to subvert the safety 
of the language, but it can not be subverted this way as explained in §14.27.

14.26   Invalid pointer value computation

The values ad.end+n and ad.start-1-n, where n > 0 ,  are invalid, the compiler 
does not allow them to be computed, any attempt to do so causes a compile time er -
ror, if the compiler can not determine at compile time whether those values are com-
puted at run time, then the compilation fails. For example, this code causes a compi-
lation error:

int *find_first_start_at_n(int ad[], int val, size_t n) {
    for (int *p = ad.start + n; p < ad.end; ++p)
        if (*p == val) return p;
    return NIL;
}

A require(n <= ad.max[0])  contract can be used to place requirements on the 
calling code, which would allow the code to compile, but in this case defensive pro-
gramming is better:

int *find_first_start_at_n(int ad[], int val, size_t n) {
    if (n >= ad.max[0]) return NIL;
    for (int *p = ad.start + n; p < ad.end; ++p)
        if (*p == val) return p;
    return NIL;
}

14.27   Use of objects at start-1 and at end

The pointer values computed from an array descriptor: start-1 and end are valid 
pointer values. Dereferencing pointers with those values is usually incorrect, but does 
not lead to undefined behavior, nor to invalid memory accesses. The language guar-
antees that a valid properly constructed object exists at the address, or the memory 
for a deconstructed object of that type is located there. Making use of those objects is  
incorrect, unless the programmer knows that those objects are properly constructed 
objects. For example, because it is actually operating on an array descriptor, that by 
program design, the programmer has chosen to always be surrounded by valid ob-
jects, e.g. if the code was designed that way. Note that this kind of programming is  
not unusual at all, having valid or degenerate sentinel values around an array or oper-
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ating on a subarray of another array is quite common in practice.

The rationale for this language design choice is:

 Array descriptors are frequently created to refer to a subset of objects within 
a larger array, having valid surrounding objects is a common case.

 Once pointers with the values  start-1 and  end are computed, extra code 
would need to be generated to ensure that they are not dereferenced.

 The lang.creatable allocator allocates all memory for arrays from a given 
type in such a way that it guarantees this invariant, the array is surrounded by 
a deconstructed object of the same type, by default.  The programmer can 
choose for each type: to have the object be constructed (in which case it must 
implement  init_default()); or that there be two objects between arrays 
instead of one (both constructed or not); or that there be no objects at all be-
tween arrays, but that it be guaranteed that there is always an object prior and 
after every array. See §13.8.

 Arrays with more than just a few elements are common, arrays with few ele-
ments are uncommon. The cost of the an extra object for individually allo-
cated arrays is one per array, by default only one additional deconstructed 
object is required per array.

Contiguous arrays share the deconstructed object in between them, at end for the 
first array and at start-1 for the second. An additional deconstructed object, at the 
start of every address range from which arrays are allocated, is provided by the allo-
cator, to establish the invariant for the first array allocated in the range.

Arrays with few elements are uncommon, but even if they were common for some 
application, to the point that the memory consumed by the extra unconstructed ob-
jects required in between individually allocated arrays becomes a performance bur-
den (maybe because the objects themselves are extremely large, or because a tremen-
dous number of tiny arrays is created), the programmer can work around the memory 
waste in various ways, as described above; or by reorganizing the objects into a small 
part that refers through a pointer to a larger part which is allocated at object construc-
tion time, thus the cost for the optional part would not be required for the uncon-
structed objects between arrays.

Note that when start-1 or end refer to deconstructed memory, their dereferenc-
ing is no different than the dereferencing of a pointer to dynamically allocated mem-
ory that has been freed. Both refer to deconstructed memory, access to deconstructed 
memory does not lead to invalid memory accesses. It is just a well defined program-
ming error, it is not undefined behavior, it is an error in the logic of the program, no  
different than any other logic error in the program.

In the array: int m[10][20]; there is only one additional int element prior to the 
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array, and another one after it. There aren't two 20 element dummy arrays, one prior 
to &m[0], and another at &m[10]. If there had to be dummy arrays to cover the worst 
case scenario, then the b[][] array descriptor below, which reinterprets the memory 
of  a[100] into a two dimensional array,  b[2][50], would require that there be a 
dummy 50 int array prior to &b[0] and another one at &b[2], this would mean that 
for any array the memory that would have to be allocated would be 2 times the mem-
ory specified by the program, which is unreasonable. Worst case, with c[][] the re-
quired memory would be 3 times the requested memory.

void f() {
    int a[100];
    int b[][] = lib.array.make({2, 50}, a.start);  // b[2][50]
    int c[][] = lib.array.make({1, 100}, a.start); // c[1][100]
}

To ensure that the required memory overhead is just one additional element per ar-
ray, the array descriptor associated with arrays of arrays, for example for the array 
int a[10][20], can be used to walk the array multi-dimensionally through indexes, 
using a.max[0] and a.max[1], or uni-dimensionally with pointers that refer to the 
underlying base elements of the array (the int elements in this case) using a.start 
and a.end. Use of an array typedef, as shown below, doesn't make a difference.

typedef int array_of_20_int[20];
array_of_20_int a[10];             // same as: int a[10][20];
void f() {
    int *start = a.start, *end = a.end;   // valid
    assert(end - start == 200);
    array_of_20_int *s = a.start;  // error: incompatible types
    array_of_20_int *e = a.end;    // error: incompatible types
}

Compatibility with C mandates that arrays within structures and unions don't have 
extra  elements around them. Pointers  prior  to  or  after  arrays within structures  or 
unions produced by walking these arrays are unsafe and need extra code to ensure 
that they are not used. Within the typical loop that walks such an array the compiler  
knows that the pointers are valid. After exiting the loop the pointer might be within 
the array or immediately after, or before if the array is being walked backwards. The 
code generated by the compiler ensures that the pointer is not used to reference data 
unless it is within the array, an exception (see §14.33) is raised otherwise.

Arrays of constant size within a class object do have additional elements surround-
ing them, but only when required, the compiler determines if array descriptors are 
ever based on the array and if start-1 or end are ever computed, it only allocates 
the extra element after the array, if end is computed, and the one before, if start-1 
is computed. For very small arrays the compiler has options that force it instead to 
produce code to ensure that data at start-1 and end are never referenced. This can 
also be accomplished by declaring the class as a class struct.
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14.28   Out of bounds indexing causes an exception

 Every bound is checked individually. Bounds checks are optimized by the compiler 
when the whole array,  or sequential parts of the array are walked iteratively,  fre-
quently resulting in no bounds checking code at all. These optimizations are facili-
tated by the fact that the bounds are either known at compile time, or if they are only  
known at run-time, the array walking must be done through a local copy of the array  
descriptor which usually doesn't change inside the loop. For example, the bounds 
checks for the evaluation of v[i][j] are optimized away in:

double sum(double m[][]) {
    double total = 0;
    for (index i = 0; i < m.max[0]; i++)
        for (index j = 0; j < m.max[1]; j++) total += v[i][j];
    return total;
}

14.29   Invalid memory access definition

Memory that is readable or writeable and that contains non-plain data, constructed 
or deconstructed, can not be accessed as if they were of a type different than its type, 
other than through a pointer to an ancestor type. All other memory accesses to non-
plain data are invalid memory accesses, the language and its run-time support code 
(i.e. dynamic memory allocation support and the management of run-time stacks), 
make invalid memory accesses impossible.

 Access to plain data as if its type were of a different plain data type is not an in-
valid memory access, this is a feature of the language to allow for carefully laid out  
memory to be crafted to support external data representation requirements.

Access to dynamically allocated non-plain data memory that has been freed is not 
an invalid memory access, it is a valid memory access of the deconstructed memory 
of a previously existing object of the same type. Access to an object immediately 
prior to, or immediately after, an array is not an invalid memory access, it is a valid 
memory access of either: a constructed object, or the deconstructed memory of an ob-
ject, of the same type as the type of the objects in the array. Dereferencing a  NIL 
pointer, or a pointer whose value is a trapping address, is not an invalid memory ac-
cess, it is a well defined memory access that always causes a run-time exception (see  
§14.33) to be raised.

Use of an uninitialized pointer is not allowed, it causes a compile time error. Use of  
a variable that has not been initialized is not allowed, it causes a compile time error.

If a program has any code compiled with --NULL it implies that pointers with the 
value NULL might exist within it, such programs might be caused to perform invalid 
memory accesses, those programs are not safe, unless the code in question is care-
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fully  localized and proven to not  cause directly  or  indirectly  invalid  memory ac-
cesses. Typical code that might be compiled with --NULL are wrappers for C library 
functions so that they can be provided as  COOGL functions, the wrappers would 
map  NIL to  NULL and  NULL to  NIL appropriately  so  that  they  can  be  used  by 
COOGL code. Code that uses properly written wrappers is safe and can be guaran-
teed not to perform invalid memory accesses unless the underlying C code itself per-
forms them.

14.30   Prefix classes: preclass

XXX

14.31   Extending the language safety model

XXX

14.32   Dynamically unloaded modules and safety

A module that is unload while a program is executing can cause a program to mis-
behave if it references code or data at the addresses where they previously resided. If  
another module is loaded in those same addresses, then pointers to data of the previ-
ous type could now refer to data of a different type in the new modulo which is un-
safe. To simplify the language, at this time, unloading a module is an unsafe opera-
tion, the program that supports such unloading has to ensure that data or code refer-
ences to the addresses that belonged to the modulo do not occur after it is unloaded.  
Ensuring that the code and data in question is not accessed is no different than the 
garbage collection problem, in general, in that potentially all of the memory in the 
program and elsewhere (thread contexts, CPU registers, etc), would have to be exam-
ined. Code references might be the current program counter of a running or blocked 
thread, the program counter value in an execution context or in a longjmp like jump 
buffer, return addresses in the run-time stack, function pointers, code addresses in 
general purpose registers in running or blocked threads, etc. Data references could be 
anywhere in global data or in run-time stacks, there could also be data references in 
the registers of running or blocked threads, longjmp like buffers, etc.

Depending on the design of the program in question, ensuring that a module can be 
safely unloaded might be a property easier to verify. There are many designs, particu-
larly in operating system kernels, that make the safe unloading of modules a more 
tractable problem.

The simplest solution is to simply not support the run-time unloading of modules.
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14.33   Hardware and software exceptions and exception handlers

When an exception occurs the program is terminated, unless the exception is caught 
by an exception handler. An exception handler executes in the execution context that 
caused it, see §15.9 and §14.33 for details about execution contexts and exception 
handlers.

 Exceptions detected by hardware, i.e. without additional instructions in the instruc-
tion stream to detect them, include: division by zero, illegal instructions, trap instruc-
tion, memory access to a trapping address, invalid memory access, and unaligned 
memory accesses.  Exceptions detected by software, usually through additional in-
structions compiled into the instruction stream, include: out of bounds array indexing, 
assertion  failure,  expect() or  promise() failure,  and  excessive  run  time  stack 
memory use.

For performance reasons, software exceptions are sometimes raised through hard-
ware means (for example through a trap instruction or by performing load from a 
trapping address) to minimize run-time overheads when the exception is not raised, 
for example overheads related to calling conventions and register usage. If the han-
dler of a software exception handler returns, the underlying software or hardware 
mechanism that was used to raise it will cause the exception to be caused again, and 
the exception handler will be invoked again, without reevaluating the condition that 
caused the exception.



15 - Concurrent programming

“Weakly-ordered processor architectures provide a 
relaxed view of the memory subsystem, where 
different processors may have different views of shared 
storage. One of the motivations for having weak 
storage ordering is to allow storage subsystem 
optimizations, which enable better scaling of the 
memory nest design. It is important to ensure that 
modern programming models do not artificially 
constrain the scalability of these system, which would 
ultimately undermine their success.”

-- R. Silvera, M. Wong, P. McKenney, B. Blainey

15.1   Concurrent programming

Sequential programming, where only a single flow of control exists within a pro-
gram when it executes is the common programming model for traditional computer 
systems and programming languages. Execution of programs in a computer system 
was  eventually  formalized  into  the  concept  of  a  process,  and  operating  systems 
evolved to support the concurrent execution of unrelated processes, with little or no 
sharing of resources between them, usually limited in their interactions on the opera-
tions they performed on shared resources, for example files provided by the operating 
system. As operating systems evolved, additional facilities were introduced to allow 
independent processes to communicate with each other, through services provided by 
the operating system, for example through message passing, pipes, record locks for 
files, isolated areas of shared memory, and synchronizers to allow coordination of 
their work on the shared memory. These facilities are referred informally as  inter-
process communication, or IPC. Communication between processes possibly located 
on different computer systems with a procedure-like interface, remote procedure call, 
RPC emerged as a high level mechanism for clients and servers to communicate, and 
for servers to provide services on behalf of the client processes. Communication be-
tween processes, within a system, or across computer systems required the notions of 
identity, trust, and many aspects that can be described broadly as distributed security. 
Higher level facilities such as distributed transactional systems, durable queues, dis-
tributed database operations, etc. continued to evolve as applications and their ser-
vices transcended the boundaries of individual computer systems to gain scalability 
and availability.
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All of the above are facilities that allow concurrent programming. From the per-
spective of programming language design these facilities are provided by the operat-
ing system or the distributed applications themselves and it would be a mistake to 
support them natively through built-in syntax and mechanisms by a traditional pro-
gramming language.  The programming language  has  to  end  somewhere,  and this 
kind of facilities are meant to be implemented through libraries, server processes, etc.

A parallel thread of computer evolution, pun-intended, was that computer systems 
evolved from single CPU systems to multi-CPU systems, where the CPUs could all  
execute concurrently and share a common memory between all of them. One way to 
program such computer systems is simply by supporting sequential processes that ex-
ploit  the  parallelism by  communicating,  i.e.  communicating  sequential  processes, 
which is no different than what occurs on single CPU systems. This indeed is the 
simplest way to program such systems and is appropriate for most programs that 
don’t need to scale because of their computational requirements beyond the process-
ing capability of a single CPU. Even if multiple CPUs could benefit an application, it 
can  sometimes  be  structured  as  independent  processes,  maybe  with  some  shared 
memory, or none at all, and partition the work in a multi-process way. Nonetheless, 
sometimes, applications can benefit by having multiple threads of execution within a 
single process. The benefit might be structural in that the problem being solved is  
best implemented with multiple concurrent threads of execution, or the benefit might 
be purely a performance benefit if the application can make effective use of more 
than one CPU for computational intensive operations.

Certain large programs, database servers,  transaction monitors,  operating system 
kernels, designed to operate on these multi-CPU shared memory systems, usually re-
ferred to as  symmetric multi-processor (SMP) systems. The term SMP is dated, the 
term processor is often used to refer to the physical VLSI chip that implements one or 
more physical CPUs, the term CPU is sometimes also confused with the VLSI chip 
and thus the term multi-core has emerged to refer to a VLSI chip that contains multi-
ple CPUs, or cores. A computer system might contain one or more VLSI chips, each 
with one or more cores in it. Because of the level of integration in modern systems 
most-multi chip systems have 4 or more physical cores in each one of them. Some-
times a single core can have multiple register sets within it, which are known as logi-
cal cores, or hardware threads, each hardware thread having all the architected gen-
eral  purpose,  floating point,  vector registers,  program counter,  condition registers, 
and special registers in each register set. A single core that implements multiple hard-
ware threads can dispatch and execute instructions for each hardware thread in  a 
finely interleaved way. When one a hardware thread stalls (usually because its wait-
ing for loads from memory to complete, or stores to be be moved from write buffers 
and into the cache, so that a stalled store can be placed into a write buffer), other 
hardware threads can have more hardware resources dedicated to their instruction ex-
ecution. The fundamental weakness of hardware threads is that unless the workloads 
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have a good amount of cache affinity and the cache hierarchy is very large and highly 
associative, the interference of the hardware threads and their competition for cache 
resources can cause significant  slow downs,  thus hardware threads might include 
hardware scheduling priorities, and their dynamic enablement and disablement, usu-
ally under the control of the operating system but sometimes directly by programs di-
rectly.

Multi-threaded processes where all the threads share all (or most) of the memory 
within their address space require that the programming languages used to write them 
don’t get in the way of their concurrent execution, they require that the code gener-
ated by the compiler doesn’t assume that there is only a single thread of execution.  
This is the only are that merits support from a systems programming language such 
as C, C++, or COOGL.

15.2   Language design considerations

Built-in support for high level concurrent programming constructs in a program-
ming language has been shown to be inflexible and problematic in languages such as 
Ada, Java, C#, and Go. It usually interoperates poorly, or not at all, with concurrent 
programming interfaces and the internal synchronization of libraries provided by the 
operating system.

Operating system provided interfaces are language independent, they support con-
currency control within a process through threads and synchronizers, and across mul-
tiple processes, sometimes with the same, but usually different synchronizers.

The  fundamental  balancing  act  between language  provided concurrency  mecha-
nisms and operating system provided ones is the design tension of:  what belongs 
where? Languages are meant to transcend and be independent of the operating sys-
tems where they are supported. Operating systems are meant to be language indepen-
dent, successful ones support many languages.

Given that the computer system hardware, at its lowest levels, is controlled by the 
operating system, the lowest levels of concurrent execution support must be exposed 
by it. The operating system is inextricably involved in system wide concurrent execu-
tion across one or more threads of execution, per process, and across all processes 
within the system, it is the operating system's job to manage the scheduling of threads 
of execution to the system's CPUs, and their blocking when they have to wait (typi-
cally for input or output operations to complete). This classical operating system con-
struction doesn't mean that alternative ones or more refined ones are not possible. 
The operating system could expose concurrency control in a very low level form, for 
example virtual CPUs, together with some means of controlling their scheduling for 
execution onto physical CPUs, low level virtual CPU context management, cross vir-
tual CPU notifications (interrupt like), and notification delivery management.
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There are many concurrent programming mechanisms, among them: multiple con-
currently  executing  processes  with  or  without  shared  memory,  multiple  threads 
within  a  single  process,  co-routines  (fibers),  continuations,  monitors,  locks  (spin 
locks, blocking locks, and adaptive locks), condition variables, events, shared/exclu-
sive locks, semaphores, synchronous or asynchronous message passing, message se-
lection  through  rendezvous,  interprocess  procedure  calls  (IPC),  remote  procedure 
calls (RPC), asynchronous procedure calls (APC), typed or untyped messages, send-
ing and receiving of capabilities, lock free programming, read copy update (RCU) 
techniques. Interacting with many of these mechanisms are other concerns, such as 
exceptions, timers, asynchronous I/O, blocking I/O, abnormal interruption of opera-
tions, security, serving requests on behalf of various requestors, tying work together 
such that it occurs atomically or not at all, operations across multiple systems, data 
integrity, availability, scalability, fault-tolerance, etc.

The computer system processor itself, without operating system intervention, usu-
ally provides low level computer instructions (load-linked / store-conditional, com-
pare exchange, test-and-set, or some other form of atomic read-write operation) that 
allow for the implementation of a single load-modify-store operation on a small data 
item to occur atomically from the perspective of concurrent execution contexts, usu-
ally only on system word sized data, sometimes on smaller data, and sometimes on  
data that is a very small multiple of the system word size, usually with alignment 
constraints such that the data has to be at an address that is a multiple of its size. New 
computer  architecture  enhancements  provide  hardware  transactional  memory  sup-
port, which allows for one or more loads and stores to a few small data items to occur  
atomically, i.e. with their side effects observable only all at once, or none at all, if the 
operation failed.

There is a language design tension between concurrency support provided by the 
operating system and built-in concurrent programming support through a builtin lan-
guage feature. When concurrency support is expressed syntactically as a series of 
builtin mechanisms, the language designer seems to believe that the programs exist in 
isolation completely separated and unaware of the operating system on which the 
programs run, even if concurrency between multiple processes are supported by the 
language, it is unreasonable to expect that every piece of software in the system is 
going to be written in the same language. For example a database and transactional 
support system might need to be used and the concurrency control and interfacing 
with it might require a completely different set of concurrency control mechanisms; 
or operating system features might require certain synchronizers to be used. This lan-
guage design tension has been traditionally resolved in the direction of the language 
being as minimal as possible so that programs written in it can be as native as possi-
ble in whatever operating system supports them, which is what C has traditionally 
done. Other languages, Ada, Java, C#, etc take the opposite approach and are some-
times found lacking when having to interact with other software written in other lan-
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guages or when accessing native operating system facilities.

15.3   Allowing concurrency support through libraries

Even if there is no concurrent programming support built into the language, and all 
the  support  is  provided  through  libraries,  it  is  important  that  the  language  itself 
doesn't preclude those libraries from being written, the compiler should not generate 
code that depends on there being only a single thread of execution control. For exam-
ple, the compiler should follow the load and store instructions that the programmer 
specified and should not create fictitious memory accesses that were not specified by 
the programmer. If a data item is accessed once, the compiler should not access the 
data item a second time and assume that the value will be the same as it was before,  
doing so assumes that no other entity could be changing the memory concurrently. 
For example:

uint fx;
void f() {
    switch (fx) {
    case 0: f0(); break;
    case 1: f1(); break;
    case 2: f2(); break;
    case 3: f3(); break;
    case 4: f4(); break;
    case 5: f5(); break;
    case 6: f6(); break;
    case 7: f7(); break;
}

The value of  fx must be fetched once into a register or a local temporary on the  
stack and used for the two implied computations, one to see if it is less or equals than 
7 and another to compute the branch target (or to fetch a branch address from a table 
with 8 branch targets, or in this case 8 functions pointers). If the value of  fx was 
fetched twice, once to determine if it is less or equals than 7, and a second time to de-
termine where to jump to, the value could have changed and cause the program to 
misbehave immediately, or worst, in subtle ways (possibly corrupting data), without 
any guarantee of an exception being raised immediately or at all, possibly continuing 
to run with corrupted data for an extended period of time.

Another example, this code:

class wsbx {
    pub uint w;
    pub ushort s;
    pub ubyte b;
    pub ubyte x;
}
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pub void set_low_wsb(wsbx *d) {
    d->w |= 3;
    d->s |= 2;
    d->b |= 1;
}

Could be compiled, incorrectly, into this C code:

pub void set_low_wsb(wsbx *d) {
    ularge u = *(ularge *) d;
    u |= 0x300020100uLL;
    *(ularge *) d = u;
}

This is incorrect because the ubyte x is being read and its value written back, this 
could cause a concurrent store into x to be lost, i.e. as if it never happened.

A very important circumstance when the compiler can not prove that data is not af-
fected, are function invocations, it can not assume that the data is not affected by 
them. For example, it can not keep data values in registers that are preserved across 
the function invocation, if the function changes the data, the values in registers would 
be incorrect. Function invocations, at least invocations of function whose code the 
compiler knows nothing about, are a boundary where the compiler has to put any 
data that it has changed and has kept in registers into their proper location, it must 
also stop using any data values cached in registers. For example:

large total;
void large doit(int vec[]) {
    total = 0;
    for (int *p = vec.start; p < vec.end; )
        total += *p++;
    work();    // compiler knows nothing about what work() does
    return total / vec.max[0];
}

The variable total doesn't need to be affected on each iteration of the for loop, 
the code can be safely compiled into:

large total;
void doit(int vec[]) {
    large tot = 0;                // ok to compile into this
    for (int *p = vec.start; p < vec.end; )
        tot += *p++;              // ok to compile into this
    total = tot;                  // ok to compile into this
    work();                       // could change total
    // return tot / vec.max[0];   // can not compile into this
    return total / vec.max[0];
}

Functions that the compiler knows nothing about are the proper places to imple-



15.3 Allowing concurrency support through libraries          269

ment concurrency control operations. For example, lock(&p->lk) and unlock(&p-
>lk) functions that implement a mutual exclusion lock. After the compiler has been 
forced to synchronize its caching of memory values in registers with the flow of exe-
cution, prior to the function invocation, other actions required by the hardware for 
properly accessing shared memory under a lock can be performed by the function.  
For example, memory barriers that prevent memory accesses to be moved by the 
hardware to occur prior to the lock being acquired, and other barriers to ensure that 
memory affected under the protection of the lock has been flushed into the hardware 
coherency domain (e.g. incoherent write buffers have been flushed into the cache co-
herent memory domain) prior to the lock being unlocked.

The fact that the C programming language easily allowed concurrent execution and 
its compilers didn't get carried away generating code that would make concurrency 
support impossible is a testament to the fact that C has always supported concurrent 
execution, even if compiler writers choose to denigrate the C language and claim that 
it could have never supported concurrent execution until C11 and its memory model. 
They write  those statements into documents on computer  systems running highly 
concurrent operating systems kernels written in C, directly descendant from UNIX in 
code or spirit (MacOS X, Linux, Solaris, AIX, BSD, Irix, etc), or Windows systems,  
whose kernel is also written in C. C was written to reimplement the UNIX kernel  
from assembly into a portable language, it was a multiprocess kernel from the begin-
ning, those processes, while executing in the kernel, behaved like a concurrent pro-
gram, each with its kernel stack, no different than a multi-threaded program. C has 
never gotten in the way of concurrency support implemented by functions unknown 
to the compiler, only recently, with C11, have the compiler writers confused them-
selves enough to the point that they even forget the history of C. If newer versions of 
compilers get in the way of concurrency support implemented at function call bound-
aries, it is because the compiler writers have been sacrificing classical C at the altar 
of mostly useless optimizations to make benchmarks a bit better, they have forgotten 
of the users of C and the enormous code bases written in C, some of which stop 
working mysteriously when compiled by newer versions of compilers, and can only 
be kept working only when lots of misguided optimizations made by the compilers 
are turned off. The hijacking of C, and the spirit of C, by compiler writers is an addi-
tional motivation for the COOGL programming language, to have a better language 
for the users of C to move their code bases to.

15.4   Concurrency support in libraries is optional

Concurrency support by the language libraries is optional, there is value in very ef-
ficient support of single threaded programs. The libraries it uses should not contain 
needless synchronization that would only be required by multi-threaded programs, 
for  example  internal  locking  and  unlocking  of  heap  management  data  structures 
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when heap memory is allocated or released. The language provided libraries, when 
used for  single-threaded programs contain none of that  synchronization overhead. 
See §6.

15.5   Weakly ordered concurrent memory accesses

Weakly ordered memory, as opposed to strongly ordered memory, is present in most 
modern hardware architectures (ARMv8, IBM POWER, etc), it relaxes the program 
observable memory model under concurrent execution in a multi-processor system. 
For example processor 1 might perform two stores first into a and after that into b: 
through processor1_stores():

int a1 = 0, b2 = 0;
void processor1_stores() { a1 = 1; f(); b2 = 2; }
int processor2_fetches() { return a1 + b2; }

Processor 2 fetches both variables through processor2_fetches(), adds the val-
ues of both variables, it can return: 0, 1, 2, or 3 depending on the timing of the con -
current execution of both functions and the underlying hardware operation, different 
concurrent executions might return different results. Note that for processor 2's func-
tion invocation to return 2 it must be that these were the values fetched: a1 == 0 and 
b2 == 2 , a counterintuitive result that would not occur on older computer architec-
tures which provide strongly ordered memory systems (such as IBM zSeries and In-
tel/AMD x86). The invocation of function f(), a function unknown to the compiler, 
is there between the assignments to a1 and b2, to ensure that the compiler performs 
the stores in the specified order.

A circumstance under which processor 2 might see the store to b2 and not the store 
into a1 is when each one of those variables is in a different cache line, the cache that  
contains b2 is already held in an exclusive state by the cache of processor 1, while 
the cache line that contains a1 is held in exclusive state by the cache of a different 
processor. The store into a1 is held by processor 1 in a write queue while the cache 
line is acquired in exclusive mode by the processor, the store into b2 occurs almost 
without delay into its cache line. While processor 1 has not yet acquired the cache 
line that contains a1, processor 2 sees a1 's old value, 0, and then proceeds to fetch 
the new value of b2.

This is how weakly ordered memory works, some compiler writers call this a data 
race and decide that it is undefined behavior and that the compiler can do whatever it  
wants, not what it was asked to do. The hardware has well defined behavior, any of 
the values 0, 1, 2, or 3 can be returned, there is nothing undefined about it, the author 
has never seen a computer system whose memory works in a way that results in the  
equivalent of C’s undefined behavior. There is high value in a systems programming 
language that accepts every possible hardware behavior, and doesn't use some of that  
behavior as an opportunity to call it undefined behavior, and then uses that as an ex-
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cuse for the compiler writers to cause behaviors that the hardware could not have 
caused by itself. A computer system execution mode with completely defined behav-
ior, for example user mode, can not just be turned into an execution model with unde-
fined behavior as a sacrifice to the altar of ungrounded compiler optimizations. A 
high level language should not have behaviors that are harder to understand than the 
behaviors of the underlying computer architecture supported by it. It is supposed to 
be higher level than the machine itself, its behavior can not be orders of magnitude 
more complex or confusing than the hardware behavior itself.

Weakly ordered memory improves performance and only needs additional special 
consideration in the presence of concurrent data accesses to provide a programming 
paradigm that is easy to reason about. Memory barriers and flushing of store buffers 
in  the  implementation  of  synchronizers  and  some  other  concurrent  programming 
mechanisms is all that is usually required. For example if message passing between 
concurrent  threads is  supported,  and the messages can contain pointers  to  shared 
memory, for example memory where the sender placed some data, that the receiver is  
going to use when it receives the pointer, then the sender must ensure that no data re-
mains in its hardware write buffers before the message is sent. This is usually accom-
plished as a side effect of the use of synchronizers to implement the message passing. 
If the message passing is implemented with some lock free data structures that don’t 
use synchronizers, then the functions that queue and dequeue the data would have to 
explicitly have the appropriate memory synchronization instructions.

15.6   Concurrency support in C

Programming language compiler code generation optimizations can interfere with 
concurrency support, for example compiler optimizations that result from caching 
values in registers, or fetching or storing data in an order different than the order 
specified by the programmer. An area that interferes with the optimization of C code 
is that any store into memory could affect most memory, or at least any memory  
whose address could be determined by other code. The generated code might waste a 
few cycles refetching data values after functions are invoked, i.e. after they return to 
the caller, because those values might have been changed as a result of the function 
invocation, this level of under optimization allows concurrency support in C to be 
implemented in libraries without any concurrency support in the language itself.

Lock free optimization algorithms have been developed that allow for concurrency 
with less interlock than the interlock that occurs in most traditional concurrent code 
in existence today. New processor architecture revisions and hardware implementa-
tions incorporate hardware transactional memory (HTM), which is the only new sig-
nificant development in hardware support for concurrent programming. In essence it 
allows for all  memory accesses performed by a small  amount of  code to be per-
formed atomically  with respect  to  any  other execution,  for  example,  the  remove 
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function if invoked as a hardware transaction, the element p is removed from a dou-
bly linked list without the partial steps of the removal being seeing by any other code, 
including other concurrent insertions or deletions into the list.

void remove(node *p) {
    p->prev->next = p->prev;
    p->next->prev = p->next;
}

15.7   Language design dilemma

A language design dilemma arises, should the language designer make all  these 
choices and bolt his ideas into the language, or should he just provide the tools for  
many  concurrency  and  synchronization  models  to  be  easily  implemented?  From 
threads bound to kernel threads, to pure user mode threads, to hybrid N:M thread 
models, to activations, to work item oriented pure asynchronous execution models 
that only have a stack and state while running but immediately loose their stack when 
blocked and later resume from formalized state, etc. From lock free programming, to 
message based, to traditional concurrent programming (with locks, shared exclusive 
locks, condition variables, etc).

Certainly various operating system aspects also need to be addressed, for example, 
interactions with operating system supported exception handling mechanisms, such 
as signals in UNIX. Input output completion mechanisms and their indications via 
various callbacks for various operating system APIs.

Various ways to manage stacks, thread contexts, cooperative blocking and resum-
ing, preemption, etc. might be supported fully or partially by the operating system 
through APIs such as the UNIX setcontext(),  getcontext(),  makecontext(), 
siglongjmp(), sigalstack(), sigmask(), etc. An additional aspect related to all 
of this is that for a safe language such as COOGL, further considerations are required 
to ensure that these, and other, operating system interfaces are not used to defeat the 
safety of the language, for example by allowing contexts and longjmp buffers to be 
affected to affect program execution so that values that are in the restored CPU regis-
ters end up with pointers that refer to memory that is not supposed to be accessed 
through pointers of the wrong type.  COOGL’s library doesn’t expose unsafe inter-
faces instead it exposes similar interfaces that are safe and are not subject to tamper-
ing by a malicious programmer attempting to introduce a backdoor into the code 
through through the underlying C interfaces.

The answer to the dilemma is that the language can not force any specific synchro-
nization model, paradigm, or set of interfaces, it just has to not get in the way of their 
support through libraries. A minimal base synchronization library has to be provided 
to allow other libraries provided with the language to be correct in the presence of  
concurrency.
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15.8   Concurrent programming building blocks

The  language  design  consideration  for  concurrent  programming support  aspects 
was to allow for the underlying hardware facilities to be able to be used efficiently 
from COOGL code without the aid of assembly language.

Some of those hardware dependent facilities are:

 Underlying hardware synchronization primitives should be exposed in their raw 
form, or as close as possible to their raw form. This includes compare and swap 
operations, test and set, load linked and store conditional, atomic operations, etc.

 Underlying  hardware  memory  barriers  and  other  instructions  related  to  the 
memory model of the computer system should be exposed.

 Underlying hardware mechanisms that support hardware transactional memory 
(IBM POWER,  IBM zSeries,  Intel  TSX-NI,  etc),  database  memory  (ancient 
IBM RS/6000  POWER1  systems)  if  it  were  to  re-emerge,  capability  based 
memory (IBM iSeries) if it ever becomes open, all should be exposed.

 Memory protection systems that allow for programs to isolate parts of them-
selves from each other should be exposed (IBM POWER).

 Intrinsic compiler functions that allow for thread context to be obtained, manip-
ulated, or created without resorting to assembly language.

 Hardware aids required to deal with hardware stacks and their register windows 
such that user level threads can be implemented, for example by forcing the 
drainage of registers to the memory stack, etc.

 Hardware aids that allow for the support of thread local storage, either through 
registers or special per-CPU memory mapped pages, or through stack pointer 
rounding and fetching of per thread memory.

 Low level interfaces to exception dispatching mechanisms, such as dispatching 
to functions when various errors occur, for example divide by zero, or when in-
valid memory, or memory that is paged out and the page results in an I/O error.

Given that the number of CPU architecture diversity continues to shrink, to have 
these hardware mechanisms exposed by the compiler for each architecture, as appro-
priate, is not an unreasonable requirement to provide this level of deep architecture 
support.

Given these primitives, higher level primitives, such as stack creation, context bind-
ing to a stack, stack on demand growth, stack disposal, stack passing, discontinuous 
stacks, etc. should also be exposed by the compiler through its libraries, preferably in 
a platform independent interface.

Given  the  global  compiler  nature  of  COOGL,  alias  analysis  can  be  performed 
deeply and the resulting C code can have the results of those optimizations expressed 
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as C local stack variables thus avoiding the needless re-fetching that C would other-
wise do across every function call, when it is safe to do so.

15.9   Execution contexts

An execution context represents a unit of independent execution, for example an 
operating  system kernel  implemented  thread,  a  user  mode implemented  thread,  a 
coroutine, a hardware interrupt handler, a hardware exception handler, a kernel orga-
nized execution of an exception handler to handle an exception that originated in user 
mode, callouts to user mode coordinated by a kernel to allow user mode like interrupt 
handlers to deal with asynchronous events such as asynchronous input output com-
pletion handlers, or user mode interrupt handlers for device drivers implemented in 
user mode, etc. 

An execution context has associated with it a run-time stack where local non-static  
variables are stored for the execution of a function, and the functions called by it, di-
rectly or indirectly. In some environments an execution context could have more than 
one run-time stack associated with it. For example an operating system environment 
where an alternative run-time stack can be used to handle exceptions caused by a 
thread during its execution, both stacks belonging to the same execution context, for 
example a thread.

The rationale for leaving the concept of an execution context purposely vague, is to 
ensure that the language is not attempting to dictate operating system concepts, doing 
so could make supporting the language difficult if the language were to to define the  
same concepts in ways that would make their support compatibility difficult.

15.10   Threads, mutexes and condition variables

The counterpart to having concurrency support built into the language is providing 
it through a library, possibly different libraries that implement various standards or 
concurrent programming models. If concurrency support is not provided, one way or 
the other, then other libraries can not be written in a way that would make their use  
correct, when concurrency is present.  COOGL provides a thread and synchronizer li-
brary that is a subset of the most common operating system provided interfaces and 
can be easily mapped into them. The goal is completeness and simplicity, instead of a 
very rich and complex API. It is based on threads, mutexes, and condition variables 
which are available in every mainstream operating system. They are the common 
subset between POSIX threads and Windows. C11 <threads.h> is also based on the 
same synchronizers.
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15.11   Weaknesses and complexity in C11 <threads.h>

In some areas C11 <threads.h> is under specified, and has some design flaws, for 
example acquiring a mutex should not ever return an error, allowing for error returns 
provides flexibility in the wrong place, concurrent programming is delicate enough, 
requiring every lock acquisition to have the possibility of failure and in consequence 
error handling to deal with it is unreasonable. Incorrect use of a mutex should not  
produce an error, for example acquiring a non-recursive mutex that the thread already 
holds should cause the thread to self-deadlock, or an exception to be raised.

 Another area of underspecification or incorrect specification is that their descrip-
tion of mtx_t and cnd_t indicate that they hold an identifier for a mutex and a con-
dition variable, respectively, as if they were values that could be copied around, as-
signed, used as arguments, or returned as the value of functions, as if they contained 
handles, similar to a file descriptor, to the synchronizers that are actually elsewhere.  
This extra level of indirection is not needed.

Lastly C11 mtx_t is a type that can not make up its mind, so it has four flavors re-
flecting its indecision: recursive or not, supportive of mtx_timdlock() or not, even 
mtx_init() is poorly specified, it uses 3 flags to specify the 4 possible flavors of a 
mtx_t when two would have sufficed, having both mtx_plain and mtx_recursive 
makes sense only if in the future they wanted to add another flavor. Wouldn’t it be  
funny to see a mutual exclusion lock with a mtx_sharedexclusive flavor? Lastly, 
the  memory  for  the  mtx_t implementation  data  would  have  required  additional 
memory in every mtx_t to support the mtx_timed lock flavor, and the lock owner 
and recursion count. The icing on the cake is that mtx_lock() would be more com-
plex because even in the fastest path, mutex not being locked, it would have to obtain 
some kind of thread id to store in the lock instead of an immediate value.

15.12   Concurrency support in COOGL lib.concur

The problems in C11 <threads.h> are addressed by the  COOGL library  lib.-
concur, its interfaces are based on classes, it is similar to the C11 <threads.h>, but 
it is a much simpler interface.

Synchronizers,  lib.concur.mutex and  lib.concur.cond are meant to be de-
clared within other data as members, they, are not meant to exist on the run-time 
stack.A  lib.concur.thread object  can  only  be  allocated  dynamically,  it  is  not 
meant to live on the run-time stack, its constructor is prot, it is lib.creatable.
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extend namespace lib {
    pub namespace concur {
        pub class mutex {
            pub void deinit() {...}
            pub void lock() {...}
            pub void unlock() {...}
            pub bool try_lock() {...}// if free locks it
            pub bool owned() {...}   // owned by this thread?
        }
        pub class cond {
            pub void deinit() {...}
            pub void wait(mutex *m) {...}
            pub void wait_timed(mutex *m, time_t time) {...}
            pub void wake_one(mutex *m)require(m->owned()){...}
            pub void wake_all(mutex *m)require(m->owned()){...}
        }
        pub class thread(void start() deleg,
                         bool detached = true,
                         thread_info *info = NIL) prot {
            pub is lib.creatable(thread);
            return;
            priv void deinit() {...}
            pub static void exit() {…}
            pub void join() {...}
            pub void yield() {...}
            pub void sleep(time_t time) {...}
            pub static thread *current() {...}
        }
    }
}

The thread_info optional argument specifies whatever run-time stack related ar-
guments or scheduling information might be required when creating a thread, e.g. 
when the default choices need to be overridden, it is not described further in this 
chapter.

The following two pages describe lib.concur, a multi-threaded Sieve of Eratos-
thenes example program is shown in the next section. The  start() function dele-
gate function pointer argument to lib.concur.thread is used to pass whatever in-
formation the thread requires to do its work and to return whatever results it returns 
to another thread when it completes. Note that start() does not return a value, nor 
is a value allowed to be returned through  lib.concur.thread.exit() or can a 
value be obtained from a thread when it exists via thr->join().  Whatever value is 
to be communicated back when the thread exits, if any, is communicated through the 
object that  start() is a delegate for, this simplifies  lib.concur.thread signifi-
cantly as it is not in the business of returning values, usually of some compromised 
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type anyway. If values are to be produced by the thread when it exits, they are what-
ever is right for the programmer, they can be obtained from the object that start() 
is a delegate for when thr->join() returns.

The agreement between a thread that creates another thread is that if the thread was 
not created detached, i.e. that it will be eventually the subject of thr->join(),  then 
it is the thread that performs the thr->join() the thread that destroys its memory 
through  thr->destroy(). If the thread was detached, then the  thr->destroy() 
will be done internally by lib.concur.thread.exit() whether it is called explic-
itly or implicitly when start() returns. In the first case deinit() for the thread ob-
ject occurs in the context of the thread that performed the thr->join() and in the 
second case it occurs in the context of the thread itself while it is exiting, note that 
when a thread is exiting it is still a thread and it might still block while it is doing its  
work.

A class that inherits from lib.concur.thread, for example iothread, and adds 
additional  non-static  data  members  can  provide  a  static  iothread.current_io-
thread() member function that returns a pointer to the  iothread if the current 
thread is an iothread, NIL otherwise.

With iothread.current_iothread() it can access its non-static data members, 
this serves the purpose of thread local storage without the complexity of C11 tss_t 
and its tss_dtor_t destructors and their convoluted specification:

pub class iothread {
    pub inherit thread;
    pub is lib.creatable(iothread);
    priv ioqueue work;
    return;
    pub static iothread *current_iothread()
        return try_cast(iothread *, NIL)
            lib.concur.thread.current();
}

An iothread that is specialized to be a file system I/O thread, an fsthread, can 
have its own thread local storage too:

pub class fsthread {
    pub inherit iothread;
    pub is lib.creatable(iothread);
    priv opqueue fswork;
    return;
    pub static fsthread *current_fsthread()
        return try_cast(fsthread *, NIL)
            lib.concur.thread.current();
}

This scheme could be used to  support  a  class  of  threads that  provide the more 
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baroque concept of thread local storage slots that are allocated at initialization time 
and into which pointers to data, per thread, can be stored and fetched.

To block a thread until a condition occurs, the mutex that protects state changes in 
the condition has to be locked, the wait() and timedwait(), both specify the mu-
tex as an argument, the mutex is atomically dropped at the same time that the thread 
is blocked until the condition occurs. When the thread returns from the cv->wait() 
or  cv->wait_timed() the  mutex has already been locked on the thread’s behalf. 
The thread must always determine again whether the condition that it blocked for is 
actually true, if it isn’t it must block again or do whatever other action is needed, it  
must not assume that the condition is true, even if the condition was indicated to a 
single  thread  through  cv->wake_one(),  because  implementations  are  allowed to 
spuriously unblock threads even if  cv->wake_one() or  cv->wake_all() was not 
invoked on the condition variable.

The cv->wake_one() and cv->wake_all() member functions also have the mu-
tex that protects the condition as an argument, the  require() that the mutex be 
owned by the current thread,  because calling these member functions without the 
caller having locked the mutex could lead to a incorrect synchronization and threads 
blocking forever.  Note that  because  spurious  unblocking  can  occur,  there  is  little 
value in complicating the interface of cv->wait_timed(), if the caller is interested 
in knowing if time elapsed it can obtain the current time and determine if that was 
the case, thus the synchronizers are even simpler, internally they don’t need to pro-
duce and communicate this information so that it can be returned as a value by cv-
>wait_timed(), it doesn’t merit the extra complexity.

Various implementations of lib.concur are provided, a production one with no de-
bugging support, a production one with additional use checks, a performance investi-
gation one with lock performance instrumentation, and a debugging one with exten-
sive debugging support.

15.13   Multi-threaded Sieve of Eratosthenes and thread safe queue

A queue that can be accessed concurrently with capacity N of value-like objects:

pub class queue(pub genre lang.value type) {
    priv lib.concur.mutex mutex;
    priv lib.concur.cond not_full, not_empty;
    priv lit uindex N = 100;
    priv uindex count = 0;
    priv type data[N], *getp = data, *putp = data;
    return;
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    pub type get() {
        mutex.lock();
        while (count == 0) not_empty.wait(&mutex);
        type val = *getp++;
        if (getp == data.end) getp = data;
        if (count == N) not_full.wake_one(&mutex);
        --count;
        mutex.unlock();
        return val;
    }

    pub void put(type val) {
        mutex.lock();
        while (count == N) not_full.wait(&mutex);
        *putp++ = val;
        if (putp == data.end) putp = data;
        if (count == 0) not_empty.wake_one(&mutex);
        ++count;
        mutex.unlock();
    }
}

The following example finds all the primes smaller than N_SIEVE concurrently:

primes p;
int main() {
    p.parallel_sieve();
    p.print_primes();
}
class primes {
    pub lit size_t N_SIEVE = 1L << 24;
    pub bool sieve[N_SIEVE];
    pub queue(int) doneq;
    pub queue(int) workq;
    pub void print_primes() {
        for (int i = 2; i < N_SIEVE; ++i)
             if (!sieve[i]) on (i; '\n') print();
    }
    priv void scratch_multiples(void *vp) {
        for (;;) {
            int prime = workq.get();
            if (prime < 0) lib.concur.thread.exit();
            int mult = prime;
            while ((mult+=prime) < N_SIEVE) sieve[mult] = true;
            doneq.put(1);
        }
    }
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    pub static int known[] = {2, 3, 5, 7, 11, 13, 17, 19};
    pub void parallel_sieve() {
        lit int N_THR = 4;
        for (int i = 0; i < N_THR; ++i) {
            decl lib.concur.thread *thread =
                lib.concur.thread.create(scratch_multiples);
            assert(thread);
        }

        int queued = known.max[0];
        for (int i = 0; i < queued; i++) workq.put(known[i]);
        int last_prime = known[queued - 1];

        while (queued) {
            for (int worked; queued > 0; queued -= worked)
                worked = doneq.get();
            int stop = last_prime + last_prime;
            if (stop >= N_SIEVE) stop = N_SIEVE - 1;
            for (int scan = last_prime+1; scan <= stop; ++scan)
                if (!sieve[scan]) {
                    workq.put(scan);
                    last_prime = scan;
                    ++queued;
                    if (queued >= N_THR) break;
                }
        }
        // threads exit when given a negative prime
        for (int i = 0; i < N_THR; i++) workq.put(-1);
    }
}

15.14   Memory model and concurrency

Concurrent programs that use lib.concur.mutex and lib.concur.cond to coor-
dinate and implement their shared memory accesses don’t need to be aware of the 
memory model. Programs that operate on naturally aligned scalar types (the integral 
and floating point types) and fetch and store the values of pointers (not what they 
point to, but the pointers themselves), can operate on the shared data without concern 
that somehow the data in individual concurrent fetches and stores will get commin-
gled in a way that the values in memory are values that were never stored into it. If  
the concurrent access makes sense to the application, the compiler will not get in the 
way of them, the compiler will not perform actions unknown to the programmer in 
some misguided optimization attempt. For example, a series of 7 stores of true into 
an array of 8 bool that the compiler can determine that is aligned on a 64 bit bound-
ary will not be transformed by the compiler into a 8 bit load of the 8 th bool into a 64 
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bit register, and then setting the other 7 bytes in the register to the value true (i.e. 
one), and then store back the 8 bytes. Such an operation is reading and writing back  
the 8th bool and it might cause a concurrent store into it by another thread to disap-
pear, as if it was never occurred. The compiler could generate code that builds the 7 
byte string into a register and then perform a 7 byte string store as long as the opera-
tion does not cause the 8th bool to be stored into, i.e. if the compiler support such in-
structions and doing so is somehow more efficient. The compiler could produce a 32 
bit store, a 16 bit store, and an 8 bit store, to implement the 7 stores, such stores are 
indistinguishable from individual stores in every computer system.

Similarly, systems with register pair loads and stores,  or multi-register load and 
store instructions, those instructions can be generated by the compiler as long as the 
stores correspond to stores requested by the programmer.

From  the  programmer’s  perspective  and  the  computer  hardware  behavior  each 
thread of execution perceives its operations as if they occurred sequentially wherever 
the language specifies order relationships between them, for example, the effects an 
expression statement are to occur in such a way that the next expression statement 
perceives the first one as if it occurred in order. These are the sequence points defined 
in the C89 standard. Subexpression evaluation, argument expressions, and others pro-
ceed in unspecified order, unless documented to occur otherwise, thus the program-
mer can not depend on the evaluation order. For example:  a[i++] = i  the value 
stored into the array can not be determined. The compiler produces compilation er-
rors for these expressions, but it is possible, through pointers that refer to the same 
memory without the compiler knowing about it, to construct expressions whose side 
effects are such that the results of the operation are unknown, they might be what the 
programmer expected, and after some unrelated code changes the results might be 
different when the code is recompiled or because the compiler version might have 
changed and it might have chosen a different optimization strategy, or maybe because 
the optimization levels and related parameters to it were changed. Whatever the re-
sults are, they are not undefined behavior, the results are just unspecified. For exam-
ple,  memory unrelated to the data in question will not be affected arbitrarily . 
Assuming that  p and q point to the same int, which for the sake of argument we 
will assume has the value 7, and that the compiler doesn’t know about it: a[*p] = 
(*q)++ then either a[7] or a[8] are affected, and the value stored into one of them 
is 8. 

The compiler and the computer hardware are allowed to reorder operations so that 
they occur efficiently as long as the thread that is executing them can not perceive 
them to have occurred out of order, other threads could perceive them to have oc-
curred out of order. Whenever a function call that the compiler doesn’t know about 
its  code  is  invoked,  everything  needs  to  be  in  memory  as  the  programmer  pro-
grammed it to be, but the computer hardware itself might still be in the process of 
draining its write buffers and the operations can be perceived to occur out of order by 
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concurrently executing code unless the called function, for example a mutex being 
unlocked, performs the hardware actions required by it, for example a memory bar-
rier instruction prior to the store that releases the mutex. In consequence, concurrent 
algorithms that don’t coordinate their shared memory accesses with synchronizers, 
have to be written very carefully, in ways that force the compiler to do what the pro-
grammer requested, and that the computer hardware does so too, from the perspective 
of hardware concurrent execution, from the computer hardware’s memory model. For 
portable code a weakly ordered memory model should always be assumed, code cor-
rect for it will also be correct for hardware with a strongly ordered memory model.

15.15   C11 and C++11 memory model

C11 and C++11 both specify a memory model that is meant to be the same across 
both standards, the memory model has the same origin, first going into C++ and from 
there into C. The description of  the memory model is tremendously complicated, 
written in english prose in such a way that it attempts to be precise but doesn’t in -
clude proper definitions and uses many words with meanings whose definitions are 
not easily found in the standard, if they are present anywhere at all.

The C11 and C++11 memory model includes notions such as data races and that 
data races lead to the dreaded undefined behavior, meaning there will  be security 
holes introduced by the compiler behind the programmers back, and thus the NSA, 
KGB, and other spy agencies will be glad that the backdoors are being introduced by 
the compilers so can exploit them. Malicious hackers will do the same.

15.16   COOGL memory model

If you can decipher the C11 and C++11 memory model that is the memory model 
of COOGL but without the notion of data races and the undefined behavior. COOGL 
is a language for the real world, not a language for future mythical machines that the 
C11 and C++11 language standards seem to attempt to want to leave the doors open 
for.

The memory model of  COOGL is a weakly ordered memory model, it mandates 
that loads and stores of the fundamental types are indivisible if they are done to ad-
dresses that are multiples of the data type size. On a 32 bit system concurrent loads 
and stores of 64 bit integral types (ularge and  large)  might not be performed 
atomically, because they are usually implemented with individual 32 bit loads and 
stores because the 32 bit instruction sets usually don’t have 64 bit loads and stores.  
This of course, is just a reflexion of normal hardware. The programmer is supposed 
to know what he is doing, the compiler will not penalize him by saying that these are  
data races and that the whole program will misbehave, the dreaded undefined behav-
ior will not be triggered. Note that loads and stores of 64 bit floating point values are  
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atomic on 32 bit computer systems, other than some stone age ones that might imple-
ment floating point by emulating it with integer instructions, those are not interesting, 
and they certainly don’t tend to support multiple CPUs in an SMP configuration.

Portable functions that provide access to the underlying hardware operations re-
quired to work with a weakly ordered system are provided by the language libraries,  
see §L.4.

15.17   Atomic memory operations

Atomic memory operations supported by the hardware are provided through porta-
ble libraries. If an operation on a specific data size or a specific operation is not sup-
ported, then the corresponding library function is not provided and the compilation 
will fail, the programmer will have to deal with it by implementing an alternative op-
eration, the supported interfaces are provided in  lib.atomic.  Where possible the 
missing operations, implemented in software, possibly at considerable expense, are 
provided in  lib.atomic.missing. A program can import lib.atomic and lib.atom-
ic.missing into its own address space, say app.atomic and access them from there 
when it is initially being ported, the programmers can later investigate the impact of 
the user of the slower missing ones and figure out what they want to do.

15.18   Exception handlers

If an exception handling function returns, the instruction that caused the exception 
to be raised is retried, causing the exception to occur again, unless the handler per-
forms some action that causes the exception to no longer occur, for example, by map-
ping memory into an area where memory was not previously mapped, or changing 
the protection of the memory area that caused the exception.

XXX Exception handlers are per thread, arguments, etc. Alternate stacks. Kind of 
like  per-cpu  hardware  interrupt  stacks.  Should  exception  handlers  be  allowed  to 
block, etc? Then can not share pool of exception handling stacks, but if they can 
block then they could block to acquire an exception handling stack, but that could 
lead to resource exhaustion related deadlocks, then again exception handling is sup-
posed to be exceptional, not the bread and butter of a software design, at least not in  
the exception handling paths which should be brief and non-blocking. Memory foot-
print costs, sharing of exception handlers, between threads (to reduce cost), etc. Need 
the minimalist mechanism which is UNIX signals with alternate stacks, etc. Need al-
ternate stacks for when the thread stack overflows. In Windows could use the Vec-
tored Exception Handling features. See also  SetConsoleCtrlHandler() for Win-
dows console processes.

XXX Should a proposed standard C library extension that is OS neutral be de-
signed? In Windows stack space exhaustion might need to be carefully managed to 
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ensure that at least there is some space to switch to an alternate stack when required, 
so minimal stack space might need to be guaranteed. Language level specification vs 
C library signals setjmp/longjmp to an outer layer. Initially implement POSIX signals 
on Windows and divorce the design of a new API from this language, only adopt it if  
it becomes part of C in the future.
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“C provides no operations to deal directly with 
composite objects such as character strings, sets, lists, 
or arrays considered as a whole. There is no analog, 
for example, of the PL/1 operations which manipulate 
an entire array or string. The language does not define  
any storage allocation facility other than static 
definition and the stack discipline provided by the 
local variables of functions: there is no heap or 
garbage collection like that provided by Algol 68. 
Finally, C itself provides no input-output facilities...”

“Although the absence of some of these features may 
seem like a grave deficiency (“You mean I have to call 
a function to compare two strings?”), keeping the 
language down to modest dimensions has brought real 
benefits.”

-- Brian W. Kernighan and Dennis M. Ritchie

The language run-time support is described in this appendix, pro-
grammer accessible aspects of it are exposed in the lang namespace. 
The language library, lib, and a safe subset of the standard C library, 
libc, are described.  

1L.1  Generic function lang.on_array()

XXX use argsof and arguments now have to be in a the table which has to be aug-
mented with a place for argument values, but if the evaluation of the arguments is 
non-trivial and contradicts the sequential execution model, then it can not be done,  
usually it can, it is just passing a pointer argument, e.g. the FILE pointer to be used.
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extend namespace lang {
    on_array.type on_array(pub genre lang.integral type,
                           on_array.delegate delegates[])
                               require(delegates.max[0] > 0) {
        pub typedef type (*delegate)() deleg;
        delegate *dp = delegates;
        delegate d = *dp;
        type n = d();
        if (n > 0)
            while (++dp < delegates.end) {
                d = *dp;
                type c = d();
                if (c <= 0) break;
                n += c;
            }
        return n;
    }
}

1L.2  Obtaining the object that contains a field field_to_obj()

The function field_to_obj(), field to object, is used to obtain a pointer to an ob-
ject from a pointer to a field within the object, is a language provided function, its  
fieldp argument is a pointer to field_type, type has a member of field_type, 
its name is specified in the field argument. If fieldp points to the field member 
of  type,  then a pointer to the containing object is returned, otherwise  NIL is re-
turned. 

extend namespace lang {
    priv field_to_obj.type
        *field_to_obj(pub genre void type,
                      genre void field_type,
                      fieldof type field_type field,
                      field_type *fieldp) { ... }
}

1L.3  Atomic array descriptor fetching and copying

Atomically fetching an array descriptor that is not a local variable or argument to a 
function is lock free and not more than 2 times as expensive than the underlying 
loads to obtain the data from the array descriptor. Atomically updating the array de-
scriptor is also lock free where the hardware has the correct instructions to atomically 
update two pointer sized words, ignoring 32 bit environments because they are not 
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really interesting anymore for multi-threaded code on SMP systems. Single thread 
code has similar issues on a single CPU system, but they are easier to solve, 32 bit on  
SMP is becoming extinct, we look forwards with the language not backwards. Imple-
mentations exist for 32 bit SMP, they are not worth discussing here (for example, just 
use a generation count as in the more than one dimension case below).

ARM64, x86/64,  and POWER all have 16 byte  (data  must be 16 byte  aligned) 
atomic memory load_linked/store_conditional or x86/64 cmpexch instructions.  Uni-
dimensional array descriptors implemented as two 64 bit words: start and max[0]. 
(end is computed at runtime in this case). The value of end can be assumed to exist 
and be valid in array descriptors that exist in the run-time stack as part of the calling 
convention so they don't need to be recomputed when they are passed around as ar-
guments to functions. The calling convention on systems with enough registers might 
pass the 3 values, other architectures might just pass the two values instead. Note that 
having max[0] instead of end be the better choice of the value to represent in array 
descriptors stored in global memory is based on the fact that multiplication to com-
pute  end is much faster than division to compute  max[0], and that quite often the 
multiplication is against a small literal and the compiler can perform those frequently 
without hardware multiplication.

Atomically fetching the 16 byte value, without performing stores, makes use of a 
register pair load, and a generation count. A register pair load, even though obviously 
not atomic, is an indivisible instruction, meaning that a thread can not be preempted 
in the middle of it, so there is no concern for having to hook the scheduler to restart 
the instruction sequence. To fetch the two values a register pair load is used, but be-
cause the values might not really be a logical pair but a broken pair a generation 
number stored in both would have to be used. Using a relatively narrow generation 
number is good enough because there are no unbounded long lived preemptions be-
tween the two values being read, the cache line could conceivably be bounced around 
between CPUs for a period of time in between the two hardware issued fetches for  
the register pair load, but for a large enough generation number it is inconceivable 
that two words that exist in the same cache line that makes it to the L1 cache of a 
CPU would continuously be removed from the cache as the two words are repeatedly 
updated in other CPUs and eventually the L1 coming back to have its second word 
fetched and have the generation number coincide with the generation number fetched 
from the first word. For example with 64 bit words, if 16 bits are dedicated to the 
generation number, it would have required 64K updates of the array descriptor while 
a CPU stalls between consecutive loads of two words that coexisted in the L1 while 
the first word was satisfied. An extra safety net could be built that counts the number 
of  retries  from mismatched  generation  numbers,  if  the  number  of  mismatches  is 
larger than a reasonable value an exception could be thrown as the repeated storing 
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into the array descriptor could be part of an attempt by malicious code to defeat the 
language safety.

Atomically updating with 16 byte atomic update requires reading a consistent prior 
value against which to perform the atomic update because the prior version of the 
generation count has to be updated correctly, thus the atomic fetch is first performed 
and the values obtained are the basis for the 16 byte atomic update after incrementing 
the generation count.

If a  register pair  load is  not available  then a  different implementation approach 
would have to be used because a thread preemption between the two word loads  
could allow for the generation count to wrap and produce an incorrect generation 
count mismatch. The thread preemption could could honor an instruction restart re-
gion and simply backup the program counter appropriately so that when it resumes it 
retries the two word fetches.

Threads could have a preemption count which they could fetch prior and after to 
see if they have been preempted. This is a much cleaner interface than restartable PC 
backing by the kernel. The kernel just has to increment the per-thread preemption 
count  and  not  be  aware  of  special  address  ranges  for  restartable  instruction  se-
quences. Per-thread preemption value would be part of thread context and when the 
thread is running it could be exposed (read-write! For user mode thread multiplex-
ing!) at a well known address per-core. So apart from validating gen was the same it  
would also ensure that preemption did not happen. Note that running an interrupt 
handler and resuming from the kernel to the same thread wold be considered a pre-
emption because arbitrary code ran while the thread was running. If the kernel is up-
dating the preemption count, and user mode is updating it too, then they have to be  
done with a ll/sc pair in user mode (and kernel mode too if the hardware architecture 
requires it), note that with user level thread switching on a core, the per-thread se-
quence numbers are being context switched too to the well known per CPU location.

Array descriptors with more than one dimension would require 3 or more words, so 
they might as well also store end in memory, their non run-time incarnations would 
have a generation count in them. Their atomic fetch would fetch the generation count, 
use the value fetched as a data dependency to compute the address of the other values 
and a final re-fetch of the generation count. If the generation count did not change 
then the atomic fetch succeeded. A special generation count, say zero, would mean 
that an update is in progress and the code fetching the values atomically would have 
to spin until a stable generation count is obtained. A thread updating an array descrip-
tor would use the low values that are CPU numbers as the generation count and es-
tablish it atomically if it was not a CPU number already. A thread that has thus locked 
the generation count and was preempted would require its preemption to go through a 
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release sequence prior to the preemption to restore the generation count and its pro-
gram counter would have to be reset to the start of its instruction restartable sequence 
for when it resumes. Communication to the thread preemption code might involve a 
per CPU location that stores the address of the generation count, the value to be re-
stored, and the program counter to back up to, note that because the values of the ar-
ray descriptor are in the middle of an update their prior values would have to be re-
wound, but this all amounts to a way of making backwards possible, it would be just 
as easy to have the preemption code to complete the update instead of undoing it, in-
stead of storing the pre-values, what would be stored in the preemption per CPU area 
would be the post-values and new generation count desired and the starting address 
where the stores should be performed, the read would then atomically fetch the gen-
eration count, compute the new one, all the new values, and last store the address of 
where the new values go, this final store which is perceived by the CPU in program 
order tells a future preemption that if the generation count in the data is the CPU 
number then the values are to be used for the update, if the generation count is not the 
CPU number, it means that the thread not yet locked it, so the program counter can 
be safely backed up to the point where the thread refetches the generation count and 
is about to store it again in the per-CPU memory, note that for this preemption the 
pointer to the data would to updated to zero to indicate when it resumes and if it is re-
preempted nothing needs to be done. Note that an immediate preemption after fetch-
ing the generation would be caught by the compare-and-swap like operation that en-
sures that the storing of the CPU number in the generation is not done over a newer 
generation number or some other thread having stored their CPU number there.

In the discussions above intimate interactions with the scheduler through user mode 
accessible and documented shared memory that is per CPU is implied, depending on 
the environment thread id could be used instead of CPU number and per thread mem-
ory instead of per CPU memory, the details are similar but more intricate and vary 
from system to system.

Note that memory barriers are not required as assignment into or fetching from 
global array descriptors can still be weakly ordered with respect to other data.

1L.4  Weakly ordered memory control

Portable functions that provide access to the underlying hardware operations re-
quired to work with a weakly ordered system are provided by the language libraries.

1L.5  Standard input output

XXX
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1L.6  String literals and the str string type

XXX



Appendix 2S – Identifier mapping and calling convention

“C is peculiar in a lot of ways, but it, like many 
successful things, has a certain unity of approach that 
stems from development in a small group.”

--Dennis Ritchie

The memory layout of a class is specified by the language. Binary 
compatibility  between  completely  separately  compiled  modules  is 
supported through interfaces exposed through classes, even if differ-
ent compilers are used. The layout of classes that have not been pub-
lished (see  §8.4) is not dictated by the language and are subject to 
heavy optimization.

Compilation of COOGL source code into C11 requires that identi-
fiers be mapped to C11 identifiers in a way that accounts for their ac-
cessibility  modifier  and  the scope where they were declared.  This 
chapter  explains  this  identifier  mapping.  In  other  languages  this 
process is referred to as mangling.

2S.1  Introduction to the calling convention

A calling convention, in programming languages, is a description of the argument 
passing and value returning convention followed by the language to implement func-
tions and function calls. Calling conventions are usually specified in a computer ar-
chitecture specific way, for example what registers are used to pass integral argu-
ments, what registers are used to pass pointer arguments, what registers are used to 
pass floating point arguments, how are structures passed by value, what is done when 
there are not enough registers to pass all the arguments via registers, for example how 
is the run-time stack call frame laid out to pass additional arguments that can not be 
passed in registers. Additionally, how values returned by the function returned, for 
example in which registers the values are returned, if possible, and if they can not be 
returned fully in registers how are the values returned in memory. An aspect of the 
calling convention is which registers are to be preserved by the function and which 
registers can be changed without preserving their values for the calling function. The 
calling convention also includes details about how the run-time stack is organized, its 
stack frame alignment, what memory can be used, etc. If these conventions are fol-
lowed properly then other tools such as debuggers can examine the run-time stack 
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and reliably show the various call frames and the data of the functions.

Modern calling conventions pass quite a few arguments in registers and usually fol-
low a  similar  register  assignment  convention  to  return  values  from the  function. 
Older calling conventions might be limited in the number of registers used to return 
values. Machines with dedicated address and integer registers are not in common use 
anymore, all modern systems pass pointers and integers in general purpose registers 
and floating point values in floating point registers.

COOGL is compiled into C, its calling convention is specified in C, to understand 
its calling convention at the assembly level you have to understand the calling con-
vention of the underlying C compiler. Understanding the calling convention at the C 
level is more important because it will help you understand how to call C code and  
how it calls into COOGL code.

2S.2  Hidden arguments: this and on

Hidden arguments to functions are passed by the compiler on behalf of the pro-
grammer,  for example the this object pointer when invoking a non-static member 
function, e.g. stack->push(10), the function at the C level receives two arguments, 
this and v, the value to be pushed, the first argument is this followed by the argu-
ments of the function.

Another example is when the class constructor is invoked it receives a hidden argu-
ment, named on, that points to the memory on which the object is to be constructed,  
note that that argument is not the this argument, the on argument is specified after 
the arguments to the constructor. Constructors don't have a this argument unless they 
themselves are  a  non-static  member function of  another class,  see the  iterator 
class that is a non-static member function of class stack in §4.14. This means that a 
class constructor that is also a non-static member function of another class receives 
both of these hidden arguments: this and on.

2S.3  Tuple arguments and return value

Functions that have tuple arguments receive those arguments as individual argu-
ments, not as a structure. Functions that return tuple values return the tuple value in a 
structure where each member of the tuple has a corresponding structure member with 
the same name and type. If a future version of C includes support for tuples, and 
COOGL is adapted to support that version of C as its target language, then, as an 
evolutionary option, the compiler can be directed to return tuple values natively as 
native C tuples instead of returning them through structures.
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Note that modern calling conventions, for example 64 bit ARM, are able to pass 
and return structures by value through calling convention registers designated for ar-
gument passing, at least when the structure fits completely in those registers. 64 bit 
little-endian POWER calling convention also allows for this.  The RISC-V calling 
convention doesn't. Some older calling conventions only allow one value to be re-
turned in registers, others allow up to two values. The most common tuples have two 
pointer sized (or smaller) values, most calling conventions are pretty efficient already 
in this case, for example both 32 bit and 64 bit x86 allow structures with two words,  
2 x 32 or 2 x 64 bits respectively, to be returned in two registers.

2S.4  Arguments that are a value object

An object passed as a value to a function is constructed by the calling function from 
another object, by either calling  init() or  init_deinit() on the source value. 
Only the calling function knows which of these calls is appropriate, if the source ob-
ject doesn’t need to be deinitialized, then init() will be invoked, but if the source 
object will be deinitialized immediately, then init_deinit() is invoked. The mem-
ory for the object that is being passed by value must be allocated by the calling func-
tion (for example as a local C variable), in consequence, when objects are passed by 
value the address of the object is what is actually passed as an argument to the func-
tion being called. An obvious optimization performed by the compiler, is that if the 
source object is to be deinitialized, after being used to initialize the value object, then 
instead of even invoking init_deinit() it can instead just pass the address of the 
value object.

Very small objects, a few words, might be more efficiently passed in registers than 
creating the object in memory and passing a pointer to it. For example an object that 
completely fits in a single register would be passed more efficiently in a register in-
stead of creating it in memory just to pass a pointer in a register to it. All objects that 
fit in a register, are constructed in a C variable and passed by value at the C level.

It is enticing to pass objects by value when they use more than a single register, say  
two registers, and when the underlying C calling convention for passing structures by 
value would pass the structure in registers. The problem with doing this is that such a  
structure might internally have pointers into itself and passing that in registers and 
then having the receiving function put those registers in memory to dereference the 
memory would cause the pointers to point to the data on the calling side and not on 
the receiving side. By restricting this optimization to register sized objects, the object 
even if it is internally just a pointer, could not point to itself, so it is safe to do so.

It is also tempting to do other similar optimizations if the object is just plain data.  
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For example an object that has not been published within the module that defines it, 
this optimization could be done for it globally within the module, for example if the 
compiler detects that it is passed by value significantly. The current compiler doesn't 
implement this, but it might in the future if there is demand for it. An alternative solu-
tion, for the programmer, for such plain-data objects would be to implement them in 
structures and depend on the efficient passing of structures by value from the under-
lying C compiler. A future enhancement to the language might allow the programmer 
to specify that objects of a specific class type should be passed by value following 
the structure passing convention.

Allowing the calling convention to be specialized for value objects depending on 
their size (i.e. if they fit in a register or not) does not impose additional coupling be-
tween separately compiled modules because those modules already are exposing the 
size of their objects to each other when they objects are allowed to be declared on the 
stack, assigned to each other, and initialized from each other. The size of the objects  
become part of the application binary interface (ABI) exposed by the module. The 
only way to decouple knowledge about the size of specific objects between modules 
is to have their constructor be inaccessible, i.e. to be priv, and requiring that the ob-
jects of that type to only be created dynamically, or if pre-allocated, to be pre-allo-
cated by the module that defines their class which can then pass pointers to them to  
code in other modules. Objects not meant to be members of other objects can also 
benefit from this technique. Classes without a priv constructor also expose their size 
as part of an ABI when declared to be members of, or inherited by, other objects.

2S.5  Return values that are a value object

Objects returned by value, that fit in a register, are returned as value. Objects larger 
than that, that are the single value returned by a function, or a value returned as part 
of a tuple, are optimized better if they can have memory for them in the called func-
tion (instead of the calling function). The calling convention for receiving object val-
ues returned by a function passes the address of where the objects values should be 
placed as additional arguments passed to the function through the normal calling con-
vention. There are two possible cases for the receiving objects, they either already ex-
ist as objects and are being assigned to, or are newly declared objects being initial-
ized, its either one of these two, not a combination of these cases.

An additional argument that indicates either that the values returned are being as-
signed to existing objects, or that they are used to initialize objects being declared.  
By passing an extra argument with this information, the most optimal function can be 
used, i.e.  reinit_deinit() or  init_deinit(), respectively, but in some cases it 
might need to use reinit() or init() instead, for example when the value object 
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being returned is not about to be deinitialized because it will continue to exist after 
the function returns, for example because it exists in a globally reachable data struc-
ture. If the function just returns the value of another function that it calls, then it just  
has to pass the extra arguments with this information and it is no longer involved in 
the decision making process, supporting tail recursive functions efficiently. 

The calling convention for functions that return object values passes a hidden argu-
ment,  bool return__init, followed by one or more addresses for the receiving 
value objects that have already been constructed (when return__init is false) for 
example because they are being assigned into; or the raw memory where the receiv-
ing value objects are to be initialized (when return__init is true). Note that when 
a function is inlined, the return__init argument, usually a constant argument, and any 
generated if statements based on it, are removed by the compiler. 

Values returned by functions that return a tuple, that are not objects, are returned as 
if all those values were part of a C structure, that structure is returned by value and  
subject to whatever is done for those by the underlying C compiler's convention.

2S.6  Unidimensional array descriptor arguments

Unidimensional array descriptors, a lang.vecdesc,  are a type implemented by the 
language,  their  value fits  in  two registers,  its  two members to  hold the values of 
start and max[0], their argument passing convention doesn't follow the convention 
of objects of user defined classes. The  start member value is passed in the argu-
ment for the array descriptor, and the max[0] member value is passed in the next ar-
gument. For example:

void scale(double vec[], double factor) {
    for (index i = 0; i < vec.max[0]; i++) vec[i] *= factor;
}

Is compiled into this C code:

void scale(double *vec, size_t vec__max0, double factor) {
    for (index i = 0; i < vec__max0; i++) vec[i] *= factor;
}

The prototype produced for this functions forces calls to scale() from C to pro-
vide the vec__max0 argument.

2S.7  Array descriptor return value

Array descriptors are returned as a value as if they were a C structure.
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2S.8  Multidimensional array descriptor arguments

Multidimensional array descriptors are passed as a value as if they were an object  
of a user defined class, the calling function ensures that the array descriptor, if its  
value is coming from a data structure, i.e. not a local variable or an argument, that it 
is atomically copied into memory in the calling function, the calling function passes a 
pointer to that memory, even though a pointer is passed, if that function subsequently 
passes the array descriptor to other functions it simply passes the pointer it received.

If a function that receives an array descriptor as an argument assigns to the array 
descriptor, then the compiler makes a local copy of the array descriptor for the func-
tion to manipulate and change. In general functions don't assign to array descriptors 
received as arguments, the compiled code can depend on the invariant that they are 
not addressable from any other thread and that their values don't change when passed 
as an argument to another function, the only code that can change it is the function 
function itself, so its compilation is fully aware of the only source of changes to it.  
For example the function can cache the start and various max[] values into regis-
ters without concern about these values changing, it can still pass the pointer to the 
array descriptor to other functions without any concern about it changing.

2S.9  Internal and external identifiers

Assuming these global declarations:

pub int func(int arg) { return arg + 1; }
pub int var;
pub enum state { free = 0, valid = 1, io = 2 };
pub struct huge { large data[8]; };

When compiled into C11 code their names, at the C level don't change.

The identifiers func and var are external identifiers from the perspective of C. Ex-
ternal identifiers correspond to executable code or data declared in the global scope 
or data that is declared static, such code and data exist at fixed memory address lo-
cations while the module is loaded in memory and able to be used at runtime.

The opposite of an external identifier is an internal identifier. Internal identifiers are 
associated with non-global and non-static data, for example a local variable, a func-
tion argument, or a non-static data member. Internal identifiers are also associated 
with entities that don't exist in memory during execution of the compiled code, for 
example an enumeration type and its value, or a literal declaration, or the type de-
clared by a  struct  declaration.  Above  arg,  state,  free,  valid,  io,  huge,  and 
data are all internal identifiers.
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An external identifier length limit might be imposed by the static or the run-time 
linker, and not just by the underlying C11 compiler. The internal identifier length 
limit is imposed, usually, only by the C11 compiler, certain environmental factors 
such as field length limits on debugging information formats, or limitations of debug-
gers might cause the internal identifier length limit to be smaller than what the com-
piler might support internally. For example, the same compiler on two different plat-
forms might have different internal identifier length limits.

The C11 standard requires that external identifiers of up to 31 characters and inter-
nal identifiers of up to 63 characters be supported. To ensure maximum  COOGL 
source code portability, the programmer can choose that these be the limits used in-
stead of the actual limits imposed by the underlying compiler. Additionally, program-
mers can choose their own limits, presumably the most restrictive limits across the 
platforms supported by their software. Limits larger than supported by the target plat-
form for which code is being compiled are not allowed.

2S.10  Identifier mapping from COOGL to C

When  COOGL is compiled into C most identifiers have their names adjusted so 
that they can exist within the single global identifier name space of C code, both 
global internal and global external identifiers exist in a single global name space in C.

Only pub declarations at the outermost scope have their names unchanged when 
compiled into C code. All other names require some amount of adjustment of their 
names when translated into C, the mapping into C is described in this chapter.

The language reserves double underscore for identifier mapping, user defined iden-
tifiers can not contain double underscore, nor can they start or end with underscore. 
Sometimes triple underscore is used, in those cases, the triple underscore is shown in 
red bold, i.e. ___,to make it easier to discern from double underscore.

When file names are included as part of an identifier mapping, the extension of the 
file name is always ignored, and every slash is replaced by double underscore, for ex-
ample src/file.cog is mapped to src__file. Note that all filenames are always 
relative to the top of a hierarchy where they exist, file names are not absolute, they 
can't start with slash, walking up the directory hierarchy via the parent directory is  
not allowed, i.e. .., it is also not allowed to use the current directory, i.e. . in file-
names. For example, these are not allowed: /s/f.cog,  ../s/f.cog,  s/../f.cog, 
and ./f.cog.

The general rule for use of triple underscore vs double underscore is that triple un-
derscore separates entities of these different kinds from each other: modules, file-
names, and identifiers. Whereas double underscore separates entities of the same kind 
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(components of a pathname from each other, or identifiers from each other).

Module names and filenames must be proper COOGL identifiers with the exception 
that the ASCII minus character, '-', can be used too, it is a synonym for underscore 
and is often preferred by programmers than underscore in their file names.

2S.11  Identifier mapping: global declarations outside of lexical scope

If the identifier declaration is global, and not within a lexical scope, for example not 
inside a namespace or a class declaration, then: pub declarations remain unchanged; 
priv declarations are prefixed by priv___module___file___; and prot declara-
tions are prefixed by  module___.  The identifier space within which global  priv 
declarations outside a namespace exist is the identifier space within a single file, be-
cause file names only have to be unique within a module, the identifier mapping for 
them has to also include the module name. The identifier space within which prot 
declarations outside a namespace exist is the identifier space within a module, in con-
sequence these identifiers only need to be prefixed by the module name. The default 
module name is  mn, short for the main module. For example the source file  src/
file.cog:

pub  int a;
priv int b;
prot int c;
int c2;  // default for globals is prot

is compiled into this C code:

int a;
int priv___mn___src__file___b;
int mn___c;
int mn___c2;  // default for globals is prot

Note that when you are debugging a program, for example in a command line de-
bugger you are always within some context, when you are examining code, setting 
breakpoints, single stepping, etc. you are always working in a specific location, in-
side a function, inside a file, and inside a module. When you specify names to the de-
bugger, your names are interpreted relative to your current location, as if it were your 
current directory, so you refer to them relative to the current scope. Also you specify 
them in their unmapped form, using their original names.

2S.12  Identifier mapping: global declarations inside a lexical scope

If  the  declarations  were  within  a  language  lexical  scope,  for  example  declared 
within a namespace or members of class, then the module and file that contains them 
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are completely irrelevant,  their accessibility modifiers dictate their identifier map-
ping. Note that in this case the identifier that provides the lexical scope for the decla-
ration has to be mapped too, if that identifier is a global declaration that is not inside 
lexical scope, that identifier has its name mapped as described above, otherwise it is  
mapped by the same means as identifiers are mapped when inside a lexical scope. 
For the following example we will use a global pub namespace prog , because the 
mapping for prog doesn't affect its identifier.

When declarations are inside a lexical scope the pub accessibility qualifier doesn't 
affect the identifier mapping; priv causes a single underscore to be appended to the 
identifier as part of its mapping; and  prot causes a double underscore to be ap-
pended. This code:

pub namespace prog {
    pub  int a;
    priv int b;
    prot int c;
    // int invalid;   // error: accessibility modifier required
}

Is compiled into this C code:

int prog__a;
int prog__b_;
int prog__c__;

If prog was declared prot, i.e.: prot namespace prog {...}:

int mn___prog__a;
int mn___prog__b_;
int mn___prog__c__;

If prog was declared priv, i.e.: priv namespace prog {...}:

int priv___mn___src__file___prog__a;
int priv___mn___src__file___prog__b_;
int priv___mn___src__file___prog__c__;

2S.13  Exceeding the external identifier length limit

Module name and file name components in the identifier mapping can be encoded 
differently on platforms that have a restrictive external identifier length limit,  e.g.  
when a module's filename's are too long and cause the identifiers to become too long 
for the target platform. In the alternative encoding the module name and all the file 
name components are replaced by a number whose first digit is 0-9 (which makes it  
different than a module name which must be a valid COOGL identifier), followed by 
digits in base 62 using the characters 0-9A-Za-z, each digit representing values in the 
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range 0-61 (0-9 is 10 digits, and A-Z and a-z are 26 digits each, 62 = 10 + 26 x 2).  
Four digits constructed this way are used to encode the module and filename map-
ping. The first two digits represent the module name, allowing 10 x 62 = 620 possible 
module names, the last two digits represent the file name within the module, allowing 
62 x 62 = 3844 files per module. The mapping between file numbers and file names 
is kept in a file managed by the compiler, the mapping between module numbers and 
module names is managed by the compiler and its tools. The encoding is actually 
variable length. A minimum of 4 digits must be present. If there are 2 x N digits, the 
first N belong to the module number and the second N belong to the file number. If 
there are 2 x N + 1 digits, the first N + 1 belong to the module name, and the other N  
to the file number. For example an operating system kernel with a particularly large 
set of device drivers, more than 620, and where unique symbolic information for all 
of them is required to be produced even though they won't all ever be loaded into a 
single running kernel at the same time.

Note that this is mostly a legacy C compiler problem, most compilers and linkers 
support very large symbols to support the C++ name mangling done by most imple-
mentations of that language. The programmer can choose to use these shorter identi-
fiers for other reasons, by using the compiler option --base62-names, for example 
if other unrelated tools have trouble with these long identifiers.

2S.14  Identifier mapping for a class and its members

A class declaration declares both a function and an underlying C struct used to im-
plement the data layout of objects of the class type. Assuming the stack declaration 
in §1.3, but assuming it was declared pub, so we can ignore the identifier mapping 
for stack itself, and that it was in the source code file stack.cog. Its compilation 
results follow (comments and  #line directives were removed, the code was refor-
matted to fit, and automatic inlining was disabled), the two resulting files stack.h:

typedef struct stack__struct stack;
enum { stack__MAXENT = 100 };
struct stack__struct {
    int *sp_;
    int entries_[stack__MAXENT];
};
void stack__promise(stack *on);
void stack__on(stack *on);
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void stack__class(stack *on);
bool stack__empty(stack *this);
bool stack__full(stack *this);
void stack__push(stack *this, int v);
pub int stack__pop(stack *this);
pub int stack__top(stack *this);

The second file  produced is  stack.c,  below. Note that  implicit  this maps to 
this and the memory were an object is to be constructed maps to that. Remember 
that the class constructor does not have a  this argument (unless it is itself a non-
static member function of another class, see §4.14), instead the class constructor re-
ceives an extra hidden argument after the class arguments (see §XXX calling conven-
tion), which is named  on in the compiled code, the  raw pointer that refers to the 
memory that is to be constructed to be used as a stack.

#include <lang.h>
#include "stack.h"
void stack__promise(stack *on) {
    promise(stack__empty(on));
}
void stack__on(stack *on) {
    on->sp_ = on->entries_;
}
void stack__class(stack *on) {
    stack__on(on);
    stack__promise(on);
}

bool stack__empty(stack *this) {
    return this->sp_ == this->entries_;
}
bool stack__full(stack *this) {
    return this->sp_ == this->entries_ + stack__MAXENT;
}
void stack__push(stack *this, int v) {
    require(!stack__full(this));
    *(this->sp_)++ = v;
}
int stack__pop(stack *this) {
    require(!empty(this));
    int retval = *--(this->sp_);
    promise(!full(this));
    return retval;
}
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int stack__top(stack *_) {
    require(!empty(this));
    return this->sp[-1];
}

Note  that  the  constructor  stack__class() uses  two  supporting  functions 
stack__on() and stack__promise(), this relates to the promises of a class only 
being checked after an object is fully built, for example if another class inherits from 
it, then stack__promise() is only invoked after the class that inherited from stack 
has been constructed, the descendant uses  stack__on() to construct the inherited 
stack, not stack_class(), and after the descendant constructor is done (all imple-
mented in its own xxx__on() function) then its constructor, for example  opstack 
from  §6.7,   opstack__class() calls  both  opstack__on() and  stack__prom-
ise(), remember that in an inheritance chain only one constructor can promise a 
post-construction invariant,  all  descendants must  satisfy it,  just  as  opstack does, 
which requires that the promise be checked only after the outermost object is con-
structed.

Note that certain language keywords are used as part of the identifier mapping, for  
example on and class were used above, they are not valid user defined identifiers, 
so their use by the name mapping convention doesn't cause problems. The  on and 
this keywords are also used to name function arguments The  promise() in the 
compiled C code is similar to an  assert(), it is provided in <lang.h>.

2S.15  Identifier mapping of array descriptor declarations

The declaration of a unidimensional array descriptor is equivalent, to and compiled 
as if the declaration was made using the  lang.vecdesc (§Error: Reference source
not found)  generic class. Similarly, the declaration of a multidimensional array de-
scriptor is as if the declaration was made using the lang.arraydesc (§Error: Refer-
ence source not found) generic class. See §S.16. For example:

int v[];          // compiled as: decl lang.vecdesc(int);
float matrix[][]; // compiled as: decl lang.arraydesc(int, 2);

2S.16  Identifier mapping and generic code

A generic function or class has one or more generic arguments, i.e. declared with 
genre, each use of such a class or function with a unique combination of generic ar-
gument types causes code for the function or class to be specialized for those specific 
types. The identifier mapping for generic classes uses the type name for the generic 
arguments  to  map the function's  or  class'  name so  that  their  specialized form be 
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uniquely identified.

A related aspect of the generic specialization of code is that for some type combina-
tions the code that is generated, at the instruction level, could be identical between 
specializations with unrelated types. The compiler ensures only a single copy of such 
common specialized code is generated. For example a the generic stack class from 
§11.3, specialized to implement a stack of int * or a stack of float * is shared be-
cause the stack at its lowest levels ends up just being a stack pointers and what those  
pointers point to is not important at that level. Note that a stack of ularge and double 
could not share the same code because functions such as push(), pop(), and top() 
require different underlying calling conventions on most modern systems for their ar-
gument passing and value returning that is not the same at the instruction level,  dif -
ferent registers, integer or floating point, are used.

The identifier mapping for the generic stack from §11.3, which is parameterized 
with the type of its elements and the maximum number of elements, assuming it was 
declared  pub.  Note  that  entries[]  is  implemented  by  the  generic  class 
lang.vecdesc:

pub class stack(genre lang.value type,
            size_t max, int *error) promise(empty()) {
    priv type entries[];
    entries.create(max);
    priv type *sp = entries.start;
    *error = !sp = libc.ENOMEM : 0;
    ...
}

When used as a stack(int), results in stack__genre__int.h:

typedef struct lang__vecdesc__genre__int__struct
               lang__vecdesc__genre__int;
struct lang__vecdesc__genre__int__struct {
    int *start;
    size_t max[0];
};
void lang__vecdesc__genre__int__create(
         lang__vecdesc__genre__int *on, size_t n);
void lang__vecdesc__genre__int__destroy(
         lang__vecdesc__genre__int *on);
typedef struct stack__genre__int__struct stack__genre__int;
struct stack__genre__int__struct {
    lang__vecdesc__genre__int entries_;
    int *sp_;
};



304        Appendix 2S – Identifier mapping and calling convention

void stack__genre__int__promise(stack *on);
void stack__genre__int__on(size_t max, int *error , stack *on);
void stack__genre__int__class(size_t max, int *error, stack*on);
void stack__genre__int__deinit(stack *this);
bool stack__genre__int__empty(stack *this);
bool stack__genre__int__full(stack *this);
void stack__genre__int__push(stack *this, int v);
pub int stack__genre__int__pop(stack *this);
pub int stack__genre__int__top(stack *this);

The second file produced is stack__genre__int.c:

#include <lang.h>
#include "stack.h"
void stack__promise(stack *on) {
    promise(stack__empty(on));
}
void stack__genre__int__on(size_t max, int *error , stack *on){
    lang__vecdesc__genre__int__create(&on->entries_, max);
    on->sp_ = on->entries_.start;
    *error = !sp = libc__ENOMEM : 0;
}
void stack__genre__int__class(size_t max, int *error, stack*on){
    stack__on(max, error, on);
    stack__promise(on);
}
void stack__genre__int__deinit(stack *this) {
    lang__vecdesc__genre__int__destroy(&this entries_);→entries_);
}
bool stack___genre__int__empty(stack *this) {
    return this->sp_ == this->entries_.start;
}
bool stack__full(stack *this) {
    // COOGL: atomic fetch not needed, immutable: entries_
    return this->sp_ == this->entries_.start
                      + this->entries_.max[0];
}
void stack__push(stack *this, int v) {
    require(!stack__full(this));
    *(this->sp_)++ = v;
}
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int stack__pop(stack *this) {
    require(!empty(this));
    int retval = *--(this->sp_);
    promise(!full(this));
    return retval;
}
int stack__top(stack *_) {
    require(!empty(this));
    return this->sp_[-1];
}

2S.17  Functions with default argument expressions

Functions with default argument expressions are implemented by having a different 
version of the function for each argument that has a default value. Each implementa-
tion computes its default argument, and invokes the next version with that additional 
argument. For example, for memget() from §4.16 these additional functions are:

void *memget__1(size_t size) inline {
    return memget__2(size, true);
}
void *memget__2(size_t size, bool cached) inline {
    return memget(size, cached,
                  size >= sizeof(large) ? sizeof(large) : 
                  size >= sizeof(int)   ? sizeof(int)   :
                  size >= sizeof(short) ? sizeof(short) : 1);
}

Their names are formed by appending a double underscore to the function name, in 
this case just memget, followed by their number of arguments. These functions then 
have their names mapped into C when compiled into C.

Note that the UNIX open() system call function is used with either 2 or 3 argu-
ments, when specified as COOGL code the third argument is specified with a default 
value. Note that in some operating systems the C prototype for open() is specified 
as a variable argument function, only declaring the first two arguments, which causes 
the type checking of its third argument to be bypassed in the calling location, funda-
mentally this kind of function was never addressed by C89 or later versions of C.

int open(char *path, int flag, mode_t mode = 0) {...}

2S.18  Identifier mapping of functions risky to caller

As described in §14.9 functions such as strchr() are risky for the caller, the com-
piler must verify that the value returned by it, if its first argument is a local variable, 
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is not misused in a way that leads to unsafe code.  The identifier mapping for it is dif -
ferent because of this:

char *strchr(char str[], int c) promise(retval == NULL ||
                                        str.start <= retval &&
                                        retval <= str.end) {
    char v;
    char *s = str;
    char *send = str.end;
    for (; s < send; ++s) {
        if ((v = *s) == c)
            return s;  // address of c in s, even if c == 0
        if (!v) break;
    }
    return NULL;       // return NULL otherwise
}

Is compiled into this code:

char *strchr__return__str(char *str, size_t str_max0, int c) {
    char *str__end = str + str__max0;
    char v;
    char *s = str;
    char *send = str__end;
    for (; s < send; ++s) {
        if ((v = *s) == c) {
            promise(str <= s && s <= str__end);
            return s;  // address of c in s, even if c == 0
        }
        if (!v) break;
    }
    return NULL;       // return NULL otherwise
}

XXX other cases need to be described.
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“#if is almost always followed by a variable like 
‘‘pdp11.’’ What it means is that the programmer has 
buried some old code that will no longer compile. 
Another common usage is to write ‘‘portable’’ code by 
expanding all possibilities in a jumble of left-justified 
chicken scratches.”

--Ken Thompson

CLEAN is a subset of COOGL that is C compatible, the most sig-
nificant change is the removal of the C preprocessor and the addition 
of safe programming. Other changes are small, they simplify and im-
prove the language, without silently changing the meaning of C code.

3D.1  Summary of differences between CLEAN and C 

This appendix can be skipped by programmers that are not familiar with the C pro-
gramming language.

COOGL is an evolution of a subset of C, this common subset is CLEAN. COOGL 
is not a superset of C. Language evolution requires change, if change is restricted to  
additions, i.e. if removal is not allowed, the accumulation of features leads to too 
much complexity.

Evolution of the C base of COOGL involves a few changes to the base C language. 
These changes are  not  silent  changes.  This  means that  these changes don't  allow 
CLEAN code to behave different when used as  C code, it means that any use of a 
feature of C that has been removed, causes a compilation error instead of a silent 
change in its meaning. This language design principle restricts the changes to the re-
moval of arcane, useless, or problematic C features (those that usually lead to incor-
rect programs or needless complexity). This design principle allows some of those re-
moved features to be brought back at a later time if backwards compatibility with  
some of them is later required, for example by a hypothetical transitional compiler 
that might fully or partially support both C and COOGL languages at the same time.

These evolutionary changes to the C language in COOGL and a few of the simpler 
additions to COOGL are described below. A detailed description of them is presented 
throughout the rest of this chapter.

A fundamental difference between C and  COOGL is that C is not a context free 
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language.  Determining  what  specific  language  constructs  are  being  used  in  C  is 
sometimes not possible without examining code that is elsewhere. A context free lan-
guage is one that can be parsed purely based on its syntax, without the aid of a sym-
bol table, context free languages make the writing of tools that are language aware  
easier to implement because the syntax of the language, its parsing, does not require  
the use of information from declarations found elsewhere to resolve syntactical ambi-
guities at parse time. C requires the use of a symbol table to resolve ambiguities in its  
parsing, it also requires that entities be declared prior to their use. Language aware 
editors and source code searching are much easier to implement when a language is 
context free because parsing with the aid of a symbol table is not required to be able 
to determine what a certain syntactical construct means.

Some examples of ambiguous C constructs:

 a(*b) which, if  a is a type, is a declaration of b as a pointer to objects of 
type a; otherwise it is a function invocation of a with argument *b.

 a(*b)(c) which if a is a type, is a declaration of b as a function pointer that 
has an argument of type c and returns a value of type a; otherwise it is an 
invocation of a function a with argument *b and the returned value, presum-
ably a function pointer, then being invoked with argument c.

 (a)(b) which can be interpreted as cast b to the type a, or as a function call 
of a with argument b.

 (a)(b)(c) which can be parsed as  ((a)(b))(c) or as  (a)((b)(c)) de-
pending on whether a is a type or not.

When using languages that are parsed in a single pass, such as C, the programmer 
has to  provide redundant information,  for example function prototypes,  and other 
prior declarations to ensure that the information required to disambiguate the parsing, 
or  even  to  ensure  proper  code  generation,  is  available  at  the  appropriate  times. 
COOGL is globally compiled in a single pass, but it doesn't require prototypes, re-
moving a common source of programming errors in C. No form of forward declara-
tions such as prototypes, extern, or struct tag; declarations are required, or al-
lowed. C might generate incorrect code if the function signatures is unknown when 
compiling a function call, for example:

 C assumes that functions are int, unless declared otherwise, thus a function 
that returns float or a structure type will have the wrong code generated for it 
in the calling location, causing strange errors at run time, which might even 
include invalid memory references.

 C assumes that integer function arguments are passed with argument passing 
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conventions associated with  int arguments. A function whose declaration 
has not been seen seen by the compiler is assumed to receive integral argu-
ments as if they were  int.  If the argument is actually meant to be  long 
long (the C99 type for a 64 bit integer) and assuming that int is 32 bits, the 
stack layout of arguments might be wrong, or the argument calling conven-
tion might be confused enough to the point were the values received by other 
arguments might be shifted between arguments in unexpected ways.

Even though use of prototypes is a well known solution to these problems, a miss-
ing include header file can easily cause these problems not to be caught. Editing of 
header files,  and nested header files,  sometimes causes a prototype that has been 
moved between header files to no longer be visible from some C code. This problem 
is always a possibility in C because prototypes are not mandatory. Some compilers 
have options that cause warnings or errors if a function is invoked without its signa-
ture being known, the language itself doesn't require any such checking.

Two simple changes to COOGL's subset of the C language were made to make the 
language context free,  which facilitated the removal of C prototypes and forward 
declarations. These changes also make programs easier to read when declarations are 
combined with other COOGL enhancements such as generic types. The two changes 
are:

 When the C operator sizeof is to be applied to an expression, instead of a 
type, the sizeofex operator should be used instead.

 Cast expressions in COOGL use the cast(type) operator instead of the C 
(type) operator, for example cast(int) instead of (int).

C features removed in COOGL's C subset are:

 The C preprocessor was removed. The #include, #define, #if, #ifdef, 
#ifndef,  #error,  #pragma,  and  #line preprocessor  directives  are  not 
available. Language level facilities in  COOGL exist to accommodate or re-
move the underlying needs for these features, with the exception of the arbi-
trary unstructured code mutations that are possible in C through unstructured 
uses of #define, #ifdef, and #include, see §D.3.

 Legacy K&R C function declaration syntax was removed. Only the C++ de-
rived syntax introduced in C89 is allowed, see §D.4. Functions without argu-
ments can  be declared with or without void in the function's argument list.

 Variable argument functions are not allowed, this reduces language complex-
ity while removing a feature that is unsafe and not required. In consequence 
printf() and related functions are not supported either. See §D.5.
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 Declaration of variables of a struct, union or enum type can not occur in 
the same declaration that is the struct, union or enum type declaration it-
self. No variable or function declarations can follow the closing curly brace 
of any of these declarations, see §D.7 and §D.8.

 Every declaration is local to its scope, except labels, see §D.9.

 Nested struct or union within another struct or union are allowed but 
must be without a tag, see §D.10.

 Forward declarations are not needed nor allowed.

 Declarations in nested scopes are not allowed to hide function arguments, lo-
cal declarations, or members, see §D.11.

 Members of a union must all be plain data, see §14.5 and §14.7.

COOGL does not mandate the size of any type, various common data type size 
combinations can be supported, as dictated by underlying hardware and operating 
systems (such as ILP32, LP64, P64, and ILP64). Programming languages that man-
date the size of native types, for example Java and C#, result in programs that are  
hard to port to wider or narrower word machines. For example, even today, with 64 
bit machines, Java mandates that int be a 32 bit type, that means that an array with 
more than 231 entries (one bit is consumed to represent negative numbers) can not be 
used, because indexes are typically declared int, and Java mandates that int types 
be 32 bits. So code that works today, needs to be changed as the systems evolve in -
stead of the language adapting appropriately to the system. The widening of the C 
int type from 16 bits to 32 bits is an example of such adaptation when C was moved 
to the DEC VAX from the DEC PDP-11. The types index and uindex are meant to 
be used as index types instead of int and uint.

The ALGOL 68 inherited syntax that uses short, long, long long, long dou-
ble, double double, etc. to specify native type sizes was removed, this simplifies 
the language in the areas of generic programming and constructor arguments to na-
tive types:

 The use of  short and  long together with  int in declarations is invalid. 
Thus forms such as: short int and int long are invalid, plain short and 
long should be used instead. Use the type large which is at least 64 bits in-
stead of long long, for example in a ILP32 environment.

 The unsigned and signed modifiers were removed from COOGL, they are 
reserved  keywords.  A complement  of  unsigned  types  was  added:  byte, 
ubyte,  schar (signed char), uchar, ushort, ulong, and ularge.

 All declarations must have an explicit type. The int type is not an optional 
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implicit type assumed when an explicit type is missing, see §D.21. Because 
short and long are types, instead of type width modifiers, the most com-
mon uses of optional int are preserved, for example: long l or short s.

Minor C language adjustments in COOGL are:

 Parenthesis are mandatory in certain expressions that usually cause confu-
sion among enough C programmers. This does not mean that everything has 
to have parenthesis, it means that certain uses that usually have them, or they 
would be a bug in most cases, must have them, see §D.16.

 C89 changed the original K&R C behavior of expressions that involve both 
signed and unsigned operands. COOGL follows all the rules of C99 for ex-
pression evaluation and integer and floating point promotions. With the ex-
ception  that  relational  comparisons  between  signed  and  unsigned  types, 
which behave different in K&R C and C89.  COOGL does not allow such in-
termixing in comparisons, see §D.17.

 The syntax  d3[i,j,k] does not correspond to the 3 dimensional array in-
dexing, it is an invalid expression in COOGL, though it is valid in C, but its 
meaning in C does not correspond to the tridimensional array indexing that 
programmers used to other programming languages might expect.

Minor C related features added to COOGL are:

 The  COOGL /# comment #/ replaces  the  need  for  the  C  preprocessor 
when #if 0-ing out code so that it not be compiled. Also BCPL style com-
ments, were added, e.g. // comment until end of line, see §D.2.

 The use of struct and union is preserved for interfacing with C programs 
and data. Programming in COOGL revolves around class and interface 
declarations, not around  struct or  union declarations. C style program-
ming with just struct and union declarations is supported with some mi-
nor backwards compatible simplifications, see §D.6, §D.7, §D.8, and §D.10.

 COOGL provides the ability for its functions to be invoked from C code, and 
vice versa, see §D.15.

 The  COOGL bool type  is  a  boolean  type  with  literal  values  true and 
false the same conversion rules as the C11 _Bool_ type, see §D.18.

 An integer type, a floating point type, or a pointer type, can be used as a 
modifier in a  enum declaration, thus dictating the type associated with its 
values  and  the  storage  requirements  for  variables  of  that  enum type,  see 
§D.19.
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 Given that #define C preprocessor mechanism was removed, constant dec-
larations in COOGL use the lit keyword, alternatively, for a family of re-
lated constants, an enum declaration can be used. Values declared in an enum 
or in a lit declaration are compile time constants, they can be used to size 
arrays or as the number of bits in a bit field declaration, both of which are in-
valid uses in C for an enum value, see §D.20.

 Function expansion in the invocation location, also known as function in line 
expansion. The use of inline modifiers in function declaration and in func-
tion invocation locations provides fine grained control over this facility, see 
§Error: Reference source not found.

 Support for zero length and variable length arrays, see §D.22.

 Indentation induced mismatched if else programming errors cause compi-
lation errors, see §2.28.

The C keyword const and volatile remain in the language begrudgingly mostly 
to interface with C code and have a larger common subset with it. Dennis Ritchie was 
right: “I'm not convinced that `const' and `volatile' carry their weight; I suspect that  
what they add to the cost of learning and using the language is not repaid in greater  
expressiveness.”

Their complexity was indeed not merited by the language. They might be depre-
cated in the future,  volatile particularly. Some intrinsics for device register load 
stores would have been enough just like x86 compilers had in() and out() intrin-
sics to produce the x86 in and out instructions. Some architectures, with load store 
accessible device hardware registers, require specialized instructions to be used (such 
as the POWER eieio, enforce in order execution of input output) when using load 
and store instructions to access device registers. Touching hardware device registers 
might require other delicate actions such as setting up very low level exception han-
dling in case the device stops working, hangs, or misbehaves in some other way, thus  
actual device hardware register access is hardly ever done from C through loads and 
stores of device registers declared volatile.

3D.2  Comments

There are 3 types of comments in COOGL. C style comments which are bracketed 
by the /* and */ tokens:

/* C style comment, continues irrespective of line
   boundaries until the end of comment token */

BCPL style comments, which start with the // token and end at the end of the line:



3D.2 Comments          313

// BCPL style comment, ends at the end of the line

Comments bracketed by the /# and #/ tokens:

/# Comment form used to comment out code that has the
   other two styles of comments, continues irrespective
   of line boundaries until the end of comment token #/

To avoid programming errors that result from a missing closing comment token, the 
following restrictions apply:

/# invalid because of this-> /# extra comment start token #/
/* invalid because of this-> /* extra comment start token */
/* invalid because of this-> /# COOGL comment start token */
/* invalid because of this-> // BCPL comment token */
// invalid because of this-> /* C comment start token
// invalid because of this-> */ C comment end token
// invalid because of this-> /# COOGL comment start token
// invalid because of this-> #/ COOGL comment end token

The purpose of  COOGL style comments is to allow code with comments to be 
commented out, so this is valid, see §2.2 for rationale and examples:

/# ok to have these tokens here: */ /* // #/

3D.3  No C preprocessor

The C preprocessor langugage is not part of the COOGL language. The idiomatic 
uses of  the preprocessor are  addressed by native  COOGL language facilities  and 
code organization conventions:

 The  use  of  #define macros  to  implement  assert(expr) and  similar 
macros is supported through the #identifier operator, see §4.17 for its use 
to implement assert(expr) and §D.17 for another example puts_if(e).

 The temporary commenting out of code by placing it between a #if 0 or an 
#ifdef notdef and a #endif is addressed by the /# comment #/  as de-
scribed above. 

 Uses of  #if,  #ifdef and  #ifndef in function bodies can be replaced by 
if statements with constant  expressions.  This  mandates that  all  the code 
compiles irrespective of the constant expression values. This is both a restric-
tion and a long term benefit. Platform dependencies (operating system, win-
dow systems, hardware, etc.) that would otherwise be dealt with conditional 
compilation are either so small that they can be easily addressed through if 
statements or are misplaced and ought to be factored out anyway into envi-
ronment dependent code in a platform dependent file. Any modern compiler 
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is capable of removing dead code, for example dead code subordinate to a 
compile time constant expression in an  if statement, thus there is no run-
time cost associated with replacing #ifdef with if statements.

 Uses of #ifdef outside of functions to cause different versions of a function 
to be chosen depending on platform considerations are addressed by segre-
gating the functions for each version into a separate file and choosing the ap-
propriate platform dependent file when building the program.

 Uses of  #ifdef to cause structure declaration mutations in a platform de-
pendent manner can be replaced with platform dependent files and the plat-
form dependent substructure included in what would have been the structure 
with #ifdef in its declaration. For example the C code:

struct io {
#ifdef UNIX_IO
    int file;
#endif
#ifdef LIBC_IO
    FILE *file;
#endif
    /* common to both */
};

Can be dealt with 3 source files. Source file io.cog contains:

class io {
    pub inherit iox;
    // common to both
}

file unix_io.cog contains:

class iox { pub int file; }

and file libc_io.cog contains:

class iox { pub FILE *file; }

Only one of these last two files is used as part of the program compilation. 
There are other ways to deal with this example when common code with C is 
required. See XXX (empty structures and fields of their type).

 The use of #define to introduce named constants, as in this C code:
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#define MAXENT 100
struct stack {
    elem *sp;
    elem entries[MAXENT];
};
#define STACK_INIT(stackp) \
    ((stackp)->sp = (stackp)->entries)

is replaced in COOGL by the use of lit or enum declarations:

class stack {
    pub lit int MAXENT = 100;
    pub elem entries[MAXENT];
    pub elem *sp = entries;
}

A COOGL lit is a constant expression. It can be used wherever a constant 
is required, e.g. to size an array, as a bit field, or as the value of a switch() 
case label. The C const does not work this way, it cannot be used as a con-
stant expression in any of those cases. The benefit of symbolic debugging 
and the prevention of arbitrary language mutation outweighs any benefits of 
preserving #define. Additionally, COOGL constants can be declared within 
a scope as done above for class stack , i.e. where they are relevant, they 
don't pollute the global name space as #define does. The MAXENT declara-
tion could have been global if that is what was really desired. The C #de-
fine NULL declaration is a lit declaration in COOGL, see §D.23.

 In  COOGL the underlying integer base type of an  enum can be declared, 
thus enumerations are not restricted to int values. For example:

ularge enum {
    MSB64 = 1uLL << 63
}

 Uses of #define to declare named macros with arguments that can be used 
to inline arbitrary text in the macro invocation location, without regards for 
scope, is replaced by well formed function inline support. Support for inline 
expansion of: functions, member functions, nested functions and delegates 
completely removes the non language mutating needs for this form of #de-
fine. The unification of structures, classes and functions also removes the 
need for #defines similar to the STACK_INIT() above that are usually lo-
cated near the structure declaration. In COOGL the class declaration is the 
constructor as shown in the class stack above, see §4.2.

 The use of #define to make believe that fields within an inner structure are 
part of an outer structure that contains them is addressed by inheritance or 
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the alias field aliasing syntax, for example the C code:

struct inner {
    int in_count, in_total;
};
struct outer {
    struct inner in;
    int out_free;
};

/* bad: these have global scope! */
#define out_count in.in_count
#define out_total in.in_total

int main() {
    struct outer o;
    o.out_count = 3;
}

is written this way in COOGL:

class inner {
    pub int in_count, in_total;
}
class outer {
    pub inner in;
    pub int out_free;
    // good: these have class scope
    pub alias out_count = in.in_count;
    pub alias out_total = in.in_total;
}
int main() {
    outer o;
    o.out_count = 3;
}

 Use of #define to implement macros such as OFFSETOF():

#define OFFSETOF(type, field) \
    ((size_t) &(type *)0)->field)

These are addressed by the generic programming facility which allows for 
type arguments with  genre and field name arguments with  fieldof, see 
§11.3 and §11.13 for their respective descriptions and an implementation of 
the offsetof() function.

 The need for the #include mechanism and the notion of header files in gen-
eral is removed. Declarations are extracted from the source files without any 
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programmer intervention. The set of files that makes a program is known at 
compile time. It is provided by the programmer, the list is supplied in a file 
or as part of the compiler command line argument list. The compiler caches 
information required for separate compilation into files that it manages trans-
parently to the user. Structure layouts, function signatures, etc. are cached by 
the compiler and the information is not re-extracted unless the source files 
that contained them have changed. The compiler also remembers the list of 
files, if the set of files changes, or their contents change, it adjusts the cached 
information.

 Optimized compilation for production always recompiles every file so that it 
has an opportunity to inline functions and perform global optimization. Opti-
mized compilation for development can be done without inlining thus obtain-
ing the benefits of incremental compilation. Code that requires strict separate 
compilation  doesn't  take  full  advantage  of  global  optimization,  for  those 
cases,  usually libraries,  the compiler knows where to find the cached ex-
tracted information for the library interfaces. Even in the case of libraries, in-
lining  can  be  chosen  for  selected  sets  of  functions,  thus  getchar(), 
putchar(),  and  isalpha() equivalent  functions  don't  have  to  be  any 
slower than their  C  #defined implementations.  COOGL files that contain 
only the class and structure data layouts, signatures and other declarations re-
quired or relied upon for strict separate compilation can be produced by the 
compiler, i.e. everything is extracted other than constructs that directly cause 
instructions to be emitted by the compiler. These compiler produced files are 
similar to the header files that are maintained explicitly by C programmers.

3D.4  No K&R C function declarations

The K&R, ALGOL style, function declarations are removed. Function declarations 
are only in the non-K&R form introduced by C++ and later adopted by C89. For ex-
ample, abs() 's declaration is invalid COOGL code, this is a K&R style declaration, 
the declaration of max() is valid:

int abs(i) int i; { return i >= 0 ? i : -i; }   /* K&R style */
int max(int a, int b) { return a > b ? a : b; }

 A function declared without arguments is synonymous with a function taking no 
arguments, for example, void f() {} is equivalent to void f(void) {}.

3D.5  Variable argument functions are not allowed

Variable argument functions are not allowed, this feature originated in BCPL and 
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got into C via B, this mechanism is not type safe, nor extensible, and notoriously er-
ror prone in its use. In consequence printf(),  scanf(), and related functions are 
not supported either. The on syntax provides a type safe, extensible, and general pur-
pose mechanism to implement formatted input output and traces. The traces can be 
compile time removable traces when not required for debugging, and very efficient, 
both when they are run-time disabled or enabled. See §9.2 and §9.3.

Leftover historical variable argument functions in C that were never meant to be 
supported with variable argument lists, but have now been contorted into them, such 
as the open() UNIX system call:

int open(const char *path, int oflag, ...);

Which is meant to be used in one of the following two ways, the 2nd one providing 
mode when oflag includes the O_CREAT flag:

int open(const char *path, int oflag);
int open(const char *path, int oflag, mode_t mode);

Note that the use of the C variable argument list declaration syntax ... removes in-
formation from the declaration of open() and the type of its optional 3rd argument, 
allowing incorrect arguments to be used without compilation warnings or errors.

In COOGL the declaration of open() follows, the type of its 3rd argument is cor-
rect and if the user doesn’t specify it, its value defaults to zero.

int open(const char path[], int oflag, mode_t mode = 0) { ... }

3D.6  Forward struct and union declarations are invalid

Mutually referring structures in C require these forward declarations:

struct node;
struct tree {    /* C code */
    struct node *root;
    int count;
};
struct node {
    struct tree *top;
    struct node *left, *right;
};

COOGL is globally compiled, it doesn't need types to be declared before they are 
used.  The forward  struct and  union forms are  not  needed,  they are  invalid  in 
COOGL:

struct node;                   // error: syntax error
union united;                  // error: syntax error
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The global compilation model allows these forms of cross dependencies to be ex-
pressed without order considerations. All declarations, with the exception of local 
and global variables, are order independent. Forward declarations such as the ones 
shown above for structures or extern declarations for data types are invalid, and not 
required in COOGL.

The equivalent COOGL code is:

struct tree {
    struct node *root;
    int count;
};
struct node {
    struct tree *top;
    struct node *left, *right;
};

The reason that order matters in local declarations is the obvious one, construction 
occurs at declaration time, there is a well defined life time for a local variable, fur-
thermore there is a well understood execution flow. The actual order of declarations 
of types, classes and functions does not correspond to an execution order, it only has 
to do with a compilation order. Order of global variable declarations matters as a fea-
ture that can be depended upon. Single pass compilation used to matter a very long 
time ago,  i.e.  when the program being compiled  resided  on  tape  and two passes 
meant reading the tape twice (because the program source code could not be assumed 
to fit in memory with the compiler and the compilation data). It is, of course, very 
safe to say that those days are long gone.

3D.7  Variable declarations in type declarations are invalid

C allows for a struct or union declaration together with variable declarations and 
typedef declarations. For example this valid C code is invalid COOGL code:

struct node {
    struct node *parent, *left, *right;
    struct info *data;
} root_node, *root = &root_node;       // error: syntax error
typedef struct { int i; } other_t;     // error: syntax error

The syntax that in the code above allows for struct node , root_node, and root 
to  be declared together has been removed from the  COOGL language.  The code 
above has to be written in COOGL as:
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struct node {
    struct node *parent, *left, *right;
    struct info *data;
};           // mandatory semicolon required
struct node root_node, *root = &root_node;
struct other { int i; };
typedef struct other other_t;

3D.8  Semicolon after closing curly brace in struct and union

In COOGL a semicolon is mandatory after the closing curly brace of a struct or a 
union declaration (unless the struct or union is nested within another struct or 
union). The COOGL syntax for struct and union is a strict subset of the C syn-
tax. As seen above, not all valid C struct and union declarations are valid COOGL 
declarations, the only declarations that are valid are the ones in which the semicolon 
follows the closing curly brace (ignoring intervening whitespace and comments). In 
COOGL a declaration based on the type just introduced by a struct or union declara-
tion is never followed by declarations after the closing curly brace.

3D.9  Every declaration is local to its scope

Declarations in  COOGL are local to the scope that contains them. In  C, when a 
function whose return value or complete signature is needed for appropriate compila-
tion sometimes the function is declared (with or without extern) in the scope of the 
function that needs the declaration. For example:

int main() {  /* C code */
    void *malloc(size_t);
    char *p = malloc(100);
    ...
}

In COOGL, such a declaration would be an incomplete, i.e. invalid, declaration of a 
nested function of main(), i.e main.malloc(), whose code was not provided.

In COOGL, lit, enum, struct, union, class and function declarations within a 
scope introduce a name only within that scope. Every declaration introduces a name 
within the scope where it occurs. If the name is to be referred to from outside of the 
scope, a qualified name must be used. Actual access to the entity is subject to the ac-
cessibility determined by the entity declaration.
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3D.10  Invalid nested typeless struct and union declarations

A struct and union declaration must specify a tag name, for example:

struct {       // error: missing struct tag name
    int i, j;
};

The rationale for this is simple, no variables can be declared at struct or union 
declaration time in COOGL, thus if no tag name is given, the declaration would serve 
no purpose, it could not be used for anything.

Nested  struct and  union declarations within other  struct or  union declara-
tions are allowed but they must not contain a tag, for example:

struct outer {
    int out;
    struct inner {  // error: nested struct has tag: inner
        int in;
    };
};

The meaning of the similar C code is actually compiler dependent, some compilers 
ignore the inner structure and allocate no space to it. Other compiler's treat it as an  
anonymous struct that does allocate space in the structure, a form of poor man's in-
heritance. Another reason to disallow these forms in COOGL is that every declara-
tion in COOGL is relative to its scope, which would not be the case in C. In C the 
struct inner  is introduced as a global type, there are no nested types in  C. To 
avoid silently changing underlying legacy C behavior these nested forms with a tag 
are invalid.

An easy, C compatible work around in COOGL is:

struct inner {
    int in;
};
struct outer {
    int out;
};

A typical use of nested structure declarations in C is valid in COOGL too:

struct foo {
    int i;
    struct {
        int a, b;
    } table[10];
};
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3D.11  Non global names cannot be hidden

Non global names cannot be hidden, for example by other declarations within a 
block, function, class or enum. For example:

void func(int i) {
    int i;             // error: hides i
    int b;
    if (i) { int b; }  // error: hides b
}

3D.12  Struct and union For C interoperability

COOGL struct and union declarations exactly follow the structure layout rules 
of the native  C  compiler. In  COOGL fields within  a  class must be explicitly de-
clared with an accessibility modifier (i.e.:  pub,  priv,  prot, etc). Entities declared 
within a  class without an explicit accessibility  modifier  are  not  actual  fields or 
members  of  the  class,  they  are  simply  local  variables  of  the constructor  of  the 
class. This enables the unification of classes and functions in COOGL, see §4.2.

For struct and union the accessibility modifier of every field is implicitly pub. It 
is not possible to declare constants, enumerations or functions within a  struct or 
union.  It  is  invalid  to  use  an accessibility  modifier  within a  struct or  union. 
Structs or unions can not have executable code of any kind in them, they are not 
constructors.

Neither a  struct nor a  union can contain or refer to a type that is not either: a 
fundamental type, a function pointer, a struct, an union, or an array of these types. 
Function pointers in them must not have as their signature a type outside of this re-
stricted set of types, nor can they be delegate function pointers, see  §7.10. Anything 
that appears in a COOGL struct or union can be extracted (together with its de-
pendent declarations) and used to interface with C code without the risk of COOGL 
constructs being part of them.

Arrays within a struct or union can make use of lit or enum declarations to ex-
press their dimensions. Shared source code files between  C  and  COOGL for those 
would require #defines that are equivalent to the lit and enum values, for exam-
ple:

/* file common to C and COOGL */
struct foo {
    int i;
    int b[NUMB];
};
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Some other COOGL file contains:

lit int NUMB = 17;

Usually a  simple  COOGL program can be written to  produce the  #define for 
NUMB:

// file gen.cog
int main() { on ("#define NUMB "; NUMB) print(); }

Alternatively, the values might be C #defines and the COOGL file with the lit 
declarations can be generated by a C program.

3D.13  Function invocation from C Code

A bridge between C and COOGL is that both languages use the same calling con-
vention, the identifier name mapping rules to map a COOGL identifier into a C iden-
tifier are very simple, and are part of the language definition. Any COOGL function 
can be called from C code, and vice-versa, non-static member functions receive as 
their first argument the address of the object that the member function is being in-
voked on. See  §Appendix 2S – Identifier mapping and calling convention.

3D.14  Global declarations are by default prot

The default behavior of prot was chosen for all global declarations in COOGL be-
cause it leaves  COOGL quite near C in this area. Particularly, when one considers 
that typedef, enum and struct declarations in C are almost always in header files, 
which are easily included from C files.

Complementing,  with  accessibility  modifiers,  the  C  use  of  static with  global 
variable and function declarations was required in  COOGL because without header 
files, control of the visibility of typedef, enum, struct, class, and other declara-
tions needed a syntax. Use of  static with them would be strange, and is not al-
lowed, use of priv, prot, and pub is natural.

3D.15  Interfacing with other languages

The issues involved in language interfacing are well understood. For example, to 
invoke Fortran code from C, many languages turn the function names to all lower-
case and append an underscore. Data type issues are more complicated. Particularly 
array indexing (starts at 1 in Fortran) and order of dimensions of multi-dimensional 
arrays in memory. The FORTRAN array access a(i,j) is a[j-1][i-1] in C. Inter-
operability with other languages is not a high priority goal for COOGL, system level 
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solutions, at the translated C level are used for this purpose.

3D.16  Mandatory parenthesis in a few troublesome cases

COOGL includes all of the operators in C, with the same precedence, associativity 
and semantics.  COOGL requires parenthesis to be used in a few cases. The cases 
where parenthesis are needed are fully described in §10.1. The cases involved are the 
ones where if parenthesis are omitted it is very likely a programming error, or likely 
to cause confusion when read by most C programmers.

For example:  if (x & 2 == 2)  means this in  C:  if (x & (2 == 2))  which 
further means:  if (x & 1) .  In  COOGL it results in a compilation error, the pro-
grammer must write: if ((x & 2) == 2)  if that is what he meant, or: if (x & (2 
== 2)) if that is what he surprisingly actually wanted.

Parenthesis  are required when certain operators are used together and when the 
parsing of the expression doesn't already imply an interpretation that doesn't lead to 
confusion. In the example shown above, the specific use of & and ==  mandates the 
need for parenthesis. Parenthesis are not required in the large majority of cases, for 
example: x = y & 2; or if (x & 2 && x != 0xff).

3D.17  Errors with signed and unsigned: < <= >= >

 Anomalous mixed sign comparisons are not supported, neither the C89 nor the 
K&R C behaviors are supported, the programmer must address the compilation error 
explicitly, for example through a cast. Turning one type to the other is inherently in-
correct for some cases.

C89 dictates that -1 > 1u  evaluates to true. The comparison between -1 (signed) 
and 1u (unsigned) causes the -1 to be converted to an unsigned value with the same 
bit pattern, which is a very large unsigned value. As a result -1 > 1u  is a true condi-
tion in C89, which is contrary to intuition. COOGL addresses these issues by causing 
a compilation error and forcing the programmer to be aware of it and address it.

#define PUTS_IF(e) do if (e) puts(#e); while (0)   /* C code */
int main() {
    PUTS_IF(-1 > (unsigned long long) 1);
    PUTS_IF(-1 > (unsigned int) 1);
    PUTS_IF(-1 > (unsigned short) 1);
    PUTS_IF(-1 > (unsigned char) 1);
}

The output of the C program above is:
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-1 > (unsigned long long) 1
-1 > (unsigned int) 1

The promotion to int during expression evaluation, the C89 dictated result occurs 
for unsigned int and unsigned long long but it does not occur for unsigned 
char or unsigned short, this is assuming that sizeof(short) < sizeof(int), 
otherwise  the  unexpected  result  also  occurs  for  unsigned short.  C89  adopted 
value preserving semantics, thus when an unsigned char or an unsigned short 
are evaluated in an expression that involves an int, their values can be fully repre-
sented as int and the result of the comparison has the expected behavior.

The equivalent  COOGL comparisons below, results in compilation errors for the 
first two, the unreasonable ones that imply that a negative number is greater than a 
positive number. This approach is within the COOGL design principle of not making 
silent changes to the C language, i.e. changes that would make the code behave dif-
ferent between C and COOGL.

This program uses the special # argument stringifying operator, see §4.17, to cause 
the compiler, not a preprocessor, to turn the expression used for argument  b into a 
string and use its value for the default value of another argument:

void puts_if(bool b, char msg[] = #b "\n"){ if(b)msg.print());}
int main() {
    puts_if(-1 > cast(ularge) 1)); // error: int > ularge
    puts_if(-1 > cast(uint) 1));   // error: int > uint
    puts_if(-1 > cast(ushort) 1));
    puts_if(-1 > cast(ubyte) 1));
    puts_if(true, "override default msg[] with this\n");
}

Most relational comparison between sub-expressions of type int and uint , or be-
tween int and ularge, result in a compilation error.  The mathematical correct thing 
to do for these comparisons would be to ensure that negative numbers are always 
smaller than unsigned values, and only comparing their values if the signed value 
was not negative. Mixed signed and unsigned comparisons of this nature are not di-
rectly supported by computer hardware comparison instructions, thus it is not sup-
ported by the COOGL language either, though a higher level language could adopt 
such a strategy. Comparison between an unsigned value and a literal signed value that 
is non-negative are allowed, the literal value is considered unsigned and the compari-
son proceeds as a comparison between unsigned values.

3D.18  Hardware dependent types and bool

COOGL has  a  bool type  together  with true and  false literal  values.  The 



326        Appendix 3D – Differences between C and CLEAN

sizeof(bool) is 1. Any non-zero expression assigned to a bool variable causes the 
variable to have the value  true. A zero expression causes the variable to have the 
value  false.  When  true is  converted to an integer type, its numeric value is  1, 
when false is converted to an integer type its value is 0.

COOGL defines a set of hardware independent types (int:8,  int:16,  int:32, 
and int:64, and their uint counterparts), COOGL doesn't have to worry about the 
class of machines with 18 bit words and 36 bit double words from a few decades ago,  
or the ones with 27, 29, or 31 bit words. Long gone are the days of 6, 7 and 9 bit byte  
machines! COOGL simply assumes that machines are byte addressable and that they 
have native support for arithmetic all the way up to 64 bits, even if multiple instruc-
tions are required to implement 64 bit arithmetic in a few legacy systems, i.e. 32 bit 
embedded processors and Intel/AMD x86 which is now in full transition to x86-64 
which has full 64 bit support.

These are the COOGL hardware dependent types and typedef defined types, and 
their sizes on modern systems:

size in
bytes

number
of bits

signed
type

unsigned
type

1
2
4
8

8
16
32
64

byte
short
int
large

ubyte
ushort
uint
ularge

3D.19  Type specifiers in enum

COOGL allows enum declarations to have an integer type, a floating point type, or 
a pointer type, as a modifier, see §Error: Reference source not found.

3D.20  lit modifier introduces a compile time constant

The lit modifier introduces a compile time constant. It can be used to size an ar-
ray, as the number of bits in a bit field declaration, or as the value of the case label 
of  switch() statement. The  C  const is a weak notion of a runtime constant that 
should not be modified, it is not a compile time constant.

3D.21  Declarations must have an explicit type

The last vestiges of C's untyped BCPL and B genome are removed. All declarations 
must explicitly indicate the type involved, int is not a default type for when a type is 
missing. This valid C code is not valid COOGL code:
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i;

main() { i=3; }

The types must be explicit:

int i;
int main() { i=3; }

3D.22  Variable length arrays

COOGL allows multidimensional variable length arrays, i.e. with the number of en-
tries in the array determined at run time, in a better way than C99 does, see chapter  
§13.

3D.23  NULL pointer

Traditionally C programs make use of NULL as the value associated with an invalid 
pointer, for example the value returned by malloc() when memory allocation fails, 
or the value that terminates a  NULL terminated list.  NULL in C is a  #define, these 
two forms are used in various compilation environments:

#define NULL   0
#define NULL   ((void *)0)

The definition of NULL in COOGL is:

lit void *NULL = cast(void *) 0;

Because of the undefined behavior of NULL pointer dereferencing and the unsafety 
that might arise from the address space layout of most operating systems, the declara-
tion of NULL and the ability to use 0 as a pointer value are only allowed if the com-
piler option --NULL is used, NIL should be used instead, see §14.16.

COOGL --NULL p.cog

3D.24  Name mapping, double underscore, and underscore retrictions

There is minimal name mapping from COOGL to C to support generic program-
ming and for member function names to be qualified by the name of the class or 
interface where they are defined. The name mapping rules are part of the language 
definition, allowing COOGL code compiled with different COOGL compilers to be 
linked together, see §Appendix 2S – Identifier mapping and calling convention.

Use of double underscore, i.e  __,  in identifiers is invalid. Double underscore is 
used by COOGL to separate user defined identifiers into compound identifiers. For 
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example  the  pop() function  of  the  stack class  has  its  name  mangled  into 
stack__pop() when translated into C. The use of double underscore is uncommon 
enough that making their use in identifiers and thus allowing the name mapping to be 
simpler is a worthwhile tradeoff.

Use of underscore at the start or end of an identifier is also invalid. This prevents a 
class stack_ and a member function pop() into being mangled as stack___pop(), 
and class stack with member function _pop() being mangled the same way (note 
the 3 underscores, not two in stack___pop()).

3D.25  Deceiving indentation causes compilation errors

To aid in the discovery of visual indentation induced bugs, such as the one shown 
in §2.28, COOGL produces a compilation error if the indentation levels of an if and 
its corresponding else could cause confusion.
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[ This page left blank to work around issue in LibreOffice that is causing an empty  
blank page to be created in the next chapter in between its pages ]
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“Independently, we went on and tried to rewrite Unix in  
this higher-level language that was evolving 
simultaneously. It's hard to say who was pushing whom
—whether Unix was pushing C or C was pushing Unix.  
These rewrites failed twice in the space of six months, I  
believe, because of problems with the language. There 
would be a major change in the language and we'd 
rewrite Unix.”

“The third rewrite—I took the OS proper, the kernel, 
and Dennis took the block I/O, the disk—was 
successful; it turned into version 5 in the labs ...”

-- Ken Thompson

 The mechanism used by COOGL programs to interface with C li-
braries and their header file exposed interfaces is important for pro-
grams that need to make use of such libraries or coexist with binary C 
code. For example an operating system kernel level file system im-
plementation written in COOGL that needs to function in an operat-
ing system written in  C. Or an operating system kernel written in 
COOGL that makes use of large bodies of preexisting code written in 
C,  device  drivers,  file  systems,  networking,  for  example a  reengi-
neered version of the Linux kernel in a multi-year effort to rewrite the 
Linux kernel into COOGL.

Source  code  that  needs  to  be  shared  and  used  both  as  C  and 
COOGL is written in the CLEAN subset of COOGL. A few program-
ming conventions are followed to allow the code to be used in both 
languages. The conventions are presented together with examples.

4C.1  genassym lesson

When incompatible languages need to share data structure information, for example 
C and assembly code, there are two ways of doing it. The wrong way, involves calcu-
lating the structure offsets and maintaining a series of #defined values (or some other 
assembly language macros)  and maintaining both the C and assembly definitions 
carefully adjusting the offsets whenever the C structures change. Similarly for enu-
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meration values. The right way is to have a C program that includes the header file  
and when run produces the definitions to be used by the assembly code, those pro-
grams have been historically called genassym because the generated the assembly 
symbols from the C headers. They make use of offsetof() like macros and they are 
easy to maintain. They use sizeof() to produce structure sizes, etc. Only the symbols 
required to be accessed from assembly need to have their offsets produced. The width 
of the data types themselves might change over time, some genassym generated code 
might include macros that expand to the correct load or store instruction for the un-
derlying CPU architecture, the genassym can choose the correct instruction based on 
the sizeof of the individual fields.

The same technique can be used when C headers contain interfaces that need to be 
used  from  COOGL code.  The  programmer can write  a  small  program that  maps 
#defined values into lit declarations, or vice versa. Because the struct. union, 
enum,  typedef,  and function declaration syntax is largely the same in both lan-
guages and because there are no silent differences between them, it is also easy to 
maintain civilized C header files  that  can be preprocessed to  produce a  COOGL 
source file against which the COOGL code can be compiled in a way that it is made 
believe that the code that it will be linked against is  COOGL code but at link time 
the C binary will be specified instead, or that the code lives in another module and  
that the symbols will be resolved at dynamic linking time at program startup time, or 
when the COOGL written module is dynamically loaded.

XXX show example of shared source code and header required on the C side to  
cover minor language differences, e.g. #define sizeofex sizeof, #define cast(x) (x).
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“xxx”

by XXX

The grammar for the language is specified in a simple format, in the 
file spec/grammar.spec, the keywords and operators for the language 
are specified in another simple file, spec/tokens.spec. From these two 
files  a  bison grammar with  automatically  generated  code  is  pro-
duced by the script tool/mk, including code to build the parse tree, 
create symbol tables for each scope, and insert the symbols into the 
symbol table, it also produces a flex file, and together with pre-ex-
isting code the compiler is built. The transformation of the grammar 
into a compiler includes automatic transformation of lists into tables. 
Additionally nodes that are not needed in the parse tree are pruned, 
which makes the parse tree more compact and easier to examine. The 
compiler has various options to dump the parse tree, dump declara-
tions, among others.

The result of all this is that the grammar is very easy to modify and 
the compiler is re-generated automatically without any effort.

5R.1  Introduction to the COOGL Compiler

XXX some of the descriptions are in the module specification section.

5R.2  Compiler Options

XXX some of the descriptions are in the module specification section.

5R.3  Compiler Option Specification

XXX feature turning on/off: through a compiler option, through an environment 
variable that specifies flags, or locally or globally for the system through a configura-
tion file whose names is specified in a variable, if set for local modification, or glob-
ally if not set (for system wide specification).
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5R.4  Enabling ... Statement

Make ... a valid statement only with the --... compiler flag.

5R.5  Enabling NULL Support

Use --NULL to enable use of NULL or 0 as pointer values.

5R.6  Compilation of Concurrent Code

Use --concurrent to compile a program or a modules to work in a concurrent en-
vironment, this option causes the choosing of modules that implement facilities re-
quired by the module that also support concurrency.

5R.7  Add --clean to gcc

Add a  --clean  flag to  gcc to ensure that the common subset between C and 
COOGL is compiled and that causes an initial hidden header file to be included, 
clean.h, so that  cast() and other things that need to be mapped are mapped, in-
cluding basic types, etc.

5R.8  Compiler Specification Files

A source code repository with many  COOGL programs,  libraries,  and loadable 
modules can be browsed with a code browser that is language aware by using the 
COOGL compilation description file. With C, makefiles and complicated build envi-
ronments and scripts would have to be examined or interpreted to determine what 
files belong to what modules, programs, etc. The compilation description file needs a 
specification.
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